

Ready to start planning your care? Call us at [800-525-2225](tel:800-525-2225) to make an appointment.

×

Memorial Sloan Kettering
Cancer Center

[About Us](#)
[Sloan Kettering Institute](#)

[The Lorenz Studer Lab](#)
[Research](#)

[Elsa Vera, PhD](#)

Postdoctoral Fellow - currently: Senior Machine Learning Engineer - Digital
[News & Events](#)
Intelligence at JPMorgan Chase & Co.

[Open Positions](#)

Email

verae@mskcc.org

The ability to reprogram adult skin fibroblast into induced pluripotent stem cells (iPSCs) provides a source of unlimited cells genetically matched to a patient. Beside the therapeutic applications within regenerative medicine field, these cells have an exiting potential for basic research for the *in vitro* modeling of diseases. However, modeling of late onset disorders such as Alzheimer's (AD) or Parkinson (PD) by conventional differentiation paradigms remains a challenge, as current iPSC differentiation protocols yield cells that typically show the "age" of fetal-stage cells. My main objective is to be able to recreate a late onset disease phenotype such AD or PD by accelerating aging *in vitro*. Based on the premature aging syndromes associated to mutation in telomerase components, I want to explore the effect of telomerase down regulation in human iPSC prior or during neural differentiation.

© 2026 Memorial Sloan Kettering Cancer Center