The lab strives to develop completely novel concepts how to image biological events, keeping clinical translatability of the projects within sight. We are aiming at translational research but are also interested in preclinical research, where one main aspect is the biology of PSMA as it pertains to new imaging and therapy approaches. The lab is housed in the Zuckerman Research Building (20th floor).
While novel biologic therapies use biological mechanisms such as blockage of specific kinases, current imaging methods to evaluate molecular endpoints of therapies with CT or MRI rely still on the administration of nonspecific contrast agents. Imaging agents capable of revealing the biological functions of their targets will significantly improve our ability to diagnose disease and monitor novel therapies. Such activatable or “smart” imaging agents are transformed to their active, signal-producing state only upon interacting with their target. This work has just been poublished in Nature Medicine (http://www.nature.com/nm/journal/vaop/ncurrent/pdf/nm.3323.pdf).
This considerably reduces nonspecific background signal and represents a higher level of probe sophistication compared to targeted agents alone, which indicate the presence of their target but do not deliver any information about the biologic activity. Multimodality imaging allows us to utilize the same imaging agent with different imaging modalities, which increases the versatility of such agents.
Secondary Cerenkov-induced Fluorescence Imaging allows for multimodality imaging of disease signatures.
We recently created a new imaging approach called SCIFI , for “Secondary Cerenkov-induced Fluorescence Imaging”, where the Cerenkov emission from radiotracers is utilized to activate an independent fluorescent agent to interrogate disease signatures with multimodality imaging, including enzymatic activity or surface expression of antigens. Thus, three signals can be acquired.
Interdisciplinary approach
Molecular Imaging is at the intersection of various disciplines and thrives by their inteactions
Molecular Imaging not only aims to detect diseases earlier and more specifically, it also aids in drug development. Novel drugs are increasingly geared towards affecting only specific proteins, e.g. to inhibit activated oncogenic kinases (biologicals). An imaging agent based on such a biological drug has the potential to indicate non-invasively if the target protein is actually present and, once therapy is initiated, to monitor the therapy with the very same imaging agent. This provides is an important step towards Personalized Medicine, tailoring towards the specific needs of the patient. This is also relevant in pharmaceutical development of drugs as such approaches allow better evaluation of the potentials of a drug candidate.
The Grimm Lab is interested in molecular iamging approaches for oncology, using various modalities (e.g. optical, PET, MRI).
Since the lab is situated at the intersection of various disciplines — such as Molecular Biology, Chemistry (organic and inorganic), Physics, Radiopharmacy, and Imaging — the lab is open to a wide variety of specialists interested in interdisciplinary research. We understand Molecular Imaging as an interdisciplinary approach that combines the knowledge of different fields to create innovative and unique new agents for various imaging applications. Consequently, several collaborations with other laboratories in the US and abroad exist.
Recent Publications
Thorek DL, Oriala A, Beattie B, Grimm J (2013) Quantitative Imaging of disease signatures through radioactive decay signal conversion. Nature Medicine (AOP, doi:10.1038). http://www.nature.com/nm/journal/vaop/ncurrent/pdf/nm.3323.pdf
Thorek DL, Grimm J. Enzymatically Activatable Diagnostic Probes. Curr Pharm Biotechnol. 2012 Jan 2. Epub ahead of print.
Moritz F. Kircher, Sanjiv S. Gambhir, and Jan Grimm. Noninvasive cell-tracking methods. Nature Reviews Clinical Oncology 8, 677-688 (November 2011).
Will nanotechnology influence targeted cancer therapy?
Intraoperative Imaging of Positron Emission Tomographic Radiotracers using Cerenkov Luminescence Emissions
Cerenkov Luminescent Imaging of Medical Isotopes