Orderly progression of the replication fork is essential for the timely and accurate duplication of our genetic material. Although the bacterial replisome is highly processive, capable of synthesizing megabase-long stretches of nascent duplex DNA without dissociating from the template, it is subject to many obstacles that can arrest replication forks. These obstacles can be chemical damage to the template bases (such as the formation of bulky adducts, abasic sites, or intra-strand thymidine dimers as a result of UV irradiation), nicks in one of the template strands, or frank double-strand breaks in the template. It is also the case that frozen protein-DNA complexes and trains of slow-moving RNA polymerases can block replication fork progression.