Selected Publications

Sarangi P and Zhao X (2015) SUMO-mediated regulation of DNA repair and damage responses Trends Biochem. Sci. (in press).

Choi K, Batke S, Szakal B, Lowther J, Hao F, Sarangi P, Branzei D, Ulrich H, and Zhao X. Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance (2015) Nucleic Acid Res. [Epub ahead of print].

Sarangi P, Steinacher R, Altmannova V, Fu Q, Paull T, Krejci L, Whitby MC, and Zhao X. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. (2015) PLoS Genetics 11: e1004899.

Xue P, Choi K, Bonner J, Chiba T, Kwon Y, Xu Y, Sanchez H, Wyman C, Niu H, Zhao X*, Sung P* (*co-corresponding authors). Restriction of Replication Fork Regression Activities by a Conserved SMC Complex. Mol Cell (2014) 56:436-445

Sarangi P, Altmannova V, Holland C, Bartosova Z, Hao F, Anrather D, Ammerer G, Lee SE, Krejci L* and Zhao X* (*co-corresponding authors). A Versatile Scaffold Contributes to Damage Survival via Sumoylation and Nuclease Interactions. Cell Reps (2014) 9: 143-152

Sarangi P and Zhao X (2014) The roles of post-translational protein modifications in DNA double strand break repair. Molecular Life Sciences: An Encyclopedia Reference. Springer New York.

Sarangi P, Bartosova Z, Altmannova V, Holland C, Chavdarova M, Lee SE, Krejci L, and Zhao X. (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res. 42(10):6393-404

Hang LE, Lopez CR, Liu X, Williams JM, Chung I, Wei L, Bertuch AA, and Zhao X. (2014) Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem. 289:10308-10317

Chen Y, Szakal B, Castellucci F, Branzei D, and Zhao X (2013) DNA damage checkpoint and recombinational repair differentially affect the replication stress tolerance of smc6 mutants. Mol. Biol. Cell 24:2431-2441

Vigasova D, Sarangi P, Kolesar P, Vlasakova D, Chovanec F, SlezakovaZ, Altmannova V, Zhao X, Chovanec M, and Krejci L (2013) Lif1 sumoylation and its role in non-homologous end-joining. Nucleic Acids Res41: 5341-5353

Chung, I. and Zhao, X. (2013). A STUbL wards off telomere fusions. EMBO 32: 775-777

Yong-Gonzales, V., Hang, LE., Castellucci, F., Branzei, D., and Zhao, X. (2012). The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS ONE. 7:e51540

Cremona, C.A. and Zhao, X. (2012) SUMOylation and the DNA damage response. Biomolecules 2: 376-388

Kolesar, P., Sarangi, S., Altmannova,V., Zhao, X., and Krejci, L. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res. 40: 7831-7843.

Krejci, L., Altmannova, V., Spirek, M., and Zhao, X. (2012) Homologous recombination and its regulation. Nucleic Acids Res. 40: 5795-5818.

Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, and Zhao X (2012) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 Checkpoint. Mol Cell 45, 422-332.

Hang, L.E., and Zhao, X. (2011) SUMO bridges Elg1 and SUMO interactors. Cell cycle 10, 3628.

Hang, L.H., Liu, X., Cheung, I., Yang, Y., and Zhao, X. SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat. Struc. Mol. Biol. 2011 Jul 10; 18: 920-6.

Choi K, Szakal B, Chen YH, Branzei D, Zhao X (2010) The Smc5/6 Complex and Esc2 Influence Multiple Replication-associated Recombination Processes in Saccharomyces cerevisiae. Mol Biol Cell.21:2306-14.

Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L. (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acid Research 38:4708-21.

Chen, Y., Choi, K., Szakal, B., Arenz, J., Duan, X., Ye, H., Branzei, D., and Zhao, X. (2009) Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl. Acad. Sci. USA.106:21252-7.

Duan X, Sarangi P, Liu X, Rangi GK, Zhao X*, Ye H*. (co-corresponding authors) (2009) Structural and Functional Insights into the Roles of the Mms21 Subunit of the Smc5/6 Complex. Mol Cell. 35:657-668.

Duan X, Yang Y, Chen YH, Arenz J, Rangi GK, Zhao X*, Ye H*. (*co-corresponding authors)(2009) Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6. J Biol Chem 284:8507-8515.

Takahashi, Y., Dulev, S., Liu, X., Hiller, N.J. Zhao, X. and Strunnikov, A.(2008) Cooperation of sumoylated chromosomal proteins in rDNA maintenance. PLoS Genetics 4 e1000215.

Burgess, R. C., Rahman, S., Lisby, M., Rothstein, R. and Zhao, X. (2007) The Slx5/8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol. Cell. Biol. 27: 6153-6162

Palancade, B., Liu, X., Garcia-rubio, M., Aguilera, A., Zhao, X. and Doye, V. (2007) Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependenet sumoylation processes. Mol. Biol. Cell 18: 2912-2923

De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang J, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber J, Aguilera A and Aragón L (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8:1032-4.

Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K and Foiani M (2006) Ubc9 and Mms21 mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127:509-522

Zhao, X. and Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102: 4777-4782

Zhao, X. Wu, C. and Blobel, G. (2004) Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167: 605-611

Chabes A., Georgieva B., Domkin V., Zhao X., Rothstein R., Thelander L. (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112:391-401

Zhao, X. and Rothstein R. (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99:3746-51

Zhao, X. and Rothstein R. (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20:3544-53

Georgieva, B., Zhao, X. and Rothstein, R. (2000) Damage response and dNTP regulation: The interaction between ribonucleotide reductase and its inhibitor, Sml1. Cold Spring Harb. Symp. Quant. Biol. 65:343-346.

Zhao, X., Georgieva, B., Chabes, A., Domkin, V., Ippel,J. H., Scheleucher, J., Wijmenga S., Thelander, L. and Rothstein, R. (2000) Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1, rad53 lethality. Mol. Cell. Biol. 20:9076-83.

Zhao, X., Muller, E. G. D. and Rothstein R. (1998). A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329-340.