Differentiation of Stem Cells into Dopamine-Producing Neurons for Treatment of Parkinson's Disease


Summary of Invention

This invention is a novel strategy for differentiating stem cells into dopamine-producing neurons that can be efficiently engrafted in vivo. Such a method could be used both therapeutically, by implanting the cells directly into the brains of Parkinson’s patients who have lost the ability to produce dopamine on their own, or as a research tool by drug companies that want to test the effects of their Parkinson’s drugs in the laboratory. Additionally, the invention provides a method for differentiating between A9 and A10 dopamine neurons using a cell-surface marker. A9 midbrain dopamine neurons are particularly affected in Parkinson’s disease and hence they are most desirable for these purposes.

The protocol results in the production of dopaminergic neurons in just three to four weeks. These functional neurons have a profile that mimics endogenous dopaminergic neurons. In vivo transplantation in mouse, rat, and primate models of Parkinson's disease resulted in long-term, stably-engrafted functional neurons as well as improvements in forelimb use and voluntary movement.


  • This differentiation process is greatly accelerated, compared to prior methods, and easily scalable
  • Both human embryonic stem cells and induced pluripotent stem cells can be used as starting material, increasing the amount of available source material
  • Unlike other methods, this differentiation protocol does not results in  formation of teratomas, or any other neural overgrowth

Market Opportunities

Parkinson’s disease is the second most common neurodegenerative disease, with an estimated four million patients worldwide ($2.7B market). There is currently no adequate treatment to restore proper dopaminergic neuron function.

Areas of Application

Parkinson’s disease

Stage of Development

Proof-of-concept in primate models

Patent Information

PCT application PCT/US2012/063339 filed 11/2/12

Lead Investigator

Lorenz Studer, MD, Director, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center

Contact Information

Imke Ehlers, PhD, CLP
Tel: 646-888-1074; Fax: 646-888-1120
E-mail: ehlersi@mskcc.org

Stage of Development
Animal studies
Technology Types