
RNA ligases and RNA repair

Overview of RNA repair – There is an emerging appreciation of the existence of “RNA repair” pathways that rely on RNA ligases to

maintain or manipulate RNA structure in response to purposeful RNA breakage events. RNA breaks destined for repair are

inflicted by sequence-specific or structure-specific endoribonucleases during physiological RNA processing (e.g. tRNA splicing;

kinetoplast mRNA editing) and under conditions of cellular stress (e.g., virus infection, unfolded protein response). RNA cleavage

can occur either: (i) by a transesterification mechanism that yields 2’,3’-cyclic-PO  and 5’-OH ends; or (ii) via a hydrolytic

mechanism that leaves 3’-OH and 5’-PO  ends. RNA repair enzymes capable of sealing 2’,3’-cyclic-PO /5’-OH breaks or 3’-OH/5’-

PO  breaks are present in diverse taxa in all phylogenetic domains of life.     

ATP-dependent RNA ligases join 3’-OH and 5’-PO  RNA termini via three nucleotidyl transfer steps similar to those of DNA

ligases: (Step 1) ligase reacts with ATP to form a covalent ligase-(lysyl-Nz)–AMP intermediate plus pyrophosphate; (Step 2) AMP

is transferred from ligase-adenylate to the 5’-PO RNA end to form an RNA–adenylate intermediate (AppRNA); and (Step 3) ligase

catalyzes attack by an RNA 3’-OH on the RNA–adenylate to seal the two ends via a phosphodiester bond and release AMP. In

order for these RNA ligases to repair breaks formed by transesterification, the 2’,3’-cyclic-PO  and 5’-OH ends must first be

“healed”. End-healing entails hydrolysis of the 2’,3’-cyclic phosphate (by a phosphoesterase enzyme) to form a 3’-OH and

phosphorylation of the 5’-OH (by a polynucleotide kinase enzyme) to form a 5’-PO .

Phage T4 polynucleotide kinase/phosphatase (Pnkp) and RNA ligase 1 (Rnl1) are prototypal RNA healing and sealing enzymes.

They function in vivo to repair a break in E. coli tRNA  triggered by phage-activation of a latent host-encoded anticodon

nuclease PrrC. PrrC specifically incises tRNA  at a single site in the anticodon loop, 5’ of the wobble uridine, to generate a 2’,3’-

cyclic-PO //5’-OH break. If Pnkp and Rnl1 are not present, depletion of the pool of functional tRNA  by PrrC blocks phage protein

synthesis and arrests the infection before it can spread. However, Pnkp and Rnl1 repair the broken tRNAs and thereby thwart the

host defense mechanism. Pnkp remodels the ends of the broken tRNA as follows: (i) it converts the 2’,3’-cyclic-PO  to a 3’-PO

and then hydrolyzes the 3’-PO  to a 3’-OH; and (ii) it transfers the gamma phosphate from ATP to the 5’-OH end to form a 5’-PO .

Rnl1 then joins the 3’-OH and 5’-PO  RNA ends. We have probed in depth the structural basis for catalysis by T4 Pnkp and Rnl1

and the features of the PrrC anticodon nuclease that are required for “ribotoxicity” in vivo.

Fungal tRNA Splicing as a Paradigm of RNA Repair   – Intron-containing tRNAs are widespread in eukarya; the intron is usually

located in the anticodon loop of the pre-tRNA and must be removed precisely for the tRNA to function in protein synthesis. tRNA

splicing occurs in two stages: (i) intron excision and (ii) joining of the broken tRNA halves. A tRNA splicing endonuclease catalyzes

dual incisions of the pre-tRNA at the exon-intron borders to yield 2’,3’-cyclic-PO  and 5’-OH termini. The joining phase of tRNA

splicing has been characterized best in fungi and plants, where a single multifunctional tRNA ligase enzyme (Trl1 in yeast; AtRNL

in Arabidopsis) repairs the ends of the broken tRNA half-molecules. The healing and sealing steps of yeast/plant tRNA splicing

involve distinctive intermediates and an additional repair step not seen in the phage T4 tRNA repair pathway. Trl1 and AtRNL

perform three reactions: (i) the 2’,3’-cyclic-PO  of the proximal tRNA half-molecule is hydrolyzed to a 3’-OH,2’-PO  by a cyclic
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phosphodiesterase (CPD); (ii) the 5’-OH of the distal half-molecule is phosphorylated by a kinase; and (iii) the 3’-OH,2’-PO  and

5’-PO  ends are sealed by an ATP-dependent RNA ligase to form a spliced tRNA with an unconventional 2’-PO , 3’-5’

phosphodiester at the splice junction. The final step of removing of the 2’-PO  is performed by a separate enzyme, Tpt1.

Trl1 (827-aa) and AtRNL (1104-aa) are homologous proteins composed of separable healing and sealing enzyme modules. The

C-terminal CPD module belongs to the “2H” phosphoesterase superfamily, named for the pair of HxT peptides that comprise the

CPD active site. The central kinase module is a member of the P-loop phosphotransferase superfamily, named for a signature

GxGK(S/T) motif that binds the NTP phosphate donor. The N-terminal ATP-dependent ligase domain belongs to the covalent

nucleotidyltransferase enzyme superfamily that includes classic RNA/DNA ligases and mRNA capping enzymes. We’ve shown

that: (i) each component catalytic module of tRNA ligase is essential for yeast cell growth; (ii) mutations in the active sites of the

CPD, kinase, and ligase domains are lethal in vivo; and (iii) phage and plant tRNA repair systems are “portable” and can

complement growth of a yeast trl1Δ null mutant. These findings empowered us to develop yeast trl1 mutants as genetic models

for studies of phage, plant, and fungal tRNA repair systems and the identification and characterization of novel tRNA repair

activities from eukarya, archaea, and bacteria.

During the last several years we made major strides in (i) elucidating the unique biochemical requirement for a 2’-PO  in the

ligation step of fungal/plant tRNA ligase; (ii) developing a kinetic mechanism for the healing and sealing steps; (iii) highlighting

distinctive kinetic properties and NTP specificities of the kinase components of fungal versus plant tRNA ligase; and (iv) solving

the crystal structure of the kinase domains of Candida tRNA ligase.

tRNA Ligase as Antifungal Drug Target  – Fungal/plant tRNA ligases are essential agents of informational and stress response

pathways involving the repair of tRNA breaks (during tRNA splicing) and mRNA breaks (during the unfolded protein response).

The biochemical outcomes and end-specificities of the healing and sealing reactions they catalyze are unique compared to the

tRNA repair systems elaborated by viruses, bacteria, and metazoans. Indeed, metazoan proteomes have no discernable

homologs of the sealing domain of fungal/plant tRNA ligase. Metazoa rely for end-joining during tRNA splicing and the unfolded

protein response on RtcB enzymes, a novel clade of RNA ligases co-discovered by my lab. RtcB is a GTP-dependent RNA ligase

with no structural similarity to the classic ATP-dependent ligase superfamily. We’ve shown that RtcB splices 3’-PO  and 5’-OH

ends via a unique chemical mechanism entailing the formation of covalent RtcB-(histidinyl)-GMP and RNA pp G intermediates.

There is no 5’ kinase end-healing step in the RtcB pathway of RNA repair. RtcB is conspicuously absent from the proteomes of

pathogenic fungi. This scenario highlights tRNA ligase as a target for the discovery of new antifungals. 

To fortify the case for fungal tRNA ligase as a drug target, we need to understand the properties of Trl1 enzymes produced by

fungi that cause human disease. To that end, we have characterized Trl1 from the human fungal pathogens Aspergillus fumigatus,

Coccidioides immitis, and Candida albicans. A. fumigatus causes invasive pulmonary disease in immunocompromised individuals,

especially those with hematological malignancies or who have undergone bone marrow or solid organ transplantation. C. immitis

is the agent of San Joaquin Valley Fever, a disease prevalent in the US desert Southwest region. C. albicans causes a spectrum

of illnesses ranging from local infections of oral and genital mucosa to invasive systemic infections with significant morbidity and

mortality in immunocompromised hosts. The Aspergillus, Coccidioides, and Candida Trl1 enzymes all strongly prefer GTP as the

NTP phosphate donor for their 5’ kinase reactions. 

We recently solved a 2.2 Å crystal structure of the Candida Trl1 kinase domain in complex with GDP and Mg  in the active site.

The P-loop phosphotransferase fold of the kinase is embellished by a unique “G-loop” element that accounts for guanine

nucleotide specificity. Mutations of amino acids that contact the guanine nucleobase efface kinase activity in vitro and Trl1 function

in vivo.
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