

Ready to start planning your care? Call us at [800-525-2225](tel:800-525-2225) to make an appointment.

X

Memorial Sloan Kettering
Cancer Center

[Make an Appointment](#)
[Back](#)

[Find a Physician](#)
[Cancer Treatment](#)
[In the News](#)
[Learn About Cancer & Treatment](#)

ABOUT US

[Our mission, vision & core values](#)

[Leadership](#)

[History](#)

[Inclusion & belonging](#)

[Annual report](#)

[Give to MSK](#)

By blocking the signaling activity of the $\beta 4$ subunit of this integrin on vascular cells, researchers found they could slow the growth of tumors.

Scientists at [Sloan Kettering Institute](#) have discovered that the $\alpha 6\beta 4$ integrin, one of several receptor proteins, plays a key role in signaling for the formation of new blood vessels for a tumor, a process called tumor angiogenesis. By blocking the signaling activity of the $\beta 4$ subunit of this integrin on vascular cells, researchers found they could slow the growth of tumors.

In experiments, mice that were genetically altered to block the signaling portion of the $\beta 4$ subunit developed smaller and less-vascularized tumors when injected with several kinds of cancer cells. This research is the first to demonstrate that $\alpha 6\beta 4$ contributes to tumor angiogenesis by a signaling mechanism. It was published in the [November 2004 issue of Cancer Cell](#).

“There is a lot of interest in tumor angiogenesis. If you could curb this process, it would be possible to suppress tumor growth,” according to Filippo Giancotti, a cell biologist at Memorial Sloan Kettering Cancer Center who led the study. But until now, few targets have been identified to slow the spread of tumors. Dr. Giancotti’s laboratory has recently demonstrated that $\alpha 6\beta 4$ is also involved in the invasion and growth of

cancer cells. He is now working to generate monoclonal antibodies that can effectively block the $\alpha 6\beta 4$ integrin in mice genetically engineered to develop tumors. This integrin could also be a target for the development of small-molecule anticancer drugs in the future.

© 2025 Memorial Sloan Kettering Cancer Center