A Novel and Efficient Method for Fat-Free Nuclear Magnetic Imaging


Summary of Invention

This new algorithm completely suppresses the fat signal in magnetic resonance imaging (MRI), facilitating more precise tissue characterization. Fat-free nuclear magnetic imaging represents a significant improvement over traditional MRI fat-suppression techniques, which suppress only approximately 60% of fat signals at maximum and are prone to heterogeneity of the magnetic field.


Fat signals can compromise MRI quality by overwhelming the relevant water images in fat-abundant regions. Such fat signals thereby produce artifacts and hinder tissue characterization, complicating interpretation of many routine clinical imaging procedures. A strong fat signal can negatively impact the precision of tumor detection. The technology presented here improves the precision of tumor detection in fat-rich tissues, such as breast tissue. In addition to improving tumor detection, this technology should also be useful for imaging studies to assess liver pathologies, myelin deposition, inflamed tissues or bone marrow abnormalities.

By eliminating 100% of the fat-signal in MRI images, this novel technology renders MRI images more sensitive to magnetization transfer and to water density and relaxation time, providing the possibility of additional contrast. It is insensitive to the heterogeneity of both the static and radio frequency fields and is equally efficient for all fat resonances, independent of their chemical shift frequency.


This technology suppresses 100% of MRI fat signals, thereby permitting:

  • Improved detection of fatty tumors (liposarcoma);
  • Improved detection of retroperitoneal tumors;
  • Improved detection of breast cancer;
  • Improved prediction of tumor response to therapy through edema-free imaging; and
  • Improved ability to distinguish edema versus tumor in brain tumor patients.

Market Need

In the U.S., there were an estimated 37.8 million MRI procedures performed in 2015, at over 8,000 MRI facilities.

Stage of Development

Clinical data collection

Lead Inventor

Sam Singer, MD, FACS, Chief, Gastric and Mixed Tumor Service, Vincent Astor Chair of Clinical Research, Memorial Sloan Kettering

Patent Information

Issued U.S. Patent 8,405,392


Chen JH, et al. (2010) Magn Reson Med. Mar;63(3):713-8.

Contact Information

Eileen Flowers, PhD
Licensing Manager
Tel: 646-888-1067

Stage of Development

Ready to use