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ABSTRACT

The clinical success of conjugate anticancer and antiviral vaccines critically
depends on the identification of, and access to, novel potent adjuvants with minimal
toxicity. In this context, the saponin QS-21 is currently the most promising
immunopotentiator in several anti-tumor and infectious disease vaccine therapies.
However, the clinical use of this scarce natural product is encumbered by its chemical
instability and dose-limiting toxicity. To address these liabilities, the first chemical
synthesis was constructed in a modular fashion, which facilitated the creation of a
substantial library of non-natural saponins. Thus far, many analogues incorporating
variants of the acyl chain and central tetrasaccharide have decreased toxicity and
maintained or exceeded potency of the naturally derived saponin. To explore structure-
activity relationships and improve the efficiency of the triterpene-central tetrasaccharide
coupling, alternatives to the natural glycosidic ester linkage were explored. Eight
structural variants were synthesized and probed for adjuvanticity using a previously
established vaccination schedule. Surprisingly, efficacy and toxicity varied greatly with
very conservative structural modifications, thus highlighting an essential motif in the
structure-activity relationships of the synthetic Quillaja saponaria family of saponins
adjuvants.

The lablaboside saponins have been identified as promising adjuvants isolated
from the Hyacinth bean. Initial studies suggested Lablaboside F in particular is both more
potent than QS-21 and devoid of significant dose-dependent hemolytic toxicity. To
achieve the total synthesis of Lablaboside F, stereoselective glycosylation of oleanolane-

type triterpenes with a C-2 substituted glucuronic acid donor was accomplished with



Tris(pentafluorophenyl)borane. Application of the rarely-utilized benzophenone ketal
protecting group for the three rhamnose moieties allowed for a successful and highly
efficient global deprotection. Additionally, oxidation of the C24 methyl group present in
Lablabosides B-E was effected in three steps from benzyl oleanolate culminating in a

thiolate mediated diastereoselective tandem Micheal—aldol reaction.
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CHAPTER 1

MEDICINAL SAPONINS—-PROPERTIES, FUNCTIONS, AND SYNTHESIS

1 Introduction

Plant-derived natural products with soap-like properties, known as saponins, have
played an important role in medicine and daily life for thousands of years.! When used
as a food additive, saponins exhibit antifungal and antiprotozoal effects and function as
preservatives. Additionally, some saponin mixtures, such as those derived from hot
water extraction of the bark of the Quillaja saponaria tree have been used as a general
tonic for any ailment in South American folk medicine. These crude mixtures contained
a vast array of related structures with varying contributions to the observed biological
activities. Systematic examination of the components of saponin mixtures has allowed
for the discovery of the active principles, which have found myriad applications in
modern medicine, including as anti-hyperlipidemics, anti-inflammatories, and antibiotics,
which will be discussed in section 1.1. The most important and widely investigated use

of saponins, as immunopotentiators, will be discussed at the end of section 1.2.

HO

Hydrophobic Triterpeneoid OH
HO/' S M
- ) A 0 e
Hydrophilic Oligosaccharide - N HO Qui
OmMe OH

Hydrophilic Oligosaccharide

Figure 1.1. Structure of A. gypsophiloides saponin 1.



1.1  Featuresof Saponins

The defining structural feature of a saponin is a hydrophilic glycoside or
oligosaccharide attached to a hydrophobic aglycone, which gives rise to the amphiphilic
soap-like properties. In general, the oligosaccharide portion consists most frequently of
glucose, galactose, glucuronic acid, rhamnose, xylose, and arabinose moieties, which can
be either branched or linear.” The sugar portion is, in almost all cases, attached at C3 of a
triterpenoid or steroid aglycone giving rise to a large number of monodesmosides, in
which there is only one hydrophilic moiety attached to the aglycone. Additionally,
bisdesmoside saponins, as seen in A. gypsophiloides saponin 1 (1), have a second
hydrophilic moiety, most frequently attached to C28 of the triterpencoid aglycone. The
incredible number and diversity, both in structure and function, of saponin natural
products arises from the combination of non-template driven creation of the
oligosaccharide portion and a large and ever increasing number of hydrophobic
triterpenoids. Indeed, a recent review catalogued nearly 600 distinct aglycones isolated
and characterized in 2011 alone.” Thus, combining the thousands of known triterpenoids
with the number of possible oligosaccharides, as well as other sugar modifications (such

as acylation), gives rise to millions of potential saponins.

Figure 1.2. Structure of cholesterol (2) and ergosterol (3).

The biological activity of saponins arises in large part from their amphiphilic

physiochemical properties, which facilitate interaction with the hydrophobic components



of membranes, such as cholesterol (2), erogosterol (3) other sterols.* These interactions
can take many forms, including insertion of the saponin into the membrane, abstraction
of sterols from the membrane, and binding to membrane proteins. In addition to this
general phenomenon, many saponins have been shown to have functions that have very
little to do with their soap-like properties exerting effects more akin to ligand—receptor
interactions than simple disruption of the cellular membrane.” Thus, when dissecting
observed biological activities, one must be mindful of both general and specific

intermolecular interactions.

1.1.1 General Effects of Saponinson Biological Systems

The most commonly observed effect of saponins on living cells is the formation
of pores in the cellular membrane. Indeed, hemolysis of erythrocytes is a frequently
employed means for detection of saponins. Pore formation is thought result from
saponin—cholesterol aggregation, giving rise to large pores, 40-50 A in diameter with
micelle-like properties.” In support of this hypothesis is the observation that membranes
rich in cholesterol are permeabilized much easier than cholesterol-free membranes.’

In addition to simple formation of pores, saponin interaction with membrane
sterols can result in lipid abstraction from the membrane, which leads to an increase in
membrane fluidity. Similarly, interaction with existing membrane pores, such as Na’,
K', Ca®’, and Mg”" ion-channels has been observed,® showing both agonist and
antagonist activity.” Moreover, the presence of an acyl group on the glycoside moiety
has been shown to have a strong effect on membrane permeablizing properties of
saponins as seen between escin IV (4), which is hemolytic, and escin Ila (5), which is

only hemolytic at high concentrations.'” However, these effects, like the aforementioned



structure—activity relationships (SAR), can only be reliably described within a family of
saponins. As such, in saponin molecules, variation of multiple structural features results

in broad changes in biological activity, thus precluding generalization of SAR.

Figure 1.3. Structure of escin IV (4) and escin Ila (5).

Attempts to associate structural features broadly with specific mechanisms of
action and biological activity have been generally unsuccessful, rife with contradictory
and incorrect conclusions. As such, the most general statement that can be made is that
saponins have been shown to interact in many ways with membrane lipids and
transmembrane channels in both non-specific (e.g. lipid aggregation) and specific (e.g.
ion-channel blocking) ways. The diversity of structures and functions precludes further
generalization of SAR, especially with respect to the non-specific lipid

aggregation/membrane permeabilizing effects.'’

1.1.2 Anti-Hyperlipidemics

Saponins of many varieties have been shown to decrease serum cholesterol, one

of the most important indicators of atherosclerosis, in both human'

and animal
subjects.”” There are likely several modes of action responsible. The most basic
mechanism involves aggregation of saponins with bile salts in the gut, thereby inhibiting
cholesterol absorption into the blood and resulting in increased excretion of dietary lipids

and bile salts.'* As such, this effect is seen most prominently with a high cholesterol

diet.”” By contrast, the synthetic saponin P-tigogenin-cellobioside (6) was shown to

4



decrease non high-density lipoprotein (HDL) cholesterol levels in the serum and liver
without interfering with bile salt absorption, suggesting a more specific mode of action
than previously described.'® A similar monodesmoside found in tomatoes, esculeoside A
(7), was shown to inhibit acetylases necessary for incorporation of cholesterol into low-
density lipoprotein (LDL),"” which is partially responsible for the formation of

atherosclerotic plaques.
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Figure 1.4. Structure of tiqueside (6) and tomatine (7).

A study comparing the efficacy of feeding several families of saponins,'
including Quillaja, soybean, Karaya root, and tea saponins to rats on a high cholesterol
diet found that Karaya root saponins both increased HDL and lowered LDL cholesterol,
while the Quillaja saponins were the only group to statistically lower serum triglyceride
levels. In the study all saponin supplementation decreased LDL cholesterol, but only
Karaya root and Quillaja saponins elicited a decrease in the overall atherosclerotic index.
However, the role of dietary saponins on cholesterol is complicated by the potential
actions of gut microflora on the complex structure of the saponins. Indeed,
supplementation of soyasaponins (including soyasaponin A;, 8) in the diet of Syrian

. 1
hamsters gave an overall decrease in serum cholesterol.'”” However, upon closer



inspection, it was found that two distinct groups emerged, one that had a large decrease in
serum cholesterol and lowering of cholesterol to HDL ratio and one group that did not.
The former groups’ fecal matter was found to contain much higher amounts of a saponin
metabolite, the result of gut-derived microbial modification. Although the specific
mechanism is unclear, these results suggest that gut microbes affect cholesterol
metabolism and subsequent association with saponins which leads to eventual excretion
of dietary lipids. Overall, dietary supplementation of saponins or consumption of
saponin-rich foods may play an important role in reduction of serum cholesterol and thus

atherosclerosis and other cardiovascular diseases.
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Figure 1.5. Structure of soyasaponin A; (8).
1.1.3 Antifungal Activity

Specific antifungal activity of saponins generally follows a similar mechanism as
previously described: interaction with ergosterol (3, Figure 1.2) resulting in
permeabilization. While oral administration or systemic distribution of saponins for this
function is a difficult prospect, CAY-1, a saponin isolated from Cayenne pepper, has
been shown to synergize with the extraordinarily toxic antifungal amphotericin B (9) and

may provide a viable alternative to the conventional antifungal therapy.20



OH

w O
Me

N NN NN NF

OH OH OH OH O,

Figure 1.6. Structure of amphotericin B (9).

In a more straightforward application of saponins, topical antifungal drugs have
also been explored but with little success.”’ However, a potentially more effective
application for antifungal saponins is food preservation. Indeed, saponins from the
succulent Yucca schidigera, such as shidigera saponin Al (10, Figure 1.7), prevent
growth of fungi responsible for food spoilage at levels too low for systemic effects or
significant alteration of flavor.”> The type of concentrations required to prevent food
spoilage are similar to those found in many plants themselves. As such, it has been
postulated that saponins evolved as secondary metabolites as a defense mechanism
against deleterious fungi.”> These suggestions are supported by two observations: plants
with high concentrations of saponins are disease resistant and plants with mutant forms of

saponin biosynthetic enzymes are more susceptible to fungal or microbial attack.*
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Figure 1.7. Structure of Yucca shidigera 1 (10).
1.1.4 Anti-Protozoal Activity

In much the same way as the saponins control growth of non-commensal fungi,
saponins from the succulent Yucca schidigera such as (10) have been shown to protect
humans and animals from parasitic protozoans.”” Interestingly, this effect was uncovered

7



by anecdotal reports of reduced joint pain in patients with rheumatoid arthritis. It was
observed that both dried whole Y. schidigera root and the known anti-parasitic drug
metronidazole relieved joint pain, thus it was suspected that the joint pain was caused by
a parasitic protozoan. Confirmation of this mechanism was provided by the presence
then clearance of joint-resident protozoa with metronidazole.”® Furthermore, both Yucca
and Quillaja saponin extracts were also shown to have antiprotozoal effects in the gut of
ruminants,”’ and also had beneficial side effect of reducing methane production.
Moreover, a saponin extract from Maesa balansae (containing , maesabalide ,* 11) was
shown to have in vitro and in vivo activity against intracellular Leishmania infantum
amastigotes at low concentrations as well as to eradicate of leighmanial amastigotes in
95% of animals treated after subcutaneous injection.”” Thus, saponins and saponin
extracts have strong potential in the treatment of a variety of parasitic protozoal

infections.
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Figure 1.8. Structure of maesabalide I (11).
1.1.5 Immunopotentiating Activity
Saponin mixtures such as QuilA, as well as purified saponins, have been
recognized as potent immunopotentiators for decades. As a component of vaccines, a
saponin function as an immunoadjuvant, which is defined as any substance that acts to

accelerate, prolong, or enhance antigen-specific immune responses when used in

8



combination with specific vaccine antigens.”® Incorporation of saponin adjuvants into
vaccine formulations has been particularly attractive because of their unique capacity to
stimulate both cell-mediated (Thl) and humoral (Th2) immune responses. A Thl
response is generally considered to be pro-inflammatory, and is desired to clear
intracellular pathogens such as viruses and intracellular bacteria from the host. On the
other hand, a Th2 response is generally anti-inflammatory and more appropriate for
neutralizing extracellular toxins, parasites, and extracellular bacteria.”’ Judicious choice
of adjuvant allows for tailoring the immune response to achieve the optimal mix of Thl

and Th2 to clear the pathogen most efficiently and safely.

12

Figure 1.9. Structure of ginsenoside Re (12).
1.2  Saponin Immunoadjuvants

Dozens of saponin families have been reported to have immunoadjuvant activity.
Among the most promising are the ginsenosides (from the Panax genus), platycosides
(from Platycodon grandiflorum), the lablaboside saponins (from Dolichos lablab) and the
Quillaja saponins.” In addition to the traditional use of ginseng extract as a stimulant,
isolated saponins, such as Rbl, have been shown to potentiate the immune response in

pigs and mice against viral>> and bacterial®* targets. Moreover, ginsenoside Re (12) has



been shown to elicit a mixed Thl and Th2 response along with antigen-specific

antibodies against OVA in mice.”

Figure 1.10. Structure of platycodins D2 (13) and D (14).

A mixture of platycosides, isolated from the ‘Korean Bellflower’ plant, was
shown to elicit a promising antibody response against OVA in mice,*® characterized by a
mixed Thl and Th2 response in an immunization model. Moreover, anti-OVA antibody
titers were significantly enhanced relative to alum/OVA and QuilA/OVA and OVA
alone. From this mixture, the most promising saponins are platycodin D2 (13) and
platycodin D (14), which have shown efficacy in pre-clinical animal models against
recombinant hepatitis B antigen®” as well as the avian influenza virus® respectively.
Interestingly, despite very similar chemical structures, platycodin D2 is much less

hemolytic than platycodin D.
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Figure1.11. Structure of lablabosides F (15) and D (16).

The lablaboside family of saponins, derived from the edible hyacinth bean, has
shown promise as an immunopotentiator.”® In a direct comparison with QS-21,
lablabosides B (16) and F (15) elicited an equivalent antibody response against OVA,
with negligible hemolytic toxicity, which has been the primary liability of QS-21.
However, in a pre-clinical vaccination model in mice against the causative virus for
Aujeszky's disease (pseudorabies), lablaboside F induced a response strongly skewed to
Th2,*** whereas QS-21 elicited a strong mixed Thl and Th2 response. Such a skewed
response may limit application of the lablabosides as components of vaccines. However,
the aglycone component of lablaboside F is oleanolic acid, an inexpensive trieterpene
derived from the American pokeweed, which may facilitate an economic synthesis of

industrially useful quantities of this saponin.
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Figure1.12. Structure of QS-7 (17).

Finally, the Quillaja saponins have been studied extensively for decades, both as a
crude mixture of saponins (Quil A) as well as purified components. The semi-purified
saponin extract was first shown to have adjuvant activity in a veterinary setting in 1974.%°
It was not until 17 years later that the components of the mixture were isolated,
characterized, and analyzed as individual components.* Among the most studied are
QS-7 (17) and QS-21 (18, major component), which were both isolated in small
quantities via RP-HPLC. As the investigational immunopotentiator of choice, QS-21 has
been administered to over 20,000 patients across dozens of clinical trials.*? Indeed, QS-
21 was a necessary component of the first successful anti-malarial vaccine as shown by
the recently reported Phase III clinical trial by GlaxoSmithKline. By contrast, QS-7 has
not been heavily investigated in the clinic. This is likely due to the structurally complex
oligosaccharide moieties and difficulties in procuring clinically relevant quantities of the
saponin. However, QS-7 has been shown to potentiate the immune response

43
1,

synergistically when co-administered with QS-21," with negligible toxicity, thus making

it a candidate for a multi-adjuvant vaccine.
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Figure 1.13. Structure of QS-21-Api (18).
1.2.1 Proposed Immunoadjuvant Mechanisms of Action

There are several mechanisms by which saponin adjuvants are believed to exert
their immunopotentiating effects, although a dearth of experimental data precludes
definitive mechanistic information. The most well studied saponin adjuvant, QS-21-Api,
bears an aldehyde substituent at C4 of the quillaic acid triterpene, which has been
postulated to covalently interact with lymphocyte cell surface receptors via formation of a
Schiff-base.** This theory is bolstered by the observed abrogation of adjuvant activity
after reductive amination of the C4 aldehyde substituent with a series of simple amines.
However, an alternative explanation to the observed change in biological activity is based
on the introduction of a positive charge, which may significantly alter electrostatic
interactions of the saponin with a putative macromolecular target. Indeed, a cationic
Quillaja analogue synthesized by the Gin group was shown to be completely devoid of
adjuvant activity.45 Moreover, recent studies from the Gin group suggest that the C4
aldehyde substituent is not an essential for adjuvant activity.** In the final step of the
synthesis of QS-21, partial reduction of the C4 aldehyde substituent to the corresponding

primary alcohol (19) was observed. This minor component was purified via RP-HPLC

13



from the major product, QS-21-Api and probed for immunoadjuvant activity. No

significant difference was observed between 18 and 19.
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Figure 1.14. Structure of QS-21-des-aldehyde (19).

Although published mechanistic studies with Quillaja saponins have been
extremely limited, in vitro studies of immunostimulating complexes (ISCOMs, cage-like
structures resulting from mixing cholesterol, phosphatidylcholine and QuilA) suggested
that bone marrow-derived dendritic cells are responsible for the observed
immunopotentiation.47 Indeed, Robson et al observed that dendritic cells, but not
macrophages or naive B cells were capable of priming antigen-specific CD4" T cells.
Moreover, they found that dendritic dells derived from IL-12 knockout mice were
incapable of priming CD4" T cells, suggesting a critical role for IL-12 in the saponin
derived induction of the immune response.

Recent mechanistic postulations include activation of the NALP3
inflammasome™® and general activation of the inflammatory response, which occurs via
detection of Pathogen or Danger Associated Molecular Patterns (PAMPs or DAMPs) and
seen in Figure 1.15.* The polysaccharide motifs present in saponins may act as
PAMPs/DAMPs to activate NALP3, which has been definitively shown to contribute

positively to the immunopotentiating activity of other adjuvants.”
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Figure 1.15. NALP3 inflammasome is the integrator of many immunostimulatory pathways. Adapted
from ref 48.

To probe the mechanism of action more specifically, the Gin group has
synthesized a series of Quillgja-like saponins as chemical tools. An immunoadjuvant-
active fluorophore-labeled saponin (20) was readily taken up dendritic cells in vitro,”
whereas an inactive but structurally similar saponin was not readily internalized, giving
further support to the aforementioned necessity of dendritic cells to the mechanism of
action. Moreover, a similar radiolabeled saponin®® (21) was taken up by lymphocytes at
the site of subcutaneous injection then trafficked to the draining lymph node. The
radiolabel was retained in the lymph node for more than 24 hours, where the putative
activated lymphocyte can further propagate the immune response. As with the

fluorophore-labeled saponin, inactive variants did not exhibit this activity.
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Figure 1.16. Structure of fluorescent and radioactive Quillaja saponin analogues.

1.2.2 Proposed Immunoadjuvant Structure-Activity Relationships

Scores of saponins have been examined for immunopotentiating activity, giving a
spectrum of activity and toxicity along with many diverse structural elements. As such,
there have been many attempts to make broad statements correlating structure to
function.”® For example, in the Quillaja saponins, the acyl chain (as shown with QS-21,
18) is necessary for immunopotentiating activity, but also responsible for much of the
hemolysis-related toxicity.”! However, in another class of immunopotentiators, the

3932 in the two most active saponins, lablaboside F and lablaboside

lablaboside saponins,
B (15 and 16, vide supra), the presence or absence of an acyl chain had little no
discernible effect on activity or toxicity. Furthermore, another important class of saponin
adjuvants, the soyasaponins (e.g. soyasaponin A', 8, vide supra), has no acyl chain but

3% Thus, while it is possible to make

exerts strong immunopotentiating effects.
conclusions within a family of natural products about saponin SAR, caution must be

exercised when making broad generalizations across different saponin families. Indeed,

there are simply too many variables for such generalizations to be useful.
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1.2.3 Limitationsof Saponin Adjuvants
While saponin adjuvants have held much promise for several decades, their lack
of inclusion in many FDA-approved vaccine formulations is the result of several major

453 For example,

drawbacks, including excessive toxicity and chemical instability.
subcutaneous injection of QS-21 results in local erythema and systemic flu-like
symptoms, which makes it unattractive for use in prophylactic vaccines. Toxicity likely
arises from hydrolysis of the hydrolytically unstable acyl chain after injection, which
undergoes spontaneous hydrolysis in neutral phosphate buffered saline over the course of
several days. Additionally, isolation of saponin natural products is an expensive and
resource-intensive process,’’ making isolation an economically unfeasible and
environmentally unsustainable option if large quantities of saponin are required.
Nonetheless, QS-21 has seen much success in a dozens of clinical trials in both veterinary

and human applications across many different pathogens and diseases, including

parasites,5 4 Viruses,5 > bacteria,”® and cancer.’’

1.3  Synthesisof Triterpeneoid Saponins

Studies of pure saponin molecules may initially require milligram quantities,
which are generally accessible via isolation and HPLC purification. However, as more
material is required for study and clinical applications, chemical synthesis may prove to
be a more effective means of procuring large amounts of pure saponin. However, total
synthesis of triterpenoids is not economical. Thus semi-synthesis from commercially
available, inexpensive triterpenes isolated from natural sources is a viable option in many

casces.
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1.3.1 Biosynthesisof Triterpenoid Saponins

As mentioned previously, the staggering diversity of triterpeneoid structures has
resulted in a broad spectrum of biological activities. Indeed, the nearly 600 recently
cataloged triterpenoids are derived from the triterpene squalene. As shown in Scheme
1.1, biosynthesis of squalene arises from condensation of isopentenyl pyrophosphate (23)
with dimethylallyl pyrophosphate (22) into geranyl pyrophosphate (24), which then
combines with another isopentenyl pyrophosphate (23) to give farnesyl pyrophosphate
(25). Condensation of these 15-carbon sesquiterpene units gives the 30-carbon triterpene

squalene (26).

Scheme 1.1. Biosynthesis of squalene (26).
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To arrive at the final common precursor of all triterpenoid saponins, squalene is
oxidized to give 2,3-oxidosqualene (27) Scheme 1.2.°® Adoption of a chair-chair-chair
conformation and cationic cyclization of 2,3-oxidosqualene, facilitated by oxidosqualene
cyclases, furnishes the first committed step to either the phytosterols or triterpeneoid
saponins.”’ For the triterpeneoid saponins, the cyclase reaction forms the tetracyclic
cationic dammarenyl cation (28, Scheme 2). Rearrangement and D-ring expansion gives
the baccharenyl cation (29), which undergoes another cyclyzation to 30 followed by ring

expansion to give the germanicyl cation (31), which then undergoes a 1,3 proton shift to
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furnish the oleanyl cation (32). Finally, deprotonation gives B-amyrin (33), the precursor

to all oleanolane triterpenoids.®

Scheme 1.2. Biosynthesis of B-amyrin (33).

Further oxidation of the triterpene skeleton is mediated by cytochrome P450
enzymes. This large gene family (accounting for ~1% plant protein coding sequences®")
can furnish oxidations to most non-quaternary carbons to furnish alcohol, ketone,
aldehyde, acetal, and ketal moieties. Indeed, within individual organisms, a multitude of
distinct saponins can be synthesized, complicating the isolation of significant quantities
of particular triterpenoids. Common oxidation points, such as C28, are used as
chemoenzymatic handles for further decoration with glycosidic moieties. As such,
glycosyltransferases add activated monosaccharide units to give linear and branched

oligosaccharides, mostly frequently two to five monosaccharides in length,®® which can
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be further adorned with acyl or sulfate groups. As such, sequential, non-template driven
modifications result in the tremendous diversity of structure observed in saponin natural

products.

1.3.2 Synthesisof QS-21

QS-21, comprising two isomeric saponins (18 and 34), is the most studied, and
one of the most complex saponin immunoadjuvants that has been successfully
synthesized. The primary component, QS-21-Api (18), was synthesized after a nearly
10-year effort by the Gin group in 2005, with the minor component, QS-21-Xyl (34)
completed three years later® with significant improvements in the overall synthesis. The
primary challenges encountered in the synthesis of the large saponin natural product
arose from the hydrolytically sensitive acyl functionality on the bridging fucose moiety
and formation of triterpene—glucuronic acid moiety bond with the required equatorial
stereochemistry. The former issue complicated the synthesis of the oligosaccharide units,
which had been successfully synthesized with neighboring group participation-facilitating
ester protecting groups.”*  Thus, to avoid extensive late-stage protecting group
modification, alternate protecting strategies were required. Additionally, formation of the
desired B-glycoside linkage between the fully formed branched trisaccharide and the
poorly nucleophilic quillaic acid triterpene without the use of neighboring group

participation proved extremely difficult.
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Figure 1.17. Structure of QS-21-Api (18) and QS-21-Xyl (34).

While synthesis of each component was challenging,®* the thoughtful design of
the components enabled relatively straightforward assembly into the final product. Of
the three required couplings, only glycosylation of the branched trisaccharide with
quillaic acid proved challenging, as mentioned previously.

Attempts to glycosylate the trisaccharide under dehydrative conditions with
quillaic acid derivatives (semi-synthesized from a commercially available semi-purified
saponin mixture®) gave exclusively o-glycoside products, despite extensive efforts from
the lead author.®® Schmidt glycosylation with BF3-Et,0,"” employing trichloroacetimidate
donor 35 gave o-glycoside products or low yields of anomeric mixtures (51%, 2:1 B:ov).
However, the relatively exotic Lewis acid tris-pentafluorophenyl borane®® facilitated a
rapid, B-selective coupling at room temperature of quillaic acid ester 36 with 3 mol %
catalyst loading relative to the donor trichloroacetimidate, 35 to form protected
prosapogenin 37. This combination of reagents proved especially fruitful in the synthesis

of the lablaboside saponins, the subject of Chapter 4.
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Scheme 1.3. Coupling of branched trisaccharide to quillaic acid triterpene.
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Deacylation of the fucosyl moiety (38) revealed competent nucleophile 39 for
Yamaguchi esterification of acyl chain 40. Next, selective removal of the anomeric
triisopropylsilyl group from 41, followed by formation of trichloroacetimidate gave
donor 43. Schmidt glycosylation, joining the prosapogenin moiety 44 with acylated
tetrasaccharide furnished the fully protected product 45 with complete B-glycoside
selectivity in 70% yield. Carefully controlled trifluoroacetic acid hydrolysis of acetonide
and silyl groups followed by hydrogenolysis and HPLC purification furnished QS-21-Api

(18).
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Scheme 1.4. Late-stage assembly of major domains of QS-21-Api (18).
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1.3.3 Semisynthesisof Protected Prosapogenin

After the initial synthesis of QS-21-Api, the Gin group made several further
advances, allowing for a much higher throughput of QS-21 and analogues. The most
significant advance was the three-step semisynthesis of a protected prosapogenin from a
commercially available, semi-purified saponin extract.” Basic hydrolysis of the crude
saponin mixture allows for isolation of significant quantities of the desired prosapogenin
46. Persilylation with triethylsilyl triflate followed by methanolysis of TES esters
furnished diacid, which was then selectively alkylated at the glucuronic acid carboxylate
furnishing protected prosapogenin 47 in multi-gram quantities. Access to significant
quantities of 47 greatly facilitated generation of a large number of analogues, the

synthesis of which will be outlined in Chapter 2.

Scheme 1.5. Semi-synthesis of protected prosapogenin (47).
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The modular strategy employed in the initial synthesis of QS-21-Api allowed for

a relatively straightforward path to creating analogues of this complex saponin.
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Previously studies, giving a preliminary picture of the SAR will be outlined in Chapter 2.
Application of this strategy toward exploration of the SAR of the central glycosidic
linkage will then be described in detail. In Chapter 3, we move away from the Quillaja
saponins, with a methodology study toward selective oxidation of the geminal dimethyl
groups present on the A-ring of oleanolic acid, which is accomplished through a three
step sequence culminating in a diastereoselective tandem Michael—aldol reaction.
Application of this facile oxidation strategy to the synthesis of the lablaboside family of
saponins is the subject of Chapter 4. Also included is the use of rare protecting groups in
the synthesis of oligosaccharides as well as application of the previously outlined, but

rarely utilized, tris-pentafluorophenyl borane glycosylation catalyst.
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CHAPTER 2.
STRUCTURE-ACTIVITY RELATIONSHIPS OF THE CENTRAL GLYCOSIDIC

LINKAGE IN QUILLAJA SAPONIN ADJUVANTS

2 I ntroduction

Immunological adjuvants help stimulate an immune response against co-
administered antigens and have become increasingly important in recent years.”*® While
current FDA approved adjuvants (Alum’™, AS04°° and MF59'") have found many
applications, more challenging applications (oncology, HIV, malaria) require a better
adjuvant. QS-21, derived from the bark of the Quillaja saponaria Molina tree, has
showed promising results in dozens of clinical trials over the last two decades.*'** The
primary constituent, QS-21-Api (18) (Figure 2.1), is composed of four domains; a
branched trisaccharide, an oleanolane-type triterpene, a bridging linear tetrasaccharide,
and a pseudo-dimeric acyl chain. The modular strategy employed in the first synthesis of

QS-21-Api® has allowed for facile generation of dozens of analogues, providing a

. . 4572
preliminary picture of SAR.*”
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Figure2.1. The major structural domains of the potent immunoadjuvant, QS-21.
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2.1  Hydrolytic Instability

With the first generation of Quillaja saponin (QS) analogues, we sought to
address the most prominent liability of the natural product: hydrolytic instability of the
acyl chain leading to hemolysis related toxicity. Replacement of the labile ester groups
with the corresponding amides emerged as the solution. Installation of the requisite
nitrogen atoms required a completely new synthesis of the acyl chain as well as the
bridging monosaccharide moiety. Since there are no naturally occurring C4-deoxy-
aminosugars, Gin et al displaced an activated C4 equatorial hydroxyl from selectively
protected glucal 48 to form the desired axial-disposed azide 49, as shown in Scheme 2.1.
After changing protecting groups, dihydroxylation, and selective silylation furnished aza-

Gal monosaccharide 50, a key intermediate for all future QS analogues.

Scheme 2.1. Syntheis of 4-aza-galatose glycosyl acceptor.

1. NaN3, BugNC, 1. 0sQy, tBUOH,
PhMe, 110 C H,0, THF

2. NaOH, MeOH N 2. TIPSCI, imid N3

BzO BnQ '3 ) ,

\ OMs 3. NaH, BnBr, DMF WB” DMAP, DMF o BnO|oBn
—_— - - =

o) OBz o) TIPSO—4~0
48 49,51% (2 steps) 50, 48% (2 steps)

2.2 Late Stage Assembly of Major Domains

Full assembly of the second generation of analogues was achieved with Schmidt
glycosylation of protected prosapogenin 51 with trichloroacetimidate 52. Azide
reduction with benzeneselenol revealed the nucleophilic amino group ready for
diversification. Over several years, the Gin group made a plethora of derivatives, as
shown in Scheme 2.2 via activation of carboxylic acid as a mixed anhydride followed by

addition of amine 54.
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2.3
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Scheme 2.2. Late stage assembly of major domains of Quillaja analogues.
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Preliminary SAR of Amide Containing QS Analogues

From this series, a number of SAR can be deduced (Figure 2.2). Incorporation of

a hydrolytically stable acyl chain markedly decreased the toxicity and chemical

instability compared to the QS-21-Api (18).”> Moreover, antibody responses comparable

to those elicited by the natural product could be achieved with a significantly simplified

acyl chain (56-59). From this series, one of the most obvious conclusions arises from the

introduction of a positive charge, which recapitulates previous variants (mentioned in
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Chapter 1), whereby cationic QS analogues, such as amine 61 were shown to be devoid
of immunoadjuvant activity.”® Moreover, analogues with very lipophilic side chains,
such as cholesterol (59), had significantly diminished adjuvant activity. This observation
is potentially complicated by the very low solubility of cholesterol derivative. However,
other modifications had remarkably little effect on adjuvanticity, suggesting that the
specific identity of the acyl chain was not important. Indeed, antibody sub-typing in mice
subjected to the standard immunization protocol (vide infra) revealed a similar
physiological response when given either QS-21 or an active QS analogue, suggesting a
similar mode of action. Thus, dodecanoic acid acyl chain, as seen in 58, was chosen as
the optimal acyl chain component because of high efficacy, reasonable toxicity, and

minimal synthetic complexity.
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Figure 2.2. The acyl side chain can be varied tremendously with retention adjuvant activity. Amide
congener (55), exhibited very similar adjuvanticity as QS-21, but without toxicity, showing for the first
time that toxicity is not required for adjuvanticity. A negative charge on the acyl chain (58) was well
tolerated, but a positive charge (61) abrogated activity. Because these analogues were examined for
adjuvant properties across several experiments, immunoadjuvant activity, toxicity, and synthetic difficulty
are approximated. *These analogues feature a linear trisaccharide, which was shown to have similar
immunopotentiating effects as the linear tetrassachride present in all other analogues, as shown in Figure
2.3.
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With an optimal acyl chain component in hand, the length and identity of the
central oligosaccharide was probed for SAR. Iterative truncation from tetrasaccharide to
monosaccharide demonstrated that the linear trisaccharide, present in 62, was optimal in
terms of efficacy and synthetic complexity as shown in Table 2. Compared to the full
length tetrasaccharide (58), trisaccharide variant 62 showed no change in adjuvanticity.
However, further truncation to disaccharide variant (63) or monosaccharide variant (64)
resulted in a large decrease in activity.*> Moreover, replacement of rhamnose and xylose
moieties with a commercially available disaccharide, lactose, furnished analogue 65,
which showed significantly attenuated adjuvant activity. Taken together, these data
highlight the importance of both the identity and length of central oligosaccharide for full

adjuvant activity of these synthetic QS saponins.

SQS-Analogue Sugar A

SQS-0-0-4-5(58) | o-1-4-Rha Blef ) B-Api HH HH HHHH
=\ )J=-9)=- B-1-3- - [ | -
SQS‘O 0-5-5 (62) o-1-4-Rha Xyl I Tt e
SQS-0-0-6-5(63) | 0-1-4-Rha - - ++ ++ r
SQS-0-0-9-5 (64) . ; ] —+ + -
SQS-1-0-11-18 (65)* | B-1-4-Glc B-Gal - + + ++

Figure 2.3. The minimal central oligosaccharide required for optimal activity is the trisaccharide shown in
62. Further trucation, as well as replacement with another disaccharide, erodes immunoadjuvant
activity.*A structurally related analogue, with no branched trisaccharide and a different acyl chain.

31



24  Central Linkage Variants

As a result of these studies, a new lead structure (62) (Figure 2.4) emerged,
consisting of a branched trisaccharide, quillaic acid triterpene, linear trisaccharide, and
dodecanoic acid acyl chain. From this established lead scaffold, we began our own
studies, focusing on the most prominent unexplored structural feature of the Quillaja
saponins, the central glycosidic linkage. Herein, we report the synthesis of a series of
variants to the central glycosidic ester linkage (Figure 2.4), which exhibited a remarkable
range in adjuvanticity and toxicity. Construction of these variants proved challenging, as
glycosidic bond formation without the aid of neighboring group participation was
compounded by the sterically demanding environment surrounding C28 of the quillaic
acid triterpene. As such, it was necessary to employ unusual glycosylation promoters,

such as sodium hydride, in the creation of several glycosidic linkages.
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Figure 2.4. Structure of leading pre-clinical candidate and proposed central linkage variants.
25  Central Linkage Variants

Our efforts to systematically probe the SAR of the central glycosidic linkage were
two-pronged: 1) variation in the distance/rotational freedom between the triterpene and
central trisaccharide and 2) subtle variation in the stereoelectronic configuration of the
central linkage. Relative to the natural glycosidic ester linkage, increasing the distance
between the triterpene and trisaccharide by three bond lengths (ethanolamide), one bond

length (carbamate), or one-half bond length (thioester) allows for increased rotational
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freedom and the potential to form different conformations. To probe stereoelectonic
effects, the three-bond distance between the triterpene and trisaccharide was maintained,
while the number of H-bond donors/acceptors (amide, ether, thioether) and the anomeric

configuration (P to o) of the bridging aza-galactose moiety were varied.

25.1 Synthesisof Modified Prosapogenin Moieties

Synthesis commenced with functionalization of the fully protected prosapogenin
65 (Scheme 2.3).” From this carboxylic acid, treatment with diphenylphosphoryl azide
gave an acyl azide, which, upon continued heating, underwent the Curtius rearrangement
to give isocyanate 67. Alternatively, activation of 65 with thionyl chloride proceeded in
quantitative yield to give acyl chloride 66, which can be easily functionalized with a
variety of nucleophiles. Addition of ammonia gave primary amide 69, while addition of

ethanolamine gave exclusive ethanolamide 68 in good yields.

Scheme 2.3. Functionalization of protected prosapogenin (PPS).
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Selective reduction of acyl chloride to neo-pentyl alcohol (70) proved
challenging. Most reducing agents, including sodium borohydride, Red-Al, DIBAL-H,
and Super Hydride were unselective, resulting in C4 aldehyde reduction and benzyl ester
cleavage in addition to the desired acyl chloride reduction. However, selective reduction
was achieved with tetrabutylammonium borohydride to give neopentyl alcohol 70.
Conversion to the corresponding thiol proved challenging. Sluggish conversion of 70 to
the corresponding tosylate or mesylate was mirrored by a complete lack of reactivity with
sulfur nucleophiles. However, the aliphatic triflate, formed in Situ with triflic anhydride,
proved to be a competent electrophile for a naked thioacetate, prepared by addition of
crown ether to potassium thioacetate. Treatment of thioacetate 71 with hydrazine under
reducing conditions furnished the desired prosapogenin thiol 72 in excellent yield over

three steps.

2.6  Challenging Glycosylations

While glycosylations to form all of the aforementioned linkages have been well
documented, examples featuring a similarly demanding steric environment are limited in
many cases (amide’®, thioether””) and without precedent in others (thioester). Initial
efforts began with previously described trisaccharide hemiacetal 73* which underwent
dehydrative glycosylation with prosapogenin ethanolamide 69 to give exclusive

B-glycoside product (74) in excellent yield (Scheme 2.4).
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Scheme 2.4. Synthesis of variants with traditional glycosylation methods.
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By contrast, glycosylation of primary amide 69 required much fine-tuning of
reaction conditions to achieve anomeric selectivity. Utilizing two-fold excess of acceptor
73 along with very short reaction times, furnished an excess of B-anomer 753 (60—78%
yield, 2—4:1 B:a). The anomeric preference is reversed with longer reaction times and a
two-fold excess of donor 73 (71%, 6:1 a:). This reversal can be explained in part by the
observed acid sensitivity of the PB-anomer and facile decomposition under ambient
conditions. Kinetic attack of the putative oxocarbenium/glycosyl triflate is from the
equatorial disposition (Scheme 2.5) furnishing an excess of B-anomer (75), as observed
with short very short reactions. However, under the near-neutral reaction conditions, the
newly formed PB-amide can be protonated by the pyridinium present in the reaction
medium, facilitating glycoside bond breakage, reforming the primary amide 69 and
oxocarbenium 79. The primary amide acceptor 69 eventually reacts to irreversibly form

o-anomer 75q..

36



Scheme 2.5. Hypothesized glycosylation equilibrium resulting from a sterically encumbered b-amide.
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Although synthesis of the fully protected B-amide variant was successfully
synthesized (analogous to o-amide variant 100 vide infra), global deprotection was
impossible. We hypothesize that this is due to the sterically congested environment and
compressed distance between the amide carbonyl and anomeric carbon of aza-galactose
moiety. The newly formed B-disposed anomeric proton showed a coupling constant (J =
10.5 Hz) much higher than most other B-linked analogues (J = 7.8 Hz), which suggests a
significant amount of steric strain. By contrast, the longer, axial-disposed bond present in
o-anomer 750 reduces this strain and shows no increased lability under acidic conditions.

Much to our surprise, repeated attempts at glycosylation of the same hemiacetal
donor 73 with neopentyl alcohol 70 under dehydrative conditions gave no isolable
glycosylation product. However, glycosylation was smoothly effected with bromide
donor 76 (prepared from hemiacetal 73 with oxalyl bromide/DMF) to form ether 77 with
the silver triflate promoted Koenigs—Knorr reaction to give >20:1 B-selectivity at low
temperature. However, the thiophilicity of silver precluded its use in the analogous
reaction to form the thioether. Instead, sodium hydride promoted formation of thiolate

rapidly displaced bromide to give thioether 78 with complete B-selectivity.
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Scheme 2.6. Conventional method for formation of glycosyl thioethers.
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More conventional methods for creation of glycosyl thioethers involve formation
of glycosyl thiohemiacetals, followed by displacement of a reactive electrophile such as
an aziridine,”*’® halide,” or triflate.”® Facile generation of B-thiohemiacetal 81 via
bromide 76 was accomplished by treating with cesium thioacetate followed by
deacylation under reducing conditions (Scheme 2.7). Displacement of a highly activated
leaving group at the sterically encumbered neopentyl C28 proved very challenging. As
shown in Scheme 2.6, attempts to displace the in Situ generated prosapogenin triflate 80
were unsuccessful, despite trials with a litany of bases, from organic amines, inorganic

salts, or strong bases, giving only trace amounts of the desired product by TLC.
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Scheme 2.7. Synthesis of variants with anomeric nucleophiles.
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2.7 Reverse-Polarity Glycosylations

Additional analogues required a conceptual reverse of polarity to install the
desired linkages. Formation of the glycosyl carbamates was effected by addition of
sodium hydride to hemiacetal 73 followed by addition of isocyanate 67 to give an easily
separable mixture of anomers 820/ in consistent yield but varying anomeric selectivity
(65-79%, 2:1-1:2 B:o). By contrast, under nearly identical conditions, acylation
proceeded with good and repeatable selectivity to preferentially form the o-glycosyl ester
83. Addition of sodium hydride to a solution of acyl chloride 66 and thiohemiacetal 81
furnished B-thioester 84 in excellent yield.

With these glycosylation products in hand, advancement to final analogues
proceeded in four straightforward steps as shown in Scheme 2.8. Reduction with

hydrogen sulfide/triethylamine to form amines (85-91), acylation with dodecanedioic
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acid monobenzyl ester to form fully protected analogues (92-98), global deprotection

(hydrogenolysis, trifluoroacetic acid-mediated hydrolysis), and HPLC purification gave

final analogues 99-105.

Scheme 2.8. Synthesis of central linkage variants.
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2.8  Biological Evaluation

Currently, there exists no rapid, in vitro method for measuring adjuvant efficacy.
This is due in part to the unknown and likely multivariate mechanisms of adjuvant action.
Therefore, these QS analogues were probed for adjuvant activity using an established, in
Vivo preclinical evaluation protocol in which cohorts of mice were immunized with a QS

saponin analogue and a four-antigen cocktail consisting of a poorly immunogenic
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ganglioside, GD3 (melanoma antigen) conjugated to a highly immunogenic carrier
protein KLH (keyhole limpet hemocyanin), a glycoprotein MUCI (prostate/breast cancer
antigen) conjugated to KLH, and an immunogenic protein antigen OVA (ovalbumin).
Antibody titers were used as a measure of immune response while body weight loss was
used to measure general toxicity. To compare adjuvant efficacy and toxicity most
accurately, antibody responses and percent weight loss over the first week after
immunization were compared at the most clinically relevant dose (maximum tolerated
dose) as shown in Figure 2.5. Antibody titers against all antigens at all doses and toxicity

data are available in the supplementary information.”

* Immunization experiments gave consistent data across a range of doses across all
experiments performed.
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Figure 2.5. Biological Assessment at the Maximum Tolerated Dose. a) Anti-KLH titers (IgG), (b)
anti-OVA titers (IgG) (€) anti-MUCI (IgG) (d) anti-GD3 titers (IgG) indicating potent adjuvant activity for
SQS-0-13-5-5 (99) and attenuated activity for SQS-0-0-8-5 (104). Median titer values are represented as
black horizontal bars. Statistical significance is compared to the no-adjuvant control and was assessed using
an unpaired Student’s t-test with CI = 95%: * =0.01 <p <0.05 (significant), ** =0.001 <p <0.01 (very
significant), *** = p < 0.001 (extremely significant). (€) Toxicity assessment based on median percent
weight loss over one week after the first vaccine injection, indicating acceptable toxicity at indicated dose
for all QS analogues at maximum tolerated dose.
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Analogues with a larger distance between the triterpene and trisaccharide
(ethanolamide 105 (SQS-0-4-5-5) and carbamates 101a/B(SQS-O-5-8-5/O-5-5-Sb))
induced Ab titers against all antigens tested that were not significantly different compared
to the no-adjuvant negative control, an effect more clearly demonstrated against the
protein antigens (KLH, Figure 2.5a and OVA, Figure 2.5b) than glycopeptides and
oligosaccharide (MUCI1, Figure 2.5¢ and GD3, Figure 2.5d). This marked decrease in
adjuvant activity suggests that the central linkage is less tolerant to modification than the
acyl side chain or linear oligosaccharide.**”* Adjuvant activity is diminished even more
with one of the most conservative modifications in a-ester 104 (SQS-0-0-8-5), which
elicited, paradoxically, lower antibody titers against OVA than those of the no-adjuvant
control. By contrast, other conservative modifications (o-amide 100 SQS-0-6-8-5),
B-ether 102 (SQS-0-12-5-5), P-thioether 103 (SQS-0-14-5-5), P-thioester 99
(SQS-0-13-5-5)) showed comparable efficacy and reduced toxicity compared to QS-21
and our previous leading preclinical candidate 62 (SQS-0-0-5-5). Most importantly,
B-thioester 99 stimulated a strong, repeatable, and consistent response against all antigens
and across multiple experiments at the 5 ug dose, with negligible toxicity (<1% body
weight loss).

It is especially intriguing that, relative to the natural B-ester linkage found in our
leading clinical candidate 62, two of the most conservative modifications (o-ester 104
(SQS-0-0-8-5) and B-thioester 99 (SQS-0-13-5-5), exhibit opposing extremes of adjuvant
activity. Indeed the PB-thioester 99 exhibited an approximate four-fold increase in

potency relative to QS-21, while the a-ester 104 showed no adjuvant activity even at the

b Immunological evaluation data shown in supplementary information, Figures 2.6-2.13.
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highest dose tested (50 pg, Supplementary Figure 2.11). Large changes in conformation
are unlikely be responsible for the increase in activity from oxo- to thio-ester, as
thioesters generally adopt similar conformations to the corresponding oxo-esters.”
However, C—S bond lengths in thioesters are ~0.4 A longer than the corresponding C—O
bonds in oxo-esters, which could impact binding to a putative cellular target. In contrast,
a-ester 104 may adopt a very different conformation relative to the corresponding
B-anomer present in the natural product. Taken together, these data hint at a specific
macromolecular interaction that may be responsible for initiation of the immune cascade,
which contrasts strongly with other immunoadjuvants that are known to act through more
general processes.”'® Moreover, this is in agreement with previous in vitro data from our
group,” which showed that only active adjuvants (as opposed to attenuated but
structurally similar saponins) are rapidly internalized by antigen—presenting cells and
trafficked to the draining lymph nodes, where the immune response is further propagated.

Investigations on the macromolecular target remain an outstanding question in our group.

29 Conclusion

In conclusion, we have synthesized a series of saponins to explore the SAR of the
central glycosidic linkage in the Quillaja saponins.  Although variations were
conservative, we observed striking modulation of both adjuvanticity and toxicity,
highlighting the triterpene—trisaccharide junction as an essential structural motif for the
biological activity of the Quillaja saponins. Investigations to further optimize the central
linkage to be more efficacious with less toxicity may come from minor variations to
analogues presented here, such as an oxidized variant (sulfoxide or sulfone) of thioether

103. Creation of such potent and non-toxic immunoadjuvants will aid in the development
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of new therapeutic and prophylactic vaccines and may also aid in elucidation of the

mechanism of action.

2.10 Supplemental Figures
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Figure 2.6. Biological Assessment with 5 ug Saponin. a) anti-OVA titers (IgG) (b) anti-MUCI (IgG)
indicating no adjuvant-active saponins at 5 |Lg dose. Median titer values are represented as black horizontal
bars. Statistical significance is compared to the no-adjuvant control and was assessed using an unpaired
Student’s t-test with CI = 95%: * =0.01 <p <0.05 (significant), ** = 0.001 <p <0.01 (very significant),
**% =p < (0.001 (extremely significant). (C) Toxicity assessment based on median percent weight loss over
one week after the first vaccine injection, indicating acceptable toxicity at indicated dose for all QS
analogues at the 5 |Lg dose.
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Figure 2.7. Biological Assessment with 20 ug Saponin. a) anti-OVA titers (IgG) (b) anti-MUC1 (IgG)
indicating potent adjuvant activity for o-amide, 0-6-8-5 (100). Median titer values are represented as black
horizontal bars. Statistical significance is compared to the no-adjuvant control and was assessed using an
unpaired Student’s t-test with CI = 95%: * =0.01 <p < 0.05 (significant), ** =0.001 <p <0.01 (very
significant), *** = p < 0.001 (extremely significant). (C) Toxicity assessment based on median percent
weight loss over one week after the first vaccine injection, indicating unacceptable toxicity for the only
adjuvant active saponin, 0-6-8-5 (100).
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Figure 2.8. Biological Assessment with 50 ug Saponin. a) anti-OVA titers (IgG) (b) anti-MUC1 (IgG)
indicating potent adjuvant activity for a-amide, 0-6-8-5 (100). Median titer values are represented as black
horizontal bars. Statistical significance is compared to the no-adjuvant control and was assessed using an
unpaired Student’s t-test with CI = 95%: * =0.01 <p < 0.05 (significant), ** =0.001 <p <0.01 (very
significant), *** = p < 0.001 (extremely significant). (C) Toxicity assessment based on median percent
weight loss over one week after the first vaccine injection, indicating unacceptable toxicity for the only
adjuvant active saponin, 0-6-8-5 (100).
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Figure 2.9. Biological Assessment with 5 pg Saponin. a) anti-KLH titers (IgG) (b) anti-MUC1 (IgG)
indicating potent adjuvant activity for B-Thioester, 0-13-5-5 (99) and attenuated activity for a-ester 0-0-8-5
(104).. Median titer values are represented. (C) Toxicity assessment based on median percent weight loss
over one week after the first vaccine injection, indicating acceptable toxicity at indicated dose for all QS

analogues at 5 lug.
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Figure 2.10. Biological Assessment with 20 pg Saponin. a) anti-KLH titers (IgG) (b) anti-MUCI1 (IgG)
indicating potent adjuvant activity for B-Thioester 0-13-5-5 (99) and B-ether 0-12-5-5 (102) and attenuated
activity for a-ester 0-0-8-5 (104). Median titer values are represented. (C) Toxicity assessment based on
median percent weight loss over one week after the first vaccine injection, indicating acceptable toxicity at
indicated dose for all QS analogues at 20 pg, although 2/5 mice did not survive the final boost vaccination
for B-thioester 0-13-5-5 (99).
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Figure 2.11. Biological Assessment with 50 pg Saponin. a) anti-KLH titers (IgG) (b) anti-MUCI1 (IgG)
indicating potent adjuvant activity for B-ether 0-12-5-5 (102) and B-thioether 0-14-5-5 (103) and attenuated
activity for a-ester 0-0-8-5 (104). Median titer values are represented. (C) Toxicity assessment based on
median percent weight loss over one week after the first vaccine injection, indicating acceptable toxicity at
indicated dose for all QS analogues at 20 pg except for B-thioester 0-13-5-5 (99), which killed all 5 mice

after day 3.
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Figure 2.12. Biological Assessment with 5 ug Saponin. a) Anti-KLH titers (IgG), (b) anti-OVA titers
(IgG) (c) anti-MUCI (IgG) (d) anti-GD3 titers (IgG) indicating potent adjuvant activity for SQS-0-13-5-5
(99) and attenuated activity for SQS-0-0-8-5 (104). Median titer values are represented as black horizontal
bars. Statistical significance is compared to the no-adjuvant control and was assessed using an unpaired
Student’s t-test with CI = 95%: * = 0.01 <p < 0.05 (significant), ** =0.001 <p <0.01 (very significant),
*** =p <(.001 (extremely significant). (€) Toxicity assessment based on median percent weight loss over
one week after the first vaccine injection, indicating acceptable toxicity at indicated dose for all QS

analogues at the 5 ug dose.
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(a) Anti-KLH Response at 20 ug Dose (b) Anti-OVA Response at 20 ug Dose
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Figure 2.13. Biological Assessment with 20 pg Saponin. a) Anti-KLH titers (IgG), (b) anti-OVA titers
(IgG) (c) anti-MUCI (IgG) (d) anti-GD3 titers (IgG) indicating potent adjuvant activity for SQS-0-13-5-5
(99) and attenuated activity for SQS-0-0-8-5 (104). Median titer values are represented as black horizontal
bars. Statistical significance is compared to the no-adjuvant control and was assessed using an unpaired
Student’s t-test with CI = 95%: * =0.01 < p < 0.05 (significant), ** =0.001 <p <0.01 (very significant),
**% =p <(.001 (extremely significant). (€) Toxicity assessment based on median percent weight loss over
one week after the first vaccine injection, indicating acceptable toxicity at indicated dose for most QS
analogues at the 20 pg dose, with the lead structure B-ester 0-0-5-5 (62) and PB-thioester 0-13-5-5 (99)
showing signs of serious toxicity.
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CHAPTER 3.
FACILE AND SELECTIVE OXIDATION OF C23 AND C24 METHYL GROUPS

IN OLEANALANE-TYPE TRITERPENES

3 Introduction

Oleanolane-type triterpenes are among the most common triterpenes isolated from
plants, arising from the common precursor B-amyrin 33° (Figure 3.1). While this family
of triterpenes shares a common carbon skeleton, a substantial variety of oxidation
patterns exist. A recent review catalogued 95 distinct oleanalane-type triterpenes isolated
in 2011 from a variety of plants with a plethora of enzymatically induced modifications
including ring cleavage, cyclopropanation, peroxidation, lactonization, methyl shifts and
others.” The most prominent modification is simple oxidation, most frequently occurring
on one or more of the eight methyl groups of B-amyrin. Common oxidation points, such
as C23 methyl group in the A-ring, are found in multiple oxidation states. For example,
all four oxidation states of C23 have been isolated: a saturated methyl group is found in
oleanolic acid (107, Figure 3.2), C23 is oxidized once to form a hydroxymethyl group in
hederagenin (108), further oxidation to the aldehyde is found in gypsogenin (109), and

oxidation to the carboxylic acid is seen in acanjapogenin G (110).*

Figure 3.1. The triterpene precursor, 3-amyrin.

¢ Drawn flat to more easily show ring designations.
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Figure 3.2. Oxidation variants at C23 of oleanolane triterpenes.

31 Synthesis of C24-Oxidized Oleanolane-Type Triter penes

A closely related, but much less common [-amyrin-derived product arises from
oxidation of the axial (C24) methyl group as seen in the immunoadjuvant soyasaponin
and lablaboside saponins and the natural product hyptatic acid. A previous synthesis of
hyptatic acid used a cumbersome sequence involving oxime directed C—H activation to
effect oxidation of C24 (Scheme 3.1).*' Recent efforts in the Gin group adapted this
sequence to obtain small quantities of the desired axial neo-pentyl alcohol. However, the
length of route was not amenable to throughput of adequate material to synthesize the
requisite triterpene component of the soyasaponin or lablaboside saponins. Thus, we
envisioned a short sequence to afford the desired oxidation from benzyl oleanolate,

2

involving radical mediated cleavage of the A-ring,** allylic oxidation, and finally a

thiolate promoted diastereoselective tandem Michael—-aldol reaction to reform the A-ring

with the desired methyl group oxidation.

Scheme 3.1. Oxime-directed C—H oxidation.

Pd(OAC),,
Me  pniAc),
ACOH/AC,0

111 112, 30%
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3.2 Tandem Michael-Aldol Reactionsin Total Synthesis

Tandem Michael—-aldol reactions employing aryl and aliphatic thiolates have been
used in both inter- and intramolecular fashion for decades. After the first reports by
Nozaki and colleagues in 1980* with the dimethyl aluminate of thiophenol, the
Danishefsky group applied the reaction the total synthesis of avermectin A;.* Michael
addition of thiophenol dimethylaluminate to the o,B-unsaturated aldehyde 113 followed
by aldol reaction with the dihydrofuranone furnished a 5,6 bicycle 114 (Scheme 3.2).
Treatment with M-CPBA facilitated elimination of the sulfoxide, forming the

o, B-unsaturated aldehyde 115.

Scheme 3.2. Tandem Michael-aldol reaction in the total synthesis of avermectin A;. Oxidation and
elimination give enal 115.

TBSO,,
1)PhSLi Me'
AlMes
2) m-CPEA
13 115, 76%

114

While the strategy designed by Nozaki and implemented by Danishefsky bears
significant resemblance to the Baylis—Hillman reaction, further application of the

conditions developed by Nozaki did not involve immediate elimination of thiolate. The
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retention of two sp3-centers in the thiolate product facilitated development of
diastereoselective thiol promoted tandem Michael—-aldol reactions.

The total synthesis of the spiro-alkaloid nitramine by Koomen and Wanner
employed a tandem Michael-aldol in a similar manner as the Danishefsky group, but
without subsequent oxidation and elimination.” o, B-Unsaturated imide 116 was treated
with PhSAlIMe; in THF, forming the desired Syn diastereomer spirocycle 118 in excellent
yield (Scheme 3.2). Given the reversibility of the Michael-aldol reaction, a product
highly enriched in one diastereomer suggests a strong thermodynamic preference for the
observed product. Similar conditions employing the iodo—magnesium complex of
thiophenol (PhSMgl, analogous to Grignard reagent) resulted in a mixture of Syn and anti
products, highlighting the importance of the lithium cation, likely through stabilization of
the transition state 117 (Scheme 3.3). Desulfurization of 118 furnished alcohol 119,

which, after reduction and deprotection, furnished the natural product 120.

Scheme 3.3. Tandem Michael-aldol in the total synthesis of nitramine.

B
(0] O PhSAIMe, Liv O Reduction/
o ) THF b HO Raney Ni Deprotectiop %)

116 118, 82% 119, 81% 120, 68% (two steps)

3.3  Three-Step Oxidation Sequenceto Achieve Oxidation of C24

To accomplish the desired oxidation at C24 of oleanolic acid required for the
synthesis of the soyasaponin and lablaboside saponins, we envisioned a diastereoselective
ring-closing conjugate addition reaction to form the two contiguous stereocenters at C3
and C4 of 121 (Scheme 3.4). The requisite o,fB-unsaturated aldehyde 122 would be

obtained via an allylic oxidation of 123. Finally, the aldehyde 123 would arise from a
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radical mediated oxidative ring-opening of the inexpensive and abundant ester of

oleanolic acid, 124.

Scheme 3.4. Retrosynthesis plan to achieve oxidation of C24.

124 123

3.3.1 Optimization of A-ring Cleavage

Initiation of the Suarez cleavage occurs via radical mediated reaction of iodine
with bis-acetoxyiodobenzene to form two equivalents of acetyl hypoiodite, which then
forms alkyl hypoiodite 125 (Scheme 3.5).*® Photolytic cleavage results in generation of
an O-centered radical, 126, which fragments to form an aldehyde and the tertiary radical
species 127. Homolytic proton abstraction results in olefin 128. Initial small-scale
studies furnished enal 123 in 60% yield. However, increasing to gram-scale resulted in a
dramatic decrease in yield of the desired product, with a concomitant increase in the

formation of allyl iodide byproduct 128 in significant quantities (20-34%)).
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Scheme 3.5. Reaction mechanism of Suérez cleavage.

(I)Ac

|
©/|\0Ac Iy — = 2AcOl ©/

AcO

124

-AcOH

2a

The conditions initially described by Suérez,** and those implemented in our
early efforts, require a full equivalent of iodine and excess PhI(OAc),. However, as can
be appreciated in the mechanism (Scheme 3.5), both iodine atoms can be used to form the
alkyl hypoiodite species 125. We hypothesized that, by decreasing the amount of
molecular iodine (thereby decreasing the amount of reactive acetyl hypoiodite), we could
avoid formation of the allyl iodide by product 128. Indeed, starting the reaction with 0.5
equiv iodine, then additional small aliquots until all starting material had been consumed
completely suppressed formation of the undesired species. With these conditions, the

Sudrez cleavage of 124 could be achieved in good yield in a highly reproducible fashion

on gram-scale to form the desired enal 123.
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3.3.2 Development of Tandem Michael-Aldol

As mentioned previously, thiol promoted tandem Michael-aldol reactions have
been used in several instances in the synthesis of natural products. Most commonly,
lithium thiophenolates have been employed as nucleophiles. As such, initial efforts using
these conditions gave a mixture of undesired stereoisomers* (3:1, 121c:121d), both with
axial thioethers (Scheme 3.6). To assign the structures of the products of the Michael—
aldol, the thioethers were desulfurized with Raney nickel to the corresponding 1,3-diols

and compared with published NMR data.®"*’

Scheme 3.6. Tandem Michael-aldol with thiophenol.
Os_0Bn

SPh 121a, 0% M€ SPh 121b, 0% M€

Os_0Bn O+ _0Bn

121c, 64% 121d, 21%

In an attempt to manipulate the diastereoselectivity of the tandem Michael-aldol
reaction, we altered the sterics and electronics of the thiolate nucleophile. Employing the
bulky tert-butyl thiol (Scheme 3.7) furnished a 10:1 mixture of desired to undesired
diastereoisomers with a 71% isolated yield of the desired product, 129a. Compared to
the aromatic thiol in entry 1, we observed a strong preference for an equatorial
disposition for the newly formed thioether. We suspect that this is due to the unfavorable

1,3-diaxial interactions of the tert-butyl group with the C25 axial methyl group

4 Diastereomeric configuration nomenclature is consistent with all nucleophiles, i.e.
equatorial -OH at C3 with equatorial thioether is @, axial -OH at C3, equatorial thioether
is b, etc.
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(highlighted in red in Scheme 3.7) that occur with formation of the undesired axial-
disposed thioether. With such a profound change in selectivity, we sought to determine

the extent of reagent-controlled diastereoselectivity.

Scheme 3.7. Tandem Michael-aldol with tert-butylthiol.

O+ _0OBn

n-BuLi
} tBuSH
0= _ THF
‘Me 0°C
Me St-B
122 Y 429a, 71%

Thus, we examined several commercially available 2,6-disubstitued thiophenols
to determine if the reaction outcome was more dependent on the sterics or electronics of
the thiolate nucleophile. As shown in entries 3 and 4 in Table 3.1, reaction with
2,6-disubstituted thiophenols resulted in similar yields compared to unsubstitued aromatic
thiol (entry 1). However, use of the bulkier aromatic thiols furnished significant amounts
of the desired diastereomer, 130a (entry 3) and 13la (entry 4) compared to the
unsubstituted thiophenol. Interestingly, reaction with the more electron-poor
2,6-dichlorothiophenolate resulted in a similar ratio of desired:undesired diastereomers
compared to the more electron rich 2,6-dimethylthiophenolate. Thus, the reaction

outcome is dependent mostly on sterics for determination of the diastereomeric ratio.
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Table 3.1. Reagent controlled diastereoselective tandem Michael-aldol reaction.

0 OBn (@] OBn
n-BuLi
RSH
— T H :
THF g "
0°C SR Me SR Me
Diastereomer a Diastereomes b-d
Entry Nucleophile Product Ratio® Yield®
SH
1 Cr 121 0:1 85%
2 t-BuSH 129 10:1 71%
Cl
3 S 130 3.7:1 87%
Cl
Me
4 C[S“ 131 3.5:1 51%
Me
5 PhsCSH 132 5:1 89%
6 EtSH 133 2:1 65%
7 i-PrsSiSH 134 1:25 45%

SeH
8 Y 135 0:1 63%

*Ratio: Diastereomer a:X(Diastereomers b-d) "Combined yields of all diastereomers.

Examination of commercial aliphatic thiols confirmed our previous hypothesis,
with bulky thiols having a strong equatorial preference in the product. Trityl thiol gave
very good diastereoselectivity (entry 5) with excellent yield, similar to the tert-butyl
derivative 129 (entry 2). By contrast, smaller aliphatic thiols such as ethanethiol gave
reasonable yields with decreased selectivity (entry 6). Moreover, increasing the distance
between the bulky group and the nucleophile, as with triisopropylsilyl thiol derivative

134 (entry 7), reversed diastereoselectivity and decreased yield. Continuing this trend,
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reaction with benzeneselenolate, which has a longer C—Se bond than the corresponding

C-S bond in thiophenol, decreased both yield and diastereoselectivity (entry 8).

(o) OBn O OBn
0 n-BulLi
PhSH
o=" — T HO
Solvent
Me 0°C

Me

Table 3.2. Effect of solvent on diastereoselectivity on the tandem Michael-aldol reaction.

Entry Solvent Ratio® Yield®
1 THF 0:1 85%
2 Ether 2:1 70%
3 CH,Cl, 0:1 42%
4 Toluene 1:15 66%
5 Hexanes <1:20 60%

“Ratio: Diastereomer a:X(Diastereomers b-d) "Combined yields of
all diastereomers.

Solvent had a strong effect on diastereoselectivity and yield (Table 3.2). In all
solvents except diethyl ether, the desired equatorial-disposed thioether product (121a)
was formed in small quantities or not at all. While the mechanistic rationale for such a
profound effect it is not entirely clear, we hypothesize that the weakly coordinating
diethyl ether oxygen lone-pairs may be facilitating a lithium cation-dependent

stabilization of the desired product.
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Table 3.3. Effect of temperature on diastereoselectivity of the tandem Michael-aldol reaction.

Entry Nucleophile Temp (°C) Ratio® Yield
1 t-BuSH -40 1.7 58%
2 t-BuSH 0 10:1 71%
3 t-BuSH 23 >20:1 48%

SH

4 Cr 0 0:1 85%
SH

5 Cr 23 0:1 59%

“Ratio: Diastereomer a:3(Diastereomers b-d) "Combined yields of all diastereomers.

Analysis of the effect of temperature on reaction outcome suggests that the
equatorial thioether is the thermodynamic product of the reaction (Table 3.3) with bulky
nucleophiles. With tert-butyl thiol, reaction at —40 °C (entry 1) gives 1:7 ratio of the
desired:undesired isomers. Increasing the temperature to 0 °C (entry 2) reverses the
selectivity, while increasing to room temperature (entry 3) results in near exclusive
formation of the desired diastereomer. A similar trend is not observed with thiophenol.
Indeed, no desired product is formed in THF. However, yields suffered as the
temperature was increased for reaction with both thiolates (entries 3 and 5), likely due to
decomposition under the reaction conditions. As mentioned previously, the
thermodynamic preference for an equatorial tert-butyl thioether likely arises from
unfavorable 1,3-diaxial interactions with the axial C25 methyl group (Scheme 3.7), an

effect much less pronounced with the less bulky thiophenol.
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While these experiments have been performed under well-controlled conditions,
preliminary experiments indicate reaction time may play an important role in determining
the final ratio of diastereomers. For instance, while employing lithium thiophenolate at
0° C for 20-30 min furnishes no desired product (Table 3.1, Entry 1), extending the
reaction to 12 hr furnishes almost exclusively the desired product in 40% yield (data not
shown). Although the data is far from complete, our data suggests that there is a
thermodynamic ratio of products for each set of reaction conditions. However, the sterics
and electronics of the lithium thiolates may drastically alter the kinetics of the overall
reaction. This may arise from the previously mentioned unfavorable 1,5-diaxial
interactions of the thiolate alkyl or aryl group with the C25 methyl substituent of the

triterpene highlighted in Scheme 3.7.

34  Raney Nicke Desulfurization

While desulfurization with Raney nickel is generally a straightforward, albeit
harsh procedure, this particular substrate presented a major challenge. The crowded
reaction center requires forcing conditions with very active Raney nickel, which is
difficult to both procure and maintain. Indeed, effective desulfurization only occurs with
a new bottle of Raney nickel from select manufacturers. Nonetheless, 129 was
desulfurized (as well as debenzylated and reduced) to give acid diol 136 in small
quantities. In the near future, protection of the carboxylate followed by selective
protection of the primary alcohol will give the desired triterpenoid to be used in the

synthesis of the lablaboside saponins.
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Scheme 3.8. Raney nickel desulfurization.

35 Conclusion

We have developed a short sequence to access a C24-oxidized triterpene of
interest in the synthesis of several immunopotentiating saponins. The only published
synthesis required more than ten steps, including several tedium purifications.
Additionally, we are the first to report the scope of a thiol promoted diastereoselective
tandem Michael-aldol reaction. The ring—closing reaction, under both stereo- and
electronic control sets two contiguous stereocenters in a facile and repeatable fashion.
After optimization of desulfurization and selective protection conditions, these

triterpenoids will be advanced to the synthesis of the lablaboside saponins.
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CHAPTER 4.

SYNTHESISOF THE LABLABOSIDE SAPONINS

4 I ntroduction

The lablaboside saponins were isolated®® from the edible hyacinth bean, a legume
widely cultivated throughout Asia. While used mostly as a foodstuff in Japan and India,
the bean has been used extensively for medicinal purposes in China. The white seeds of
the Dolichos lablab plant have been prescribed for alimentary disorders as well as for
treatment of alcoholism. However, before 1998, no systematic study of purified
components had been performed. Yoshikawa and co-workers, a Japanese group with

tremendous expertise”>""

in the study of medicinal foodstuffs, isolated a series of novel
saponins from the seeds of D. lablab that exhibited potent immunoadjuvant activity.
Lablabosides A-F are bisdesmoside saponins, featuring a linear trisaccharide
attached to C3 of oleanolic acid or a C24-oxidized variant, epi-hederangenin, and an
oligosaccharide attached to C28 (Table 4.1). As mentioned in Chapter 1, extensive
oligosaccharide variation occurs at C28, with a mono-, di- or trisaccharide appended to

the triterpenoid.  Additionally, lablaboside D (16) is adorned with an acyl chain

(hydroxy-methylglutaroyl) at C6 of glucose.
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4.1

to QS-21 and other structurally related adjuvant-active saponin molecules, such as the
soyasaponins and escin saponins (shown in Chapter 1, 8 and 4/5).**® Compared to QS-
21, both soyasaponins and lablaboside saponins exhibited negligible hemolytic toxicity,
while maintaining potent immunopotentiating properties.

lablabosides D (16) and F (15), which were shown to induce greater passive

Table4.1. Structure of the lablaboside saponins.

HO

RO 752/ 0H

OH HO
HO HO o " e
WO © Me
HO

O ...........................

OH OMe OHO

Saponin R* R? R®
lablaboside A (137) H H

lablaboside B (138) OH H

lablaboside C (139) OH a-Rha H
lablaboside D (16) OH H Hmg
lablaboside E (140) OH o-Rha-4-0-Rha H
lablaboside F (15) H o-Rha-4-0-Rha H

| mmunoadjuvant Activity

Initial studies of the immunoadjuvant activity compared the lablaboside saponins

haemaglutination titers than QS-21.

of lablaboside F as an immunoadjuvant against a lethal infection of Aujeszky's disease

. . . 39239 . . . . . . .
virus in mice.”” ™" Aujeszky’s disease, or pseudorabies, is an endemic disease of swine

Further studies examining the immunopotentiating activity examined the efficacy
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and cattle in most of the world. Development of a prophylactic vaccine requires an
immunoadjuvant capable of inducing a mixed Thl and Th2 response to protect against a
lethal dose of virus most effectively. In this comparative study, aluminum salts, QS-21,
and two oil-in-water formulations (similar to the MF59 adjuvant) were compared for
immunoadjuvant activity when co-administered with soluble and particulate antigens.
Compared to QS-21, lablaboside F elicited similar levels of IgGla, but a significantly
lower IgG2 response, albeit with no toxicity. As such, the vaccine showed no statistically
significant survival benefit compared to a no-adjuvant control. To our knowledge,
further development of lablaboside F as an immunopotentiator has not been explored.
Despite the pre-clinical failure to show efficacy against Aujeszky’s disease, the
initially observed potent immunopotentiating activity and negligible toxicity makes
lablaboside F an attractive saponin to explore further in other clinically relevant systems.
As such, we sought to synthesize the entire family of lablaboside saponins to assess the
validity of the initial studies using the pre-clinical assay developed in our group and

determine if further development is warranted.
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Scheme 4.1 Failed global deprotection in previous work

142

4.2  Previous Synthetic Effortsand Global Deprotection Strategy

Preliminary synthetic studies in our group resulted in the synthesis of a fully
protected epimer 141 (o-Gla instead of the natural 3-Gal anomer, highlighted in green) of
lablaboside F (142). The most important findings of these studies resulted from the many
failed attempts to remove all protecting groups. In the final deprotection step, an
acetonide protecting group on the rhamnose moiety highlighted in Scheme 4.1 could not
be removed, despite repeated efforts by several investigators. Indeed, the acetonide was
recalcitrant to a litany of acid-mediated hydrolysis conditions resulting in decomposition
of the saponin before hydrolysis of the protecting group. To get around this problem, we
sought to employ only hydrogenolysis-labile protecting groups to facilitate a simple, one-
step global deprotection. To this end, we selected a benzophenone ketal, a protecting

group rarely utilized in carbohydrate chemistry.®
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4.3

Ketalization with benzophenone, catalyzed by camphorsulfonic acid under reduced
pressure, furnished ketal 144. Benzylation under standard conditions followed by
deallylation with tetrakis(triphenylphosphine)palladium furnished rhamnose hemiacetal
145, which was a less reactive glycosyl relative to a similarly protected acetone ketal of
rhamnose. Standard dehydrative glycosylation conditions’* (Ph,SO, Tf,0, 15 min at —
78 °C, 60 min at —55 °C, then addition of acceptor) gave low yields (<30%). However,
by extending activation time from 60 to 90 min, high yields of the desired oi-anomer 146
were obtained. This is likely due to the electron-poor glycosyl donor hemiacetal 145,

which retards the rate of oxocarbenium/glycosyl triflate formation.”'

Scheme 4.2 Synthesis of rhamnose—rhamnose disaccharide.

1. BnBr, NaH, DMF
Ph,CO o 2. Pd(PPha),,

y
o™ CSA. Bz

o)
OH &/&/
%Q/OH oy "
HO Me O\ell
“'Ph

143 Ph
144, 66%

(CHo)4NH, CH,CI, HO o
5 _OBn
|
Ow
“'Ph

Ph
145, 83% (2 steps)

HO Pd(PPhs),,

WO (CHz)NH, CH,Cl
| -

147, 99%

Synthesis of Eastern Trisaccharide

Synthesis commenced with of protection of allyl-L-thamnose (143).”

furnished hemiacetal 147.
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Scheme 4.3. Synthesis of fully protected eastern trisaccharide

BnO Ph;80, Tf,0, BnO
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%OBH

149, 69% o)
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DMAP, DMF Ph O_Me
“'Ph
BnO Ph
HO 7570
HO OBn 150
148

Next, the known glucose 1,2-diol 148,°* formed by dihydroxylation of tribenzyl
glucal, was selectively silylated with triisopropylsilyl chloride to furnish
2-hydroxyglucose donor 149, which was glycosylated under dehydrative conditions to
give trisaccharide 150. Desilylation followed by bromination with oxalyl bromide
furnished o-glycosyl bromide 152, which will serve as the glycosyl donor in the final

bond-forming step in the syntheses of lablaboside E and F (Scheme 4.4).
Scheme 4.4. Synthesis of eastern trisaccharide glycosyl donor.

BnO BnO BnO
LG 0L LI,
TIPSO—40 OBn TBAF HOI ° OBn (COBr),, DMF, OBn
o7 o7 o7 -0
O{e]/ o O{e]/ o O{e]/ o
. |_OBn . |_OBn T
‘ O, 7 O, “y, O OBn
Phpho@/ Phpho{el/ PhPh(')%/
“'ph “'Ph “'Ph

Ph Ph Ph

150 151, 71% (2 steps) 152, 83%

4.4  Synthesisof Western Trisaccharide

To synthesize the linear trisaccharide common to all the lablabosides, we began
by epoxidation of known uronic acid glycal 153 with dimethyldioxirane.” After a

solvent exchange, this epoxide was treated with zinc chloride, facilitated ring opening
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with allyl alcohol furnishing 154.°* The resulting alcohol served as acceptor in the
dehydrative glycosylation of known galactose hemiacetal 155. The benzoyl ester on C2
of galactose hemiacetal®**®* facilitated B-selective glycosylation, furnishing disaccharide
156 in excellent yield with 5:1 anomeric selectivity. Without a benzoyl

protecting/directing group, exclusive formation of o-anomer was observed.

Scheme 4.5. Synthesis of western trisaccharide donor.
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“Ph
Ph Ph
158, 95% 160, 44% (2 steps)

To facilitate the one-step global deprotection, a protecting group change was

necessary on the glucuronic acid moiety. A one-pot procedure removed the methyl ester
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by hydrolysis in dioxane and the benzoyl group by methanolysis, followed by alkylation
of glucuronate with benzyl bromide to give 157 in excellent yield over three steps.®®
Dehydrative glycosylation of rhamnose hemiacetal 145 proceeded in nearly
quantitative yield to furnish fully protected trisaccharide 158. As previously stated,
extended reaction times were necessary to achieve high yields with benzophenone ketal
protected rhamnose donors. Deallylation followed by formation of trichloroacetimidate

furnished trisaccharide donor 160.

45  End Game Glycosylation

With both trisaccharide donors in hand, we had to choose the appropriate order of
the two late-stage glycosylations. The most important considerations revolve around the
efficiency of synthesis of each oligosaccharide. The western trisaccharide donor 160
requires 14 linear steps from commercially available starting materials, whereas the
eastern trisaccharide 152 requires only nine steps. Thus, it was desirable to glycosylate at
the triterepene C28 carboxylate first, and then glycosylate at C3 with the more precious

western trisaccharide in the penultimate step.
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Scheme 4.6 Desirable end game glycosylation route.
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45.1 End gameglycosylations- C28 then C3

Glycosylation of C3-protected oleanolic acid derivative 161 under Koenigs—Knorr
conditions gave the B-anomer when employing an excess of the acceptor (Scheme 4.7).
Desilylation required elevated temperature and extended reaction time, but was achieved
cleanly with tetrabutylammonium fluoride to form 163. Before attempting the final
glycosylation with the precious substrate, we used allyl oleanolic acid 165 as glycosyl
acceptor to develop optimal conditions. = We found that employing the conditions
identified by the Gin group for the construction of a very similar bond en route to the
synthesis of QS-21 furnished almost identical results.®> Using an excess of the cheap and
abundant acceptor 165, glycosylation, catalyzed by tris-pentafluorophenyl borane,
proceeded smoothly to give the desired product in 75% yield with 20:1 anomeric

selectivity favoring the -anomer. Deallylation gave carboxylic acid 167.
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Scheme 4.7. Glycosylation of western trisaccharide with an inexpensive and abundant acceptor 165.
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Attempts to perform an analogous glycosylation with imidate 166 with the more
complex donor 163 yielded no detectable glycosylation product (Scheme 4.8). While it is
surprising that protected glycosides on the distal end of the triterpene would affect
exposure of the C3 alcohol to the electrophilic glycosyl donor, repeated attempts failed to
deliver even trace amounts of the desired product. As such, we were forced to reverse the

order of the late-stage glycosylations.



Scheme 4.8. Failed glycosylation en route to fully protected lablaboside F.
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45.2 End gameglycosylation - C3then C28

We envisioned bringing together advanced intermediate carboxylic acid 167 and
eastern trisaccharide bromide 152 using the silver triflate-promoted Koenigs—Knorr
glycosylation (similar to Scheme 4.9). However, repeated attempts failed to deliver an
anomerically pure product. Moreover, the mixture of anomers was inseparable on
standard silica gel under panoply of conditions. Drawing on lessons learned constructing
similar glycosidic linkages in Chapter 2 led to employment of phase-transfer
glycosylation conditions, whereby the glycosylation would proceed through a Sy2-type
displacement. As such, the desired B-anomer was achieved in good yield to form fully

protected lablaboside F 164 (Scheme 4.9).
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Scheme 4.9 Final glycosylation to form lablaboside F.
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4.6  Deprotection and Comparison to Literature Data

One-step global deprotection proceeded via high pressure hydrogenolysis over 24
hours to furnish the desired saponin, 168. Spectral comparison to the natural product was
less straightforward than anticipated. In the isolation paper, NMR analyses were
performed in pyridine-ds, with all carbon chemical shifts and characteristic proton
reasonances in tabular form.”> Surprisingly, our NMR analyses performed in pyridine
initially gave a 3:1 mixture of two compounds in apparent equilibrium. As shown in
Figure 4.1, removal of solvent followed by NMR analysis performed in methanol-d4
showed only one compound. Subsequent NMR analyses in pyridine-ds once again
suggested two compounds, but in a different ratio than previously observed. We

hypothesize that minor differences in the salt form of the glucuronic acid
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(pyridinium/sodium/free acid) may account for the observed multiplicity in sugar peaks.

Additionally, the experimentally determined chemical shifts for many of the

characteristic resonances were slightly off, as shown in Table 4.2.

HO

Me

Table4.2. Pertinent experimental and literature '"H-NMR data for lablaboside F (168).

1H -NMR Chemical Literature Experimental
Shift ppm (J, Hz) ppm (J, Hz)
GlcA 5.01(7.3) 5.05(7.5)
Gal 5.62(7.2) 5.62(7.7)
Gle 6.11 (8.2) 6.18 (8.2)
Rha 6.20 (br s) 6.31(1.5)
Rha 6.22 (brs) 6.32 (1.5)
Rha 6.61 (brs) 6.76 (1.5)
C18 methine 3.10 (m) 3.10(13.8, 5.0)
C12 olefin 5.43 (brs) 5.45(t,4.2)
C29 methyl 1.82 (s) 1.43 (s)

Indeed, all other available characterization data, including high-resolution mass

spectrometry and specific rotation, matched the literature values.

The authors of the

isolation paper did not respond to a request for the NMR spectra or FID files.
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Scheme 4.10. Global deprotection of lablaboside F.
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Figure 4.1. 'H-NMR spectra of lablaboside F in two solvents, one sample in pyridine-ds and
methanol-d,, showing anomeric and olefin peaks. Top spectrum in pyridine-ds shows a 4:1 mixture of two

compounds. Spectrum in methanol-d, shows one compound.
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Scheme 4.11. Synthesis of lablaboside A.
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Synthesis of the remaining analogues began with lablaboside A (Scheme 4.11).
Using the previous intermediate carboxylic acid 166, phase-transfer glycosylation was
achieved to form fully protected lablaboside A 170. Once again, hydrogenolysis gave a
very clean crude mixture in methanol, which after HPLC purification, furnished a fluffy
white solid 171. As with lablaboside F, two compounds in equilibrium were observed in
pyridine-ds, However, NMR analyses performed in methanol-d; indicated a single

product. Experimental data for specific rotation matched literature values.
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Figure 4.2. 'H-NMR spectra of lablaboside A in two solvents, one sample in pyridine-ds and
methanol-d,, showing anomeric and olefin peaks. Top spectrum in pyridine-ds shows a 1.2:1 mixture of
two compounds. Spectrum in methanol-d; shows one compound.



4.7 Conclusion

Efforts towards the synthesis of the remaining lablaboside saponins are currently
in progress. As mentioned in the previous chapter, small amounts of the requisite epi-
hederangenin triterpene have been synthesized. Current efforts are underway to procure
enough material for successful synthesis of the remaining lablabosides.

We have demonstrated the efficacy of dehydrative glycosylation reactions with a
variety of glycosyl donors. Moreover, we have solved an infrequently encountered, but
monumentally confounding problem, of the recalcitrant acetonide protecting group, a
common protecting group for Cis-1,2 diols. Indeed, employment of the under-utilized
benzophenone ketal allowed for a facile, high-yielding, one-step global deprotection of a
complex saponin.

Once the entire family has been successfully synthesized, our group will examine
the immunopotentiating effects of the series of saponins in our previously described
immunization protocol. Examination of the specific antibody sub-types elicited by these
saponins may inform the proper utilization of the lablaboside saponins in clinical

applications.
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CHAPTER 5.

CONCLUSIONSAND FUTURE DIRECTIONS

5 Conclusions

We have successfully synthesized and evaluated the immunostimulating
properties of a series of central-linkage variants to the Quillaja saponins, providing
valuable insight to the SAR. Additionally, two of the six lablaboside saponins have been
synthesized.

Examination of the central-linkage SAR in the QS saponins highlighted the
importance of the triterpene—oligosaccharide junction for the observed biological
properties. These studies provided a new lead structure for further SAR studies to find an
improved immunoadjuvant. The first successful synthesis of natural product saponins
lablaboside F and lablaboside A, with lablabosides B-E forthcoming, will provide
validation of the immunoadjuvant properties initially reported by the isolation group.
Moreover, successful employment of the rarely used benzophenone ketal highlights a
viable alternative for the occasionally obstinate isopropylidiene ketal protecting group

often used with vicinal syn-diols.

51 Future Development of the Quillaja Saponins

Development of the QS saponin analogues from the toxic, very expensive, and
chemically unstable natural product has been extensive since completion of the initial
synthesis in 2005. However, progress toward an economical and clinically viable target
immunoadjuvant has been hamstrung in two major ways; lack of demonstrated in vivo

efficacy and no experimental evidence for the mechanism of action.
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5.1.1 Demonstration of In Vivo Efficacy

Pre-clinical evaluation of the QS saponins has identified several promising
candidate saponins for further development. However, quantitative differentiation of
immunoadjuvant activity among these promising candidates remains a challenge. Indeed,
the most reliable antibody responses are elicited from well-established immunogenic
proteins ovalbumin and keyhole limpet heamocyannin. However, the clinically relevant
co-administered carbohydrate-based tumor antigens, GD3 and MUCI1, give unimpressive
and unreliable antibody responses. To more effectively quantify immunopotentiating
activity against relevant antigens, an experiment comparing the efficacy of the leading
candidate adjuvants, among the nearly 50 synthetic QS saponins, as a component of a
prophylactic or therapeutic vaccine. Immunization followed by a challenge with a
disease-causing agent should be performed, which will give a preliminary assessment of
the clinical utility of these non-natural saponin adjuvants. Moreover, by utilizing a
variety of antigens/disease causing agents (e.g. diphtheria toxin, influenza,
GD3-expressing tumor, etc) we will be able to determine the qualitative and quantitative
differences in the immune response elicited by the non-natural analogues relative to the

natural product.

5.1.2 Elucidation of the M echanism of Action

The obvious SAR of the central linkage in the QS saponins shown in Chapter 2,
as well as other concurrent studies in our group, suggest that the central linkage region is
the site of interaction for a putative macromolecular interaction. As such, other minor
modifications to the triterpenoid (e.g. epimerization of the C16 hydroxyl group) should

be explored to optimize the potency of the QS saponins. A more potent saponin may
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contribute an increase in binding efficiency to the putative target, which may in turn
facilitate chemical cross-linking. To achieve these variants to quillaic acid, a
conceptually similar strategy to the three-step oxidation sequence discussed in Chapter 3
may prove useful: rapid introduction of chemical handles to complex starting materials.
For example, Hartwig et al achieved a selective oxidation of methyl oleanolate (172) at
C23 to form hederangenin (173) in two-steps, utilizing an iridium-based catalyst, directed
by the C3 secondary alcohol as shown in Scheme 5.1.°° Similarly, unpublished work in
our group utilizing oxime directed C—H activation furnished oxidation of the E-ring of

oleanolic acid-derived triterpenoid 175 as shown in Scheme 5.1."

Scheme5.1. Transition-metal catalyzed C—H activation using directing groups of oleanolane triterpenoids.

1. [lr], EtSiH,, rt, then
O _OMe [If)/Me4phen (2 mol %)
nbe, THF, 120 °C
2. KHCO3, H,0,, 50 °C

172

Pd(OAC), (20 mol %)
PhI(OAG),, ACOH,
140 °C

TIPSO

OH
174 175, 30 % yield
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Figure5.1. Cross-linking saponin probe with biotin tag for affinity purification.

In parallel, another challenge is to develop an appropriate strategy for chemical
cross-linking. Previous work in our group utilized a benzophenone moiety linked to the
acyl side chain 172. Preliminary photo cross-linking experiments tentatively identified
histone H1 as the protein target, but no further validation experiments have been
performed. If our assumption about the site of interaction is correct, then the
benzophenone moiety may not be in close enough proximity to the actual target. Since
histone H1 is a common cellular protein, present in each histone, identification in a single
assay may be a false positive. To solve this problem, an inducible cross-linking
functional group, such as a diazirine must be introduced proximal to the pertinent
triterpenoid—oligosaccharide junction. Functionalization of the E-ring of quillaic acid

may facilitate facile introduction of such groups as shown in Scheme 5.2.

Scheme 5.2. Proposed general strategy to create photo cross-linking tools. D = directing group,
P = protecting group
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5.2  Future Development of the L ablaboside Saponins

After successful completion of the entire family of lablaboside saponins, we must
validate the previously reported immunoadjuvant activity. Indeed, saponins isolated from
natural sources, although appearing to be analytically pure, exhibit markedly different
properties, as shown with naturally derived versus synthetic QS-21, especially with
respect to toxicity.

More important than full investigation of the lablaboside saponins is utilization of
the three-step sequence to obtain C24 oxidized triterpenoids outlined in Chapter 3 in two
ways; application to natural product synthesis and generation of new QS saponins.
Several natural products purported to have immunopotentiating properties, including the
soyasaponins, feature an oxidized C24, and the short oxidation sequence would be an
essential strategy towards successful synthesis. Additionally, employment of the axial
neopenyl alcohol 180, aldehyde 181, and carboxylic acid 182 with the more well-
established components of the strongly immunopotentiating Quillaja saponins (Figure

5.2) may furnish even more potent or less toxic QS saponins.

O
Jj\/\/\/\/\/\"/OH
HN
HO|oH 0

OH
OHHO
O L7 oH

Me HOI'Me ©

HO HO Ve HO Me
HO\‘Z//ZSH

R = CH,OH (180)
CHO (181)
COOH (182)

Figure5.2. Proposed C24 oxidized QS saponins.
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APPENDIX A
EXPERIMENTAL PROCEDURESFOR CHAPTER 2

General Procedures. Reactions were performed in flame-dried sealed-tubes or
modified Schlenk (Kjeldahl shape) flasks fitted with a glass stopper under a positive
pressure of argon, unlessotherwise noted. Air- and moisture-sensitive liquids and
solutions were transferred via syringe. The appropriate carbohydrate and sulfoxide
reagents were dried via azeotropic removal of water with toluene. Molecular sieves were
activated at 350 °C and were crushed immediately prior to use, then flame-dried under
vacuum. Organic solutions were concentrated by rotary evaporation below 30 °C. Flash
column chromatography was performed employing 230—400 mesh silica gel. Thin-layer
chromatography was performed using glass plates pre-coated to a depth of 0.25 mm with
230400 mesh silica gel impregnated with a fluorescent indicator (254 nm).

Materials. Dichloromethane, tetrahydrofuran, diethyl ether, and toluene were
purified by passage through two packed columns of neutral alumina under an argon
atmosphere. Methanol was distilled from magnesium at 760 Torr.
Trifluoromethanesulfonic anhydride was distilled from phosphorus pentoxide at 760
Torr. Boron trifluoride diethyl etherate was distilled from calcium hydride at 760 Torr.
All other chemicals were obtained from commercial vendors and were used without
further purification unless noted otherwise.

Instrumentation. Infrared (IR) spectra were obtained using a Perkin Elmer
Spectrum BX spectrophotometer or a Bruker Tensor 27. Data are presented as the
frequency of absorption (cm™). Proton and carbon-13 nuclear magnetic resonance (‘H

NMR and CNMR) spectra were recorded on a Bruker Avance III instrument; chemical
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shifts are expressed in parts per million (6 scale) downfield from tetramethylsilane and
are referenced to residual proton in the NMR solvent (d-chloroform: & 7.26 for '"H NMR,
8 77.16 for °C NMR; d6-benzene: § 7.16 for 'H NMR, § 128.06 for °C NMR; d4-
methanol: § 3.31 for "H NMR, & 49.00 for Bc NMR; d3-acetonitrile: & 1.94 for "H NMR,
8 1.32 for >C NMR; deuterium oxide: & 4.79 for '"H NMR). Data are presented as
follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t =
triplet, q = quartet, m = multiplet and/or multiple resonances), coupling constant in Hertz
(Hz), integration, assignment. RP-HPLC purification and analyses were carried out on a
Waters 2545 binary gradient HPLC system equipped with a Waters 2996 photodiode

array detector, and absorbances were monitored at wavelengths of 210-600 nm.

Ox_OH
0
OTESO
TESO "
TESOTESO o O O TES Me
TESO\‘Z/ZOTES

TESO

o)
Bn%&
OTESO
= °

TESO o Me Ol”"Me
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TESO OTES
TESO

(66): Thionyl chloride (31 ul, 0.425 mmol, 2 equiv) was added, drop-wise, to an ice-
cooled solution of 65 and pyridine (170 ul, 2.13 mmol, 10 equiv) in dichloromethane (6
ml). After two hours, a majority of the volatiles were removed under a stream of

nitrogen, then high-vacuum. Residual solids were suspended in anhydrous benzene and
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filtered through celite. Solvent removal in vacuo furnished 66 (441 mg, 99 % yield) as a

white foam.

TLC R 0.36 (20:1 hexanes/ethyl acetate); FTIR (NaCl, film):) 2953, 2911, 2877, 1792
(O-CCl st), 1756, 1725, 14.58, 1414, 1378, 1240, 1171, 1102, 1007, 739 cm™; *H-NMR
(600 MHz, C¢Dg) 6 9.75 (s, 1H), 7.20 — 7.17 (m, 2H), 7.10 — 6.97 (m, 3H), 5.42 (t,J=3.5
Hz, 1H), 5.18 (d, J = 12.4 Hz, 1H), 4.99 (dd, J = 22.3, 9.9 Hz, 2H), 4.79 — 4.71 (m, 2H),
4.59 (d,J=7.0 Hz, 1H), 4.47 (t, J=8.7 Hz, 1H), 4.37 (t, J=9.1 Hz, 1H), 4.25 — 4.18 (m,
2H), 4.15 (d, J= 9.4 Hz, 1H), 4.13 — 4.08 (m, 1H), 4.05 (dd, J=11.2, 5.0 Hz, 1H), 4.00
(dd, J=9.3, 7.4 Hz, 1H), 3.95 (dd, J=9.5, 5.5 Hz, 1H), 3.84 — 3.76 (m, 2H), 3.73 — 3.66
(m, 3H), 3.65 — 3.61 (m, 1H), 3.49 (t, J = 10.8 Hz, 1H), 3.16 (dd, J= 14.1, 4.1 Hz, 1H),
2.39 (t, J=13.6 Hz, 1H), 1.97 — 1.67 (m, 8H), 1.58 (dd, J=10.2, 7.4 Hz, 1H), 1.46 (m,
139H), 0.81 — 0.70 (m, 18H), 0.62 (dd, J = 8.0, 3.0 Hz, 7H). *C-NMR (151 MHz, C¢D)
o 209.67, 177.78, 168.61, 141.76, 135.75, 128.54, 128.38, 128.24, 128.19, 123.96,
102.72, 101.57, 101.40, 83.84, 79.58, 79.26, 77.85, 77.00, 76.78, 76.32, 75.76, 75.32,
73.16, 73.01, 72.28, 71.69, 66.90, 65.97, 61.41, 59.13, 54.48, 49.01, 46.61, 46.53, 42.64,
41.61, 39.92, 37.92, 35.97, 35.25, 34.90, 32.58, 32.34, 30.61, 30.40, 26.59, 25.40, 24.13,
23.46,20.43,16.88, 15.66, 11.87, 7.82, 7.64, 7.51, 7.48, 7.45, 7.38, 7.37, 7.35, 7.27, 7.19,
7.07, 7.06, 6.29, 6.15, 6.08, 6.00, 5.95, 5.86, 5.81, 5.76, 5.68, 5.62, 5.48, 5.42, 5.33, 5.14,
496, 494, 477, 4.57, HRMS m/z (ESI): For methyl ester derivative, calcd for

C102H210025NaSio [M+Na]" 2110.2982, found 2110.2986.
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TESOTESO
TESO\%//ZSTES

TESO
(69): A large excess of freshly condensed ammonia (~1 ml, ~900 equiv) in
dichloromethane (2 ml) was added to an ice-cooled solution of 66 (110 mg, 0.525 mmol,
1 equiv) in dichloromethane (5 ml). After 20 min, reaction mixture was warmed to room
temperature allowing excess ammonia to evaporate. Mixture was diluted with water and
layers separated. After extraction with with dichloromethane (2 X 10 mL), organic
fractions combined and washed with brine, then dried over sodium sulfate, and
concentrated and the purified by silica gel chromatography (hexanes:EtoAc + 0.5%

triethylamine 10:1 to 2:1) to afford 69 (100 mg, 92 % yield) as a white foam.

TLC Rr0.26 (4:1 hexanes/ethyl acetate); FTIR (NaCl, film) 3454, 2953, 2911, 2877,
1753, 1725, 1674, 1602, 1456, 1414, 1377, 1239, 1104, 1005, 913, 864, 826, 740 cm™;
'H-NMR (600 MHz, CDCl5) & 9.72 (s, 1H), 7.39 — 7.29 (m, 5H), 6.06 (s, 1H), 5.46 (t, J
= 3.6 Hz, 1H), 5.36 (s, 1H), 5.28 (d, J=12.4 Hz, 1H), 5.10 (d, J= 12.4 Hz, 1H), 4.56 (d,
J=7.4 Hz, 1H), 4.49 (s, 1H), 4.43 (d, J= 7.3 Hz, 1H), 4.18 (d, J= 7.4 Hz, 1H), 3.95 —
3.90 (m, 2H), 3.88 — 3.82 (m, 2H), 3.82 — 3.77 (m, 2H), 3.75 (t, J = 9.2 Hz, 1H), 3.62 —
3.53 (m, 3H), 3.48 (ddd, J=10.5, 8.4, 5.1 Hz, 1H), 3.39 (dd, J=9.4, 2.5 Hz, 1H), 3.35 (t,

J=18.7 Hz, 2H), 3.25 (dd, J = 8.7, 7.4 Hz, 1H), 3.13 (t, J = 10.9 Hz, 1H), 2.57 (dd, J =
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13.7, 4.2 Hz, 1H), 2.36 (t, J = 13.1 Hz, 1H), 2.03 (dt, J= 14.6, 4.0 Hz, 1H), 1.92 (dd, J =
8.9, 3.6 Hz, 2H), 1.90 — 1.42 (m, 12H), 1.32 (s, 3H), 1.30 — 1.25 (m, 2H), 1.19 — 0.84 (m,
96H), 0.79 (s, 3H), 0.78 — 0.55 (m, 53H); **C-NMR (151 MHz, CDCl;) § 212.78, 180.71,
168.38, 145.17, 135.29, 128.47, 128.27, 128.14, 122.50, 103.71, 101.41, 100.85, 86.45,
78.81, 78.73, 76.46, 75.95, 75.91, 75.83, 75.09, 72.62, 72.53, 71.38, 71.11, 66.85, 65.34,
60.25, 53.81, 49.39, 49.19, 47.24, 45.99, 42.27, 41.95, 39.56, 37.95, 36.05, 35.39, 34.67,
34.54,34.19, 32.57, 31.98, 31.61, 31.27, 30.54, 29.07, 26.32, 25.38, 25.29, 24.22, 23.40,
22.68,20.71, 20.21, 16.90, 15.86, 14.14, 12.26, 11.45, 7.57, 7.47, 7.25, 7.16, 7.15, 7.14,
6.99, 6.85, 6.79, 5.93, 5.65, 5.45, 5.38, 5.34, 5.27, 5.23, 5.18, 5.01, 4.42; HRMS m/z

(ESI)Z Calcd for C108H205N0198i9Na [M+Na] 20952927, found 2095.3020.

O NH,
BnO P Me Ve e
TESO™IES0 TESO o O Mes mee

o TES" Me
TESO\‘;//ZéTES

TESO

BnO o
TESO QESS o
TESO

TESO TESO , P ” TES' Me"
TESO\%TES
TESO
(75): Trifluoromethanesulfonic anhydride (22 pL, 0.13 mmol, 3.0 equiv) was added to a
solution of trisaccharide 73 (85 mg, 0.087 mmol, 2.00 equiv), phenyl sulfoxide (53 mg,
0.260 mmol, 6.0 equiv) and 2,4,6-tri-tertbutylpyridine (65 mg, 0.261 mmol, 6.0 equiv) in
dichloromethane (5 mL) at =78 °C. The reaction stirred in a cold bath at —78 °C for 8

min and then was transferred to a bath between -55 and -50 °C for 65 min. A solution of
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amide 69 (90 mg, 0.043 mmol, 1 equiv) was added in dichloromethane (2 mL) via
syringe. Bath temperature was warmed to -45 °C for 45 min then 0 °C for 15 min.
Triethylamine was added, concentrated and purified via silica gel chromatography
(hexanes:[ethyl acetate + 1% triethylamine], 10:1 to 2:1) furnishing readily separable

dissacharides 75, (80 mg) and 75 (13 mg) as a flaky white film (6.1:1, o:3, 71% total).

TLC R;0.64 (2:1 hexanes/ethyl acetate); FTIR (NaCl, film) 3420, 2953, 2911, 2876,
2105, 1751, 1675, 1496, 1457, 1413, 1375, 1240, 1160, 1098, 1005, 898, 865, 825, 732,
697 cm™; *H-NMR (600 MHz, CDCls)  9.71 (s, 1H), 7.98 — 7.92 (m, 1H), 7.59 — 7.54
(m, 1H), 7.53 — 7.48 (m, 1H), 7.42 — 7.26 (m, 27H), 6.64 (d, J= 8.5 Hz, 1H), 5.43 (t, J=
3.6 Hz, 1H), 5.29 (d, J = 12.4 Hz, 1H), 5.19 (d, J= 4.7 Hz, 1H), 5.10 (d, J = 12.4 Hz,
1H), 4.92 (d, J=11.0 Hz, 1H), 4.89 — 4.81 (m, 4H), 4.73 (dd, J=11.5, 3.0 Hz, 2H), 4.68
(d, J=11.0 Hz, 1H), 4.63 (dd, J=11.5, 5.3 Hz, 2H), 4.56 (d, J = 7.5 Hz, 1H), 4.52 (s,
2H), 4.48 (s, 1H), 4.43 (d, J= 7.3 Hz, 1H), 4.21 — 4.15 (m, 2H), 4.09 (dd, J=7.1, 4.7 Hz,
1H), 4.00 (dd, J= 3.0, 1.5 Hz, 1H), 3.96 — 3.90 (m, 3H), 3.88 — 3.70 (m, 8H), 3.67 — 3.51
(m, 8H), 3.51 — 3.45 (m, 2H), 3.39 (dd, J = 9.4, 2.5 Hz, 1H), 3.38 — 3.29 (m, 3H), 3.25
(dd, J = 8.6, 7.4 Hz, 1H), 3.22 — 3.16 (m, 1H), 3.13 (t, J = 11.0 Hz, 1H), 2.62 (dd, J =
13.4, 42 Hz, 1H), 2.33 (t, J = 13.2 Hz, 1H), 1.98 — 1.63 (m, 7H), 1.62 — 1.45 (m, 5H),
1.44 (s, 3H), 1.43 — 1.30 (m, 10H), 1.29 (s, 3H), 1.28 — 1.17 (m, 3H), 1.12 — 1.03 (m,
4H), 0.89 (s, 81H), 0.84 (s, 3H), 0.81 — 0.56 (m, 51H); **C-NMR (151 MHz, CDCl;) &
212.68, 178.34, 168.32, 144.58, 141.57, 138.70, 138.57, 138.19, 137.70, 137.13, 135.25,
133.16, 129.26, 128.52, 128.49, 128.46, 128.44, 128.38, 128.35, 128.31, 128.29, 128.27,

128.22, 128.14, 128.08, 128.05, 128.04, 127.99, 127.97, 127.95, 127.94, 127.91, 127.88,
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127.86, 127.85, 127.81, 127.76, 127.65, 127.57, 122.60, 110.03, 103.64, 102.61, 101.39,
100.82, 97.64, 86.47, 83.82, 82.01, 81.63, 79.21, 78.99, 78.79, 78.71, 78.32, 77.92, 76.76,
76.64, 76.44, 76.15, 75.90, 75.80, 75.65, 75.06, 74.75, 73.97, 73.53, 73.25, 72.76, 72.60,
72.50, 72.06, 71.38, 71.08, 69.00, 67.78, 66.83, 65.32, 63.77, 60.24, 59.21, 53.84, 49.36,
49.20, 47.17, 46.06, 41.87, 41.25, 39.70, 37.98, 36.02, 35.39, 34.66, 34.52, 34.09, 32.56,
32.21, 31.59, 31.46, 30.52, 29.06, 27.32, 26.25, 25.39, 25.31, 25.27, 24.16, 23.39, 22.66,
20.70, 20.26, 18.77, 17.91, 17.22, 15.95, 14.14, 12.27, 11.45, 7.56, 7.46, 7.25, 7.17, 7.14,
7.13, 6.98, 6.85, 6.79, 5.92, 5.63, 5.44, 5.37, 5.33, 5.25, 5.22, 4.95, 4.41; HRMS m/z

(ESI)Z Calcd for C163H266N4O31Na8i9 30507182, found 3050.7034.

BnO
TESO (e} TESO

TESO TESO

TESO\\Z//Z(/)TES

TESO

BnO
TESO (o} TESO

TESO TESO

TESO\\Z//Z(/)TES

TESO

(91): Hydrogen sulfide was bubbled via cannula through an ice-cooled solution of azide
7500 (45 mg, 0.0148 mmol, equiv) in pyridine/triethylamine (3.5:1, 4.5 mL) in a 50 mL
conical vial. After two min, vent needle and cannula were removed, and septum sealed
with Teflon tape and parafilm, then warmed to RT and stirred overnight. Hydrogen

sulfide was removed with a stream of nitrogen, then resulting orange solution was
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concentrated and purified via silica gel chromatography (hexanes:[ethyl acetate + 1%

triethylamine], 5:1 to 2:1) furnishing amine 91 (36 mg, 81 % yield).

TLC R:0.35 (5:1 benzene:ethyl acetate); FTIR (NaCl film) 3393, 3031, 2953, 2911,
2876, 1752, 1724, 1676, 1497, 1457, 1414, 1380, 1240, 1169, 1097, 1006, 909, 864, 826,
737, 697, 666, 602 cm™; *H-NMR (500 MHz, CDCl3) 6 9.70 (s, 1H), 7.31 (s, 30H), 6.60
(d, J= 8.5 Hz, 1H), 5.49 — 5.44 (m, OH), 5.44 — 5.39 (m, 1H), 5.33 — 5.25 (m, 2H), 5.10
(d, J=12.4 Hz, 1H), 4.94 —4.79 (m, 4H), 4.75 — 4.59 (m, SH), 4.60 — 4.51 (m, 4H), 4.48
(s, 1H), 4.42 (d, J="7.3 Hz, 1H), 4.18 (dt, J=7.6, 3.7 Hz, 2H), 4.10 (dd, J= 6.7, 3.7 Hz,
1H), 3.96 — 3.70 (m, 10H), 3.71 — 3.51 (m, 11H), 3.48 (td, J=9.8, 9.3, 5.0 Hz, 1H), 3.44
—3.27 (m, 5H), 3.25 (t, J= 8.0 Hz, 1H), 3.19 (t, J=10.3 Hz, 1H), 3.13 (t, J=11.0 Hz,
1H), 2.62 (dd, J=14.5, 3.9 Hz, 1H), 2.32 (t, J=13.1 Hz, 1H), 1.99 — 1.92 (m, 1H), 1.92
—1.85 (m, 1H), 1.83 — 1.74 (m, 2H), 1.73 — 1.47 (m, 7H), 1.40 (d, J=11.7 Hz, 1H), 1.37
(s, 6H), 1.35 (s, 2H), 1.30 (s, 6H), 1.29 (s, 6H), 1.28 — 1.15 (m, 2H), 1.13 — 1.02 (m, 3H),
1.03 — 0.85 (m, 98H), 0.84 (s, 3H), 0.83 — 0.52 (m, 61H); *C NMR (151 MHz, CDCL3) &
212.70, 178.33, 168.33, 144.82, 138.70, 138.55, 138.20, 138.08, 137.47, 135.24, 128.46,
128.43, 128.38, 128.31, 128.28, 128.13, 128.02, 127.96, 127.93, 127.80, 127.75, 127.70,
127.67, 127.58, 122.45, 109.77, 103.64, 102.58, 101.38, 100.82, 97.47, 86.42, 83.83,
82.56, 82.04, 79.38, 78.97, 78.79, 78.71, 78.15, 77.94, 76.59, 76.44, 76.21, 75.87, 75.80,
75.65, 75.07, 74.78, 74.46, 73.98, 73.39, 73.23, 72.60, 72.51, 71.38, 71.20, 71.08, 68.24,
68.10, 66.83, 65.32, 63.76, 60.25, 53.81, 49.31, 49.17, 48.77, 47.35, 45.93, 45.74, 41.88,
41.22, 39.73, 37.93, 36.00, 35.41, 33.97, 32.57, 32.06, 31.43, 30.50, 29.70, 27.46, 26.25,

25.57,25.37, 24.34, 23.42, 20.22, 18.18, 17.16, 15.94, 12.27, 7.56, 7.46, 7.25, 7.17, 7.14,
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7.13, 6.98, 6.85, 6.79, 5.92, 5.63, 5.44, 5.37, 5.33, 5.25, 5.22, 4.95, 4.41; HRMS (ESI)

m/z: Calcd for C163H269N20318i9 3002.7458 [M+H], found 3002.7354.

BnO o
TESO 0 TESY
TESO
TESO TESO
TESO\‘Z//Z(/)TES
TESO

BnO
TESO (o} TESO
TESO

TESO TESO

“Me 47
TES” Me  Me
TESO\\Z//Z(/)TES

TESO

(93): Isobutyl chloroformate was added to an ice-cooled solution of carboxylic acid 106
(21 mg, 0.064 mmol, 6 equiv) and triethylamine (15 pL, 0.107 mmol, 10 equiv) in
tetrahydrofuran (2 mL) and stirred for 4 hours, then transferred via cannula to an ice-
cooled solution of amine 86 (32 mg, 0.011 mmol, 1.0 equiv) in tetrahydrofuran (1 mL).
After 5 hr, suspension was diluted with saturated sodium bicarbonate and then extracted
with ethyl acetate (3 X 25 ml). Combined organics were washed with brine, dried over
sodium sulfate, concentrated, and purified with silica gel chromatography (hexanes:ethyl

acetate + 0.5% triethylamine, 10:1 to 1:1) to give amide mg, o yield).
0.5% triethylami 10:1 to 1:1 gi ide 93 (26 mg, 74 % yield

TLC Rr0.62 (2:1 hexanes:ethyl acetate); FTIR (NaCl film) 3610, 3584, 3032, 2954,
2878, 1745, 1725, 1680, 1549, 1499, 1457, 1415, 1381, 1242, 1168, 1099, 1009, 911,

865, 825, 733 cm™; 'H-NMR (600 MHz, CDCls-d) § 9.71 (s, 1H), 7.43 — 7.20 (m, 35H),
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6.54 (d, J=8.1 Hz, 1H), 5.45 (s, 1H), 5.32 (d, J = 3.4 Hz, 1H), 5.28 (d, J = 12.4 Hz, 1H),
5.12 - 5.06 (m, 3H), 4.90 (d, J= 11.0 Hz, 1H), 4.88 — 4.80 (m, 6H), 4.72 (d, J=11.7 Hz,
1H), 4.67 (d, 3= 11.0 Hz, 1H), 4.62 (d, J= 11.8 Hz, 1H), 4.56 (d, J = 7.4 Hz, 1H), 4.52
(d, J=11.9 Hz, 1H), 4.46 — 4.39 (m, 4H), 4.20 — 4.13 (m, 2H), 4.08 (dd, J= 6.5, 3.3 Hz,
1H), 3.95 — 3.88 (m, 4H), 3.87 — 3.69 (m, 8H), 3.65 (dd, J=9.1, 4.1 Hz, 1H), 3.63 — 3.52
(m, 7H), 3.51 — 3.45 (m, 3H), 3.43 — 3.31 (m, 5H), 3.31 — 3.27 (m, 1H), 3.25 (t, J= 8.1
Hz, 1H), 3.22 — 3.16 (m, 1H), 3.13 (t, J= 11.0 Hz, 1H), 2.66 (dd, J = 13.6, 4.4 Hz, 1H),
2.36 — 2.26 (m, 3H), 2.14 (t, J = 7.4 Hz, 2H), 1.98 — 1.85 (m, 3H), 1.85 — 1.75 (m, 3H),
1.74 — 1.50 (m, 14H), 1.49 (s, 4H), 1.42 — 1.33 (m, 6H), 1.12 — 1.04 (m, 4H), 1.04 — 0.81
(m, 110H), 0.81 — 0.54 (m, 69H); *C-NMR (151 MHz, CDCly) & 212.49, 178.25,
173.61, 172.87, 168.34, 145.03, 138.68, 138.57, 138.20, 137.81, 137.44, 136.11, 135.23,
128.65, 128.55, 128.51, 128.48, 128.44, 128.43, 128.40, 128.37, 128.35, 128.31, 128.28,
128.27, 128.23, 128.16, 128.15, 128.13, 128.09, 127.97, 127.94, 127.89, 127.85, 127.82,
127.80, 127.76, 127.73, 127.67, 127.65, 127.60, 127.58, 122.15, 109.74, 103.60, 102.51,
101.38, 100.83, 97.51, 86.38, 83.84, 82.08, 80.58, 78.79, 78.71, 78.02, 77.92, 76.68,
76.46, 76.43, 76.34, 75.87, 75.82, 75.79, 75.67, 75.06, 74.79, 74.74, 73.80, 73.48, 73.23,
72.59, 72.50, 71.38, 71.10, 71.05, 68.20, 67.65, 66.85, 66.05, 66.03, 65.33, 63.78, 60.25,
53.75, 49.23, 49.10, 47.39, 46.27, 45.87, 41.94, 41.05, 39.99, 39.81, 37.89, 37.01, 36.98,
36.62, 35.97, 35.39, 34.33, 34.31, 33.92, 33.17, 32.54, 31.98, 31.30, 30.47, 29.70, 29.54,
29.52, 29.48, 29.46, 29.43, 29.39, 29.38, 29.34, 29.28, 29.25, 29.22, 29.20, 29.16, 29.14,
29.11, 28.40, 27.53, 27.49, 26.26, 25.86, 25.80, 25.75, 25.66, 25.50, 25.31, 24.97, 24.94,
24.68, 24.38, 23.46, 23.35, 20.57, 20.20, 18.17, 17.19, 15.93, 14.41, 13.13, 12.16, 7.56,

7.46,7.42,7.26,7.25,7.22,7.16,7.14, 7.13, 7.10, 7.08, 7.06, 7.05, 6.98, 6.94, 6.90, 6.88,

111



6.85, 6.78, 5.92, 5.63, 5.43, 5.36, 5.32, 5.25, 5.23, 5.18, 5.17, 4.95, 4.92, 4.43, 4.41,

HRMS (ESI) m/z: Calcd for C182H294N2034NaSi9 [M+Na]+ 33269159, found 3326.9211.

BnO o
TESO O TESQ 0
TESO

TESO TESO o
TESO

TESO

(100): A solution of fully protected amide analogue (93) (10.2 mg, 0.003 mmol, 1.0
equiv) in tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was
charged with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (8
mg, 0.0042 mmol, 2.5 equiv). Reaction mixture was stirred under hydrogen pressure (50
psi) overnight, then filtered through a 0.45 pm polyvinylidene fluoride filter disk, washed
with methanol (5 mL), and concentrated. To the hydrogenation product was added a pre-
cooled (0 °C) solution of trifluoroacetic acid (3.0 mL, TFA/H,O 3:1). After vigorous
stirring for 60 min, the solution was concentrated in vacuo at 0 °C to give white solid
residue. This crude product was partially dissolved in a solution of aqueous acetonitrile
(5:1 water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18

column (5 pm, 10 X 250 mm) using a linear gradient of 15 * 46% acetonitrile (0.05%
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TFA) in water (0.05% TFA) to 14 min followed by another linear gradient from 46% to
90 % acetonitrile (0.05% TFA) in water (0.05% TFA) to 16 min at a flow rate of 5
mL/min. The fraction containing the major peak (tR = 14.72 min) was collected and

lyophilized to dryness to afford SQS-0-6-8-5 (105) (2.5 mg, 50% yield) as a white solid.

'H NMR (600 MHz, MeOD) & 9.34 (s, 1H), 5.30 — 5.26 (m, 1H), 5.14 (s, 1H), 4.71 (d, J
= 7.2 Hz, 3H), 4.49 (d, J= 7.7 Hz, 1H), 4.33 (t, J= 7.8 Hz, 2H), 4.21 (d, J= 4.3 Hz, 1H),
4.18 (s, 1H), 3.85 (s, 1H), 3.83 — 3.69 (m, 7H), 3.68 — 3.59 (m, 6H), 3.58 — 3.55 (m, 2H),
3.51 (t, J= 6.7 Hz, 2H), 3.48 — 3.35 (m, 10H), 2.92 (dd, J = 10.4, 3.4 Hz, OH), 2.21 (t, J =
7.4 Hz, 2H), 2.18 (t, J = 7.4 Hz, 2H), 2.16 — 2.13 (m, 1H), 1.91 — 1.71 (m, 5H), 1.71 —
1.47 (m, 10H), 1.40 (d, J = 9.9 Hz, 2H), 1.27 (s, 6H), 1.22 (d, J = 3.1 Hz, 3H), 1.07 (s,
3H), 1.05 (d, J = 6.2 Hz, 2H), 1.03 — 0.95 (m, 3H), 0.92 (s, 3H), 0.86 (s, 3H), 0.79 (s,
3H), 0.72 (s, 3H); HRMS (ESI) m/z Calcd for C76H;22N,03sNa [M+Na]" 1629.7777,

found 1629.7731.

BnO
TEsoTESO TES’ Me
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TESO Me o
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(74): Ethanolamine (29 uL, 0.478 mmol, 10 equiv) was added to an ice-cooled solution
of acyl chloride 66 (100 mg, 0.0478 mmol), 1 equiv) in dichloromethane (2 mL). After
10 minutes, reaction was warmed to room temperature, concentrated, and purified by
silica gel chromatography (hexanes:ethyl acetate, 4:1 to 2:1) to give ethanolamide 68 (89

mg, 88% yield).

TLC R 0.32 (2:1 hexanes/ethyl acetate); FTIR (NaCl, film) 3407 (br), 2953, 2911, 2877,
1754, 1725, 1656, 1632, 1518, 1459, 1414, 1378, 1239, 1171, 1103, 1005, 971, 899, 864,
825, 799, 738, 695, 668 cm’'; 'H-NMR (600 MHz, CDCl3) & 9.72 (s, 1H), 7.40 — 7.29
(m, 5H), 6.54 (t, J=5.5 Hz, 1H), 5.51 — 5.46 (m, 1H), 5.28 (d, J=12.4 Hz, 1H), 5.10 (d,
J=12.4 Hz, 1H), 4.56 (d, J= 7.4 Hz, 1H), 4.53 —4.50 (m, 1H), 4.43 (d, J=7.3 Hz, 1H),
4.17 (d, 3= 7.4 Hz, 1H), 3.95 — 3.89 (m, 2H), 3.88 — 3.77 (m, 4H), 3.75 (t, J= 9.3 Hz,
1H), 3.70 — 3.65 (m, 2H), 3.62 — 3.53 (m, 3H), 3.50 — 3.32 (m, 5H), 3.27 — 3.18 (m, 2H),
3.13 (t, J=10.9 Hz, 1H), 3.03 (t, J=4.9 Hz, 1H), 2.56 (dd, J=13.5, 4.1 Hz, 1H), 2.37 (t,
J=13.0 Hz, 1H), 2.11 — 2.03 (m, 1H), 1.92 (dd, J = 8.9, 3.6 Hz, 2H), 1.88 — 1.76 (m,
2H), 1.74 — 1.66 (m, 2H), 1.66 — 1.49 (m, 5H), 1.46 — 1.36 (m, 6H), 1.31 (s, 3H), 1.29 —
1.24 (m, 2H), 1.17 — 1.07 (m, 5H), 1.07 — 0.88 (m, 97H), 0.81 — 0.54 (m, 61H);
B3C-NMR (151 MHz, CDCI3) & 212.72, 179.86, 168.37, 144.93, 135.26, 128.45, 128.25,
128.12, 122.65, 103.68, 101.39, 100.83, 86.42, 78.79, 78.71, 76.44, 75.93, 75.89, 75.82,
75.80, 75.07, 72.60, 72.52, 71.37, 71.09, 66.84, 65.33, 62.93, 60.23, 53.79, 49.33, 49.08,
47.30, 45.95, 43.01, 41.88, 41.84, 39.65, 37.93, 36.02, 35.38, 34.07, 32.53, 31.81, 31.40,

30.53, 26.31, 25.36, 24.25, 23.42, 20.16, 16.72, 15.84, 12.26, 7.56, 7.47, 7.25, 7.16, 7.15,
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7.13, 6.98, 6.85, 6.78, 5.92, 5.65, 5.44, 5.37, 5.34, 5.26, 5.23, 5.01, 4.42; HRMS (ESI)

m/z: Calcd for C;19Ha09NO2NaSio (M+Na)" 2139.3189, found 2139.3206.

BnO
TESO o TESO
TESO
TESO TESO
TESO
TESO
BnO
TESO o TESO
TESO
TESO TESO
TESO
TESO

(74): Trifluoromethanesulfonic anhydride (5.2 pL, 0.041, 1.5 equiv) was added to a
solution of trisaccharide 73 (20 mg, 0.021 mmol, 1.00 equiv), phenyl sulfoxide (12.5 mg,
0.061 mmol, 3.0 equiv) and 2,4,6-tri-tertbutylpyridine (18 mg, 0.074 mmol, 3.6 equiv) in
dichloromethane (1 mL) at =78 °C. The reaction stirred in a cold bath at =78 °C for 5
min and then was transferred to a bath between -40 °C for 60 min. A solution of
ethanolamide 68 (84 mg, 0.040 mmol, 1.95 equiv) was added in dichloromethane (1.0
ml) via syringe. After 30 min, flask was transferred to an ice-bath and stirred for 15 min.
Triethylamine was added, concentrated and purified via silica gel chromatography
(hexanes:ethyl acetate, 10:1 to 2:1) furnishing B-glycoside 74 (55 mg, 87% yield) as a

colorless film.
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TLC R 0.67 (5:1 benzene/ethyl acetate); FTIR (NaCl, film) 3430, 2953, 2911, 2877,
2105, 1751, 1724, 1653, 1497, 1457, 1414, 1379, 1240, 1172, 1098, 1006, 910, 864, 826,
799, 737, 697, 666 cm™; '"H-NMR (600 MHz, CDCl3) & 9.71 (s, 1H), 7.39 — 7.22 (m,
30H), 6.36 (t, J= 5.5 Hz, 1H), 5.43 (t, J= 3.8 Hz, 1H), 5.38 (s, 1H), 5.27 (d, J=12.3 Hz,
1H), 5.10 (d, J= 12.4 Hz, 1H), 4.91 — 4.87 (m, 2H), 4.87 — 4.80 (m, 2H), 4.76 — 4.69 (m,
2H), 4.68 (d, J=11.1 Hz, 1H), 4.61 (d, J= 11.7 Hz, 1H), 4.58 — 4.52 (m, 4H), 4.51 (d, J
= 3.0 Hz, 1H), 4.43 (d, J = 7.2 Hz, 1H), 4.20 (d, J = 7.5 Hz, 2H), 4.15 (dd, J= 7.4, 5.5
Hz, 1H), 4.07 (d, J = 3.5 Hz, 1H), 4.04 (d, J = 5.6 Hz, 1H), 3.96 — 3.91 (m, 3H), 3.89 —
3.79 (m, 6H), 3.77 (t, J= 9.2 Hz, 1H), 3.69 (ddd, J = 10.8, 6.8, 4.7 Hz, 1H), 3.65 — 3.53
(m, 11H), 3.49 (ddd, J=10.4, 8.4, 5.1 Hz, 1H), 3.40 (dd, J = 9.4, 2.5 Hz, 1H), 3.38 —
3.17 (m, 7H), 3.14 (t, J=11.0 Hz, 1H), 2.52 (dd, J = 13.7, 4.5 Hz, 1H), 2.34 (t, J=13.0
Hz, 1H), 2.02 — 1.51 (m, 12H), 1.42 — 1.38 (m, 1H), 1.37 (s, 3H), 1.34 (s, 3H), 1.31 (s,
3H), 1.22 (d, J = 6.0 Hz, 3H), 1.13 — 1.03 (m, 4H), 1.03 — 0.90 (m, 82H), 0.89 (s, 3H),
0.87 (s, 3H), 0.81 — 0.56 (m, 56H); *C-NMR (151 MHz, CDCls) & 212.60, 177.85,
168.36, 144.49, 138.81, 138.73, 138.23, 137.41, 136.89, 135.20, 128.58, 128.55, 128.47,
128.41, 128.32, 128.26, 128.24, 128.21, 128.18, 128.16, 128.07, 127.95, 127.88, 127.82,
127.77, 127.48, 122.56, 109.12, 103.64, 102.86, 102.06, 101.38, 100.82, 98.24, 86.43,
83.87, 81.87, 81.39, 78.81, 78.71, 78.25, 78.12, 77.95, 76.45, 75.99, 75.97, 75.92, 75.81,
75.49, 75.07, 74.87, 74.62, 73.71, 73.21, 72.61, 72.51, 71.83, 71.38, 71.09, 68.76, 68.44,
66.87, 65.33, 64.56, 63.81, 60.24, 58.36, 53.82, 49.25, 49.12, 47.22, 46.06, 41.85, 41.73,
39.94, 39.57, 37.97, 36.06, 35.95, 35.39, 34.66, 34.53, 34.07, 32.59, 31.98, 31.59, 31.42,
30.48, 29.06, 27.80, 26.91, 26.49, 26.30, 25.35, 25.27, 24.38, 23.35, 22.66, 20.70, 20.21,

18.77, 17.62, 16.94, 15.75, 14.14, 12.23, 11.45, 7.56, 7.46, 7.25, 7.17, 7.16, 7.13, 7.09,

116



6.99, 6.89, 6.85, 6.78, 5.92, 5.64, 5.44, 5.37, 5.34, 5.26, 5.23, 5.20, 5.18, 5.14, 5.06, 5.01,
441, HRMS (ESI) m/z. Caled for C165H270N4032NaSi9 (M+Na)+ 30947445, found

3094.7344.

BnO
TESO (e} TESO
TES

TESO TESO
TESO

TESO
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TESO TESO

TESO OTES

TESO
(91): An excess of hydrogen sulfide was bubbled through an ice-cooled solution of azide
74 (35 mg, 0.011, 1 equiv) in pyridine and triethylamine (3:1, 2 mL) for two min via steel
needle, then needle removed from septum. After stirring for 2 min, ice-bath was
removed and warmed to ambient temperature. After 4.5 hr, the dark green solution was
purged of excess hydrogen sulfide, then volatiles removed with a stream of nitrogen. The
resulting light-orange solid was purified by silica gel chromatography (hexanes:ethyl

acetate + 0.5% triethylamine, 8:1 to 1:1) to give amine 91 (27 mg, 78% yield).

TLC R:0.44 (3% methanol/dichloromethane); FTIR (NaCl film) 3422, 3031, 2953,
2910, 2876, 1751, 1734, 1719, 1653, 1648, 1507, 1496, 1465, 1457, 1454, 1419, 1413,

1379, 1240, 1097, 1008, 908, 863, 825, 734, 697, 668 cm™'; "H-NMR (600 MHz, CDCl;)
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8 9.70 (s, 1H), 7.39 — 7.22 (m, 30H), 6.31 (t, J = 5.5 Hz, 1H), 5.42 — 5.36 (m, 2H), 5.27
(d, J=12.4 Hz, 1H), 5.09 (d, J= 12.4 Hz, 1H), 4.91 — 4.87 (m, 2H), 4.83 (q, J=11.1 Hz,
2H), 4.73 — 4.64 (m, 3H), 4.61 (d, J=11.7 Hz, 1H), 4.58 — 4.54 (m, 3H), 4.54 — 4.51 (m,
1H), 4.49 (d, J= 11.6 Hz, 1H), 4.42 (d, J= 7.2 Hz, 1H), 4.23 (d, J= 7.7 Hz, 1H), 4.20 —
4.14 (m, 2H), 4.07 (d, J = 5.6 Hz, 1H), 3.96 — 3.90 (m, 3H), 3.88 — 3.78 (m, 5H), 3.78 —
3.67 (m, 4H), 3.67 — 3.63 (m, 1H), 3.63 — 3.53 (m, 8H), 3.51 — 3.43 (m, 2H), 3.43 — 3.29
(m, 6H), 3.28 — 3.23 (m, 2H), 3.22 — 3.17 (m, 1H), 3.13 (t, J=10.9 Hz, 1H), 2.52 (dd, J=
13.3, 2.9 Hz, 1H), 2.33 (t, J = 13.0 Hz, 1H), 2.02 — 1.94 (m, 1H), 1.89 — 1.76 (m, 4H),
1.72 — 1.54 (m, 3H), 1.48 — 1.38 (m, 2H), 1.38 — 1.32 (m, 8H), 1.29 (s, 3H), 1.21 (d, J =
6.0 Hz, 3H), 1.10 — 1.02 (m, 4H), 1.02 — 0.90 (m, 83H), 0.89 — 0.86 (m, 9H), 0.81 — 0.55
(m, 58H); ®C-NMR (151 MHz, CDCly) & 212.57, 177.70, 168.37, 144.75, 138.81,
138.70, 138.23, 137.78, 137.34, 135.20, 131.04, 129.31, 128.53, 128.48, 128.46, 128.41,
128.34, 128.30, 128.26, 128.25, 128.18, 128.15, 128.13, 128.05, 128.03, 128.00, 127.97,
127.94, 127.88, 127.86, 127.84, 127.81, 127.76, 127.70, 127.51, 127.48, 124.77, 122.23,
109.10, 103.65, 103.09, 102.06, 101.37, 100.82, 98.07, 86.39, 83.86, 82.07, 81.86, 78.78,
78.70, 78.25, 78.07, 77.96, 76.44, 76.06, 75.93, 75.88, 75.82, 75.80, 75.49, 75.06, 74.65,
74.58, 73.59, 73.35, 73.21, 72.60, 72.51, 71.36, 71.10, 71.01, 69.35, 68.65, 66.88, 65.32,
64.51, 63.80, 60.23, 53.79, 49.27, 49.00, 48.74, 47.18, 45.97, 39.89, 39.56, 37.94, 35.95,
35.35, 34.03, 32.58, 31.91, 31.49, 30.49, 27.82, 26.50, 26.29, 25.34, 24.34, 23.44, 20.18,
17.53, 16.81, 15.92, 12.23, 7.55, 7.46, 7.25, 7.17, 7.16, 7.13, 6.98, 6.85, 6.79, 5.92, 5.63,
5.44, 537, 5.33, 5.25, 5.22, 5.01, 4.41; HRMS (ESI) m/z: Calcd for C65H273N503,Si0

(M+H) 3046.7720, found 3046.7788.
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TESO
(98): Isobutyl chloroformate (6.1 puL, 0.047 mmol, 3.0 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (30 mg, 0.094 mmol, 6 equiv) and triethylamine (22 uL,
0.156 mmol, 10 equiv) in tetrahydrofuran (3.0 mL) and stirred for 4 hours, then
transferred via cannula to an ice-cooled solution of amine 91 (42 mg, 0.013 mmol, 1
equiv) in tetrahydrofuran (2.0 mL). After 24 hr, suspension was diluted with saturated
sodium bicarbonate and then extracted with ethyl acetate (3 X 25 ml). Combined
organics were washed with brine, dried over sodium sulfate, concentrated, and purified
with silica gel chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1)

to give ethanolamide 98 (44 mg, 84 % yield) as a colorless film.

TLC R:0.37 (3:1 hexanes/ethyl acetate); FTIR (NaCl film) 3582, 3417, 3090, 3063,
3030, 2952, 2911, 2876, 1738, 1727, 1657, 1547, 1512, 1498, 1454, 1413, 1379, 1240,
1166, 1094, 1069, 1007, 910, 863, 823, 799, 731, 696 cm™'; *H-NMR (600 MHz, CDCls)

§9.70 (s, 1H), 7.39 — 7.24 (m, 35H), 6.16 (t, J = 5.6 Hz, 1H), 5.45 (d, J = 10.0 Hz, 1H),
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5.40 (s, 1H), 5.31 (t, J=3.7 Hz, 1H), 5.25 (d, J= 12.4 Hz, 1H), 5.14 — 5.07 (m, 3H), 4.91
—4.79 (m, 5H), 4.74 (d, J=11.4 Hz, 1H), 4.71 (d, J=11.7 Hz, 1H), 4.67 (d, J=11.0 Hz,
1H), 4.61 (d, J=11.7 Hz, 1H), 4.56 (d, J = 7.4 Hz, 1H), 4.54 — 4.46 (m, 3H), 4.45 — 4.39
(m, 2H), 4.25 (d, J = 7.5 Hz, 1H), 4.20 — 4.14 (m, 2H), 4.07 (d, J = 5.6 Hz, 1H), 3.95 —
3.89 (m, 3H), 3.88 — 3.78 (m, 5H), 3.75 (t, J= 9.3 Hz, 1H), 3.72 — 3.44 (m, 15H), 3.43 —
3.28 (m, 5H), 3.25 (t, J = 8.0 Hz, 1H), 3.23 — 3.16 (m, 2H), 3.13 (t, J = 10.9 Hz, 1H),
249 (dd, J=13.1, 4.6 Hz, 1H), 2.37 — 2.29 (m, 3H), 2.17 (tt, J= 11.2, 5.7 Hz, 2H), 1.95
(dt, J=14.5, 3.5 Hz, 1H), 1.85 — 1.75 (m, 4H), 1.69 — 1.52 (m, 8H), 1.48 — 1.42 (m, 3H),
1.38 — 1.30 (m, 8H), 1.29 (s, 3H), 1.28 — 1.23 (m, 6H), 1.21 (d, J= 6.2 Hz, 7H), 1.19 —
1.15 (m, 2H), 1.10 — 1.01 (m, 4H), 1.01 — 0.89 (m, 85H), 0.89 — 0.84 (m, 9H), 0.81 — 0.54
(m, 60H); *C-NMR (151 MHz, CDCl3) & 212.60, 177.74, 173.67, 173.33, 168.38,
144.94, 138.80, 138.65, 138.21, 137.58, 137.40, 136.12, 135.19, 128.52, 128.48, 128.43,
128.41, 128.31, 128.27, 128.25, 128.15, 128.13, 128.10, 128.03, 127.87, 127.84, 127.81,
127.77, 127.76, 127.73, 127.56, 127.48, 122.05, 109.09, 103.63, 102.64, 102.07, 101.37,
100.82, 98.08, 86.37, 83.85, 81.85, 79.51, 78.78, 78.70, 78.17, 78.04, 77.97, 76.43, 75.94,
75.92, 75.85, 75.80, 75.50, 75.06, 74.83, 74.67, 73.66, 73.21, 72.97, 72.59, 72.50, 71.36,
71.12, 70.85, 68.98, 68.15, 66.88, 66.04, 65.32, 64.56, 63.82, 60.22, 53.76, 49.25, 48.93,
47.13, 46.13, 45.94, 41.83, 41.76, 39.53, 39.49, 37.91, 36.96, 36.62, 35.96, 35.26, 34.33,
34.04, 32.56, 31.83, 31.49, 30.49, 29.44, 29.40, 29.36, 29.23, 29.14, 27.79, 26.48, 26.31,
25.92, 25.32, 24.96, 24.68, 24.41, 23.39, 23.35, 20.15, 17.42, 16.75, 15.85, 12.22, 7.56,
7.46,7.24,7.16,7.16, 7.13, 6.98, 6.85, 6.79, 5.91, 5.63, 5.43, 5.37, 5.33, 5.25, 5.22, 5.01,
441; HRMS (ESI) m/zz Calcd for Cig4Hp9sN,O35SigNa [M+23] 3379.9421, found

3370.9590.
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HO
(105): A solution of fully protected B-ethanolamide analogue (98) (25.0 mg, 0.008 mmol,
1.0 equiv) in tetrahydrofuran (5 mL) and ethanol (5 mL) in a 25 mL round bottom flask
was charged with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W
(17 mg, 0.016 mmol, 2.2 equiv). Reaction mixture was stirred under hydrogen pressure
(50 psi) overnight, then filtered through a 0.45 um polyvinylidene fluoride filter disk,
washed with methanol (5 mL), and concentrated. To the hydrogenation product was
added a pre-cooled (0 °C) solution of trifluoroacetic acid (5.0 mL, TFA/H,0 3:1). After
vigorous stirring for 60 min, the solution was concentrated in vacuo at 0 °C to give white
solid residue. This crude product was partially dissolved in a solution of aqueous
acetonitrile (5:1 water:acetonitrile) and purified by RP-HPLC on an XBridge Prep

BEH300 C18 column (5 pum, 10 X250 mm) using a linear gradient of 10 < 49%

acetonitrile (0.05% TFA) in water (0.05% TFA) over 18 min at a flow rate of 5 mL/min.
The fraction containing the major peak (tR = 16.42 min) was collected and lyophilized to

dryness to afford SQS-0-4-5-5 (105) (5.5 mg, 45% yield) as a white solid.
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'H NMR (600 MHz, D,0/CD;CN) § 9.30 (s, 1H), 6.98 (d, J = 9.6 Hz, 1H), 6.80 (t, J =
5.2 Hz, 1H), 5.41 (t, J = 3.8 Hz, 1H), 4.86 (d, J = 1.8 Hz, 1H), 4.60 (d, J = 7.8 Hz, 1H),
447 (d, J=7.8 Hz, 1H), 4.44 (d, J= 7.8 Hz, 1H), 4.35 (d, J = 7.8 Hz, 1H), 4.26 (d, J =
7.8 Hz, 1H), 3.86 — 3.67 (m, 10H), 3.65 (dd, J = 11.1, 7.8 Hz, 2H), 3.61 — 3.50 (m, 4H),
3.50 — 3.37 (m, 8H), 3.34 — 3.18 (m, SH), 3.18 — 3.07 (m, 5H), 2.69 (dd, J = 13.1, 2.6 Hz,
1H), 2.29 — 2.12 (m, 5H), 1.86 — 1.74 (m, 4H), 1.72 — 1.56 (m, 4H), 1.53 — 1.35 (m, 9H),
1.24 (s, 4H), 1.12 (d, J = 6.2 Hz, 3H), 1.03 (s, 3H), 0.87 (s, 3H), 0.86 (s, 3H), 0.80 (s,
3H), 0.65 (s, 3H); HRMS (ESI) mVz: Caled for CrgH26N2035SioNa [M+23] 1673.8039,

found 1673.8019.
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TESO
(67): Diphenylphosphoryl azide (24 ul, 0.116 mmol, 1.5 eq) was added to a solution of
65 (161 mg, 0.0776 mmol, 1 equiv) and triethylamine (19 ul, 0.136 mmol, 1.75 eq) in
benzene (8 ml) in a vessel fitted with a water-cooled condenser, then submerged in a 90
C oil bath. After 30 min, additional portions of triethylamine (86 pl, 0.62 mmol, 8 equiv)
and diphenylphosphoryl azide (80 ul, 0.387 mmol, 5 equiv) were added sequentially.

After 20 min, reaction was cooled to room temperature, concentrated, and purified by
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silica gel chromatography (hexanes/ethyl acetate, 40:1 to 10:1) to give isocyanate 67 (127

mg, 79% yield).

TLC R 0.41 (20:1 hexanes/ethyl acetate); FTIR (NaCl, film) 2953, 2912, 2876, 2248
(NCO st), 1754, 1724, 1458, 1413, 1377, 1239, 1171, 1101, 1006, 971, 908, 864, 825,
801, 736, 695 cm™'; 'H-NMR (500 MHz, CDCls) & 9.71 (s, 1H), 7.38 — 7.28 (m, 5H),
5.37 (s, 1H), 5.28 (d, J=12.4 Hz, 1H), 5.10 (d, J = 12.4 Hz, 1H), 4.55 (d, J = 7.4 Hz,
1H), 4.42 (d, J="7.3 Hz, 1H), 4.18 (d, J= 7.3 Hz, 1H), 3.96 — 3.72 (m, 8H), 3.63 — 3.54
(m, 3H), 3.51 — 3.45 (m, 1H), 3.42 — 3.31 (m, 3H), 3.28 — 3.22 (m, 1H), 3.13 (t, J=10.9
Hz, 1H), 2.51 — 2.43 (m, 1H), 2.22 (t, J = 13.6 Hz, 1H), 2.07 (m, 1H), 1.99 — 1.55 (m,
9H), 1.53 (s, 2H), 1.52 — 1.35 (m, 3H), 1.33 (s, 3H), 1.32 (s, 3H), 1.23 (m, 6H), 0.93 (m,
103H), 0.81 — 0.54 (m, 60H); *C-NMR (151 MHz, CDCls) & 212.92, 168.33, 142.29,
135.26, 128.52, 128.49, 128.46, 128.34, 128.28, 128.25, 128.23, 128.21, 128.19, 128.19,
128.13, 123.76, 122.06, 103.68, 101.40, 100.83, 86.53, 78.81, 78.71, 77.45, 76.44, 75.91,
75.81, 75.08, 72.61, 72.52, 71.38, 71.08, 66.87, 66.84, 65.33, 62.11, 62.08, 60.22, 53.84,
49.44, 48.29, 47.09, 46.16, 41.34, 41.32, 39.77, 39.63, 37.91, 37.18, 37.14, 36.38, 36.11,
33.70, 32.45, 32.40, 32.38, 32.36, 30.63, 30.61, 26.51, 26.44, 25.37, 24.30, 24.27, 23.42,
20.26,17.04, 17.01, 15.78, 12.30, 7.57, 7.47, 7.38, 7.28, 7.25, 7.23, 7.22, 7.16, 7.14, 7.11,
7.08, 7.05, 7.04, 7.03, 6.99, 6.95, 6.94, 6.91, 6.85, 6.83, 6.81, 6.79, 6.77, 5.93, 5.65, 5.48,
5.44, 5.41, 5.37, 5.35, 5.30, 5.28, 5.26, 5.23, 5.19, 4.94, 4.88, 4.86, 4.42, 4.38; HRMS

(EST) m/z: Caled for C10sHa03NOsNaSiy (M+Na)™ 2093.2771, found 2093.2708.
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(820/B): Sodium hydride (60% dispersion in mineral oil, 4.3 mg, 0.108 mmol, 3 equiv)
was added to a solution of hemiacetal (35 mg, 0.036 mmol, 1 equiv) in tetrahydrofuran
(0.5 mL). After 80 min, isocyanate was added in 0.5 mL tetrahydrofuran. After three
hours, suspension was diluted with concentrated ammonium chloride, and extracted with
ethyl acetate (3 X 25 mL). Combined organics were washed with brine and dried over
sodium sulfate, decanted, concentrated, and purified via silica gel chromatography
(hexanes/ethyl acetate, 20:1 to 4:1) to give easily separable glycosyl carbamates (57 mg

B-carbamate and 29 mg o-carbamate, total yield 79%).

o-product

TLC R0.60 (4:1 hexanes/ethyl acetate); FTIR (NaCl, film) 2953, 2877, 2108, 1745,
1456, 1379, 1240, 1096, 1008, 733, 665 cm™; *H-NMR (600 MHz, CDCl3) & 9.69 (s,
1H), 7.41 — 7.26 (m, 31H), 5.97 (d, J = 3.8 Hz, 1H), 5.37 (t, J=3.6 Hz, 1H), 5.31 — 5.26
(m, 2H), 5.10 (d, J=12.4 Hz, 1H), 4.88 (d, J=11.0 Hz, 1H), 4.85 —4.76 (m, 3H), 4.74 —

4.67 (m, 2H), 4.66 — 4.58 (m, 3H), 4.43 (d, J = 7.2 Hz, 1H), 4.36 (s, 1H), 4.28 — 4.24 (m,
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1H), 4.21 — 4.15 (m, 2H), 4.15 — 4.09 (m, 2H), 4.07 (d, J = 5.8 Hz, 1H), 3.99 — 3.89 (m,
4H), 3.89 — 3.73 (m, 6H), 3.65 — 3.51 (m, 9H), 3.50 — 3.44 (m, 1H), 3.40 (dd, J=9.4, 2.5
Hz, 1H), 3.38 — 3.33 (m, 2H), 3.30 (t, J = 7.9 Hz, 1H), 3.25 (dd, J = 8.6, 7.4 Hz, 1H),
3.19(dd,J=11.7, 8.9 Hz, 1H), 3.13 (t, J=10.9 Hz, 1H), 2.53 (dd, J=14.4, 4.4 Hz, 1H),
2.28 (t, J = 13.4 Hz, 1H), 2.21 — 2.14 (m, 1H), 1.94 — 1.48 (m, 13H), 1.39 — 1.19 (m,
15H), 1.15 — 0.82 (m, 101H), 0.82 — 0.51 (m, 61H); *C-NMR (151 MHz, CDCl;) &
212.17, 168.37, 151.39, 142.42, 138.80, 138.46, 138.23, 137.57, 137.47, 135.23, 128.48,
128.45, 128.42, 128.40, 128.35, 128.29, 128.26, 128.25, 128.23, 128.19, 128.15, 128.12,
128.09, 128.01, 128.00, 127.91, 127.89, 127.86, 127.74, 127.61, 127.59, 127.53, 127.49,
127.46, 124.22, 109.09, 103.52, 102.47, 101.36, 100.82, 99.01, 91.59, 86.14, 83.76,
81.63, 78.77, 78.71, 78.33, 78.22, 77.92, 77.61, 76.44, 76.33, 75.91, 75.82, 75.79, 75.48,
75.05, 74.52, 73.92, 73.83, 73.10, 72.59, 72.48, 72.18, 71.39, 71.10, 68.85, 68.29, 66.85,
65.62, 65.33, 63.63, 60.28, 60.14, 56.04, 53.74, 49.08, 46.67, 45.96, 44.57, 41.06, 39.67,
37.76, 36.31, 35.94, 33.26, 32.49, 32.14, 31.93, 31.92, 30.65, 29.70, 27.66, 26.56, 26.15,
25.28, 24.40, 23.38, 20.16, 17.45, 16.76, 15.72, 12.04, 7.56, 7.46, 7.25, 7.19, 7.16, 7.13,
7.10, 7.07, 6.98, 6.85, 6.79, 5.92, 5.63, 5.44, 5.42, 5.36, 5.33, 5.30, 5.28, 5.25, 5.22, 4.88,
441; HRMS (ESI) m/z Calcd for Ci3Ha66N403,NaSiy [M+Na] 3066.7132, found
3066.6929.

B-product

TLC R 0.42 (4:1 hexanes/ethyl acetate); FTIR (NaCl, film) 3422, 2953, 2877, 2107,
1745, 1497, 1456, 1378, 1240, 1096, 1007, 909, 863, 825, 730, 697, 666 cm™; *H NMR
(500 MHz, CDCl3) 6 9.70 (s, 1H), 7.40 — 7.27 (m, 30H), 5.35 (s, 1H), 5.34 — 5.32 (m,

1H), 5.29 (d, J = 2.0 Hz, 1H), 5.27 (d, J = 6.3 Hz, 1H), 5.10 (d, J = 12.4 Hz, 1H), 4.90 —
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4.81 (m, 4H), 4.77 — 4.69 (m, 3H), 4.65 — 4.60 (m, 3H), 4.57 — 4.48 (m, 4H), 4.42 (d, J =
7.2 Hz, 1H), 4.18 (d, J= 7.3 Hz, 1H), 4.11 — 4.06 (m, 2H), 4.04 (d, J= 5.7 Hz, 1H), 3.96
—3.72 (m, 9H), 3.71 — 3.52 (m, 11H), 3.52 — 3.43 (m, 1H), 3.42 — 3.31 (m, 3H), 3.26 (q, J
= 7.6 Hz, 2H), 3.22 — 3.16 (m, 1H), 3.13 (t, J = 11.0 Hz, 1H), 2.52 — 2.45 (m, 1H), 2.33
(t, J=13.7 Hz, 1H), 2.02 (d, J= 14.2 Hz, 1H), 1.93 — 1.73 (m, 4H), 1.74 — 1.65 (m, 2H),
1.64 — 1.56 (m, 1H), 1.52 — 1.51 (m, 1H), 1.49 (s, 3H), 1.47 — 1.33 (m, 3H), 1.31 (d, J =
2.5 Hz, 6H), 1.28 — 1.23 (m, 4H), 1.10 (d, J = 13.8 Hz, 2H), 1.05 — 0.87 (m, 89H), 0.85
(s, 3H), 0.79 (s, 3H), 0.76 — 0.52 (m, 53H); °C NMR (151 MHz, CDCls) & 212.76,
168.32, 151.95, 141.94, 138.80, 138.58, 138.23, 137.62, 136.81, 135.24, 128.55, 128.49,
128.45, 128.42, 128.29, 128.26, 128.19, 128.13, 127.98, 127.96, 127.93, 127.91, 127.77,
127.74, 127.53, 127.49, 124.99, 109.02, 103.65, 102.34, 101.39, 100.82, 98.50, 93.20,
86.46, 83.96, 82.45, 81.63, 78.80, 78.71, 78.14, 78.12, 78.00, 76.43, 75.99, 75.90, 75.80,
75.63, 75.06, 74.93, 74.09, 73.72, 73.21, 72.60, 72.50, 72.05, 71.92, 71.89, 71.37, 71.07,
68.10, 66.83, 65.32, 64.44, 63.83, 60.21, 58.27, 55.96, 53.83, 49.33, 47.32, 46.59, 46.06,
41.20, 39.63, 37.91, 36.12, 36.01, 33.17, 32.48, 32.24, 32.08, 30.54, 29.70, 27.79, 26.45,
26.41, 25.34, 24.56, 23.50, 20.20, 17.97, 16.90, 15.80, 12.26, 7.56, 7.46, 7.24, 7.16, 7.13,
7.06, 6.98, 6.85, 6.79, 5.92, 5.64, 5.43, 5.36, 5.33, 5.25, 5.22, 4.92, 4.87, 441; HRMS

(ESI) m/z: Calcd for Cy43H266N403,NaSio [M+Na] 3066.7132, found 3066.7073.

126



BnO
TESO N QTS OTESO
RN — Me OI
TESD TESO Tes e
TESO\Z//Z(/)TES

TESO l

BnO
TESO QTS OTESO
RN — Me Ol
TESD TESO Tes e
TESO\\;//ZOTES

TESO

(87B): An excess of hydrogen sulfide was bubbled through an ice-cooled solution of
azide 82f (17 mg, 0.006 mmol, 1 eq) in pyridine and triethylamine (3.5:1, 4.5 mL) for
two min via steel needle, then needle removed from septum. After stirring for 2 min, ice-
bath was removed and warmed to ambient temperature. After 7 hr, the dark green
solution was purged of excess hydrogen sulfide, then volatiles removed with a stream of
nitrogen. The resulting light-orange solid was purified by silica gel chromatography
(hexanes:ethyl acetate + 0.5% triethylamine, 8:1 to 1:1) to give amine (87B) (14 mg, 83%

yield).

TLC R 0.42 (hexanes:ethyl acetate, 2:1 + 0.5% triethylamine); FTIR (NaCl, film) 3425,
3066, 3033, 2955, 2913, 2878, 1741, 1498, 1458, 1415, 1382, 1314, 1242, 1098, 904,
865, 827, 735, 699, 667 cm™; 'H NMR (500 MHz, CDCls) & 9.70 (s, 1H), 7.41 — 7.27
(m, 30H), 5.39 — 5.30 (m, 3H), 5.28 (d, J=12.4 Hz, 1H), 5.10 (d, J=12.4 Hz, 1H), 4.92
—4.80 (m, 4H), 4.77 (s, 1H), 4.72 (d, J=11.7 Hz, 1H), 4.68 — 4.59 (m, 5H), 4.59 — 4.46

(m, 4H), 4.43 (d, J=7.2 Hz, 1H), 4.18 (d, J = 7.3 Hz, 1H), 4.13 — 4.06 (m, 2H), 3.97 —
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3.87 (m, 4H), 3.87 — 3.45 (m, 20H), 3.42 — 3.31 (m, 4H), 3.26 (dt, J=11.1, 8.0 Hz, 2H),
3.22 —3.16 (m, 1H), 3.13 (t, J = 10.9 Hz, 1H), 2.54 — 2.46 (m, 1H), 2.33 (dd, J = 15.2,
11.4 Hz, 1H), 2.02 (dd, J = 13.6, 2.4 Hz, 1H), 1.94 — 1.75 (m, 4H), 1.75 — 1.53 (m, 5H),
1.48 — 1.34 (m, 6H), 1.28 — 1.24 (m, 4H), 1.12 — 0.86 (m, 104H), 0.85 (s, 4H), 0.79 (s,
4H), 0.78 — 0.53 (m, 60H); *C NMR (151 MHz, CDCl;) & 212.78, 168.32, 152.02,
142.07, 138.80, 138.55, 138.24, 138.01, 137.35, 135.24, 128.49, 128.45, 128.42, 128.41,
128.30, 128.27, 128.12, 128.02, 127.98, 127.94, 127.93, 127.82, 127.76, 127.74, 127.53,
127.50, 124.90, 109.00, 103.66, 102.31, 101.38, 100.81, 98.37, 93.52, 86.48, 83.96,
82.45, 82.37, 78.80, 78.70, 78.11, 77.99, 76.43, 76.07, 75.89, 75.79, 75.63, 75.06, 74.95,
74.15, 73.99, 73.69, 73.21, 72.59, 72.50, 72.02, 71.37, 71.07, 71.03, 68.82, 66.83, 65.31,
64.37, 63.83, 60.21, 55.86, 53.81, 49.33, 48.50, 47.33, 46.58, 46.03, 41.19, 39.81, 39.62,
37.89, 36.11, 36.00, 33.16, 32.66, 32.48, 32.27, 32.02, 31.93, 30.90, 30.55, 29.70, 29.37,
27.82, 26.64, 26.46, 26.41, 25.34, 24.54, 24.45,23.50, 22.70, 20.18, 17.97, 17.01, 16.88,
15.78, 14.14, 12.25, 7.56, 7.46, 7.24, 7.16, 7.13, 7.05, 6.98, 6.85, 6.79, 5.91, 5.63, 5.43,
5.36, 5.33, 5.25, 5.22, 4.95, 4.86, 4.40; HRMS (ESI) m/z Calcd for C63Ha60N203:Si0

[M+H]" 3018.7407, found 3018.7476.
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(94B): Isobutyl chloroformate (1.2 uL, 0.009 mmol, 4 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (4.8 mg, 0.015 mmol, 6 equiv) and triethylamine (2.8 uL,
0.020 mmol, 8 equiv) in tetrahydrofuran (2.5 mL) and stirred for 3 hours, then transferred
via cannula to an ice-cooled solution of amine 878 (7.5 mg, 0.002 mmol, 1 equiv) in
tetrahydrofuran (1.5 mL). After 1 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 X 25 ml). Combined organics were
washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give amide

94B (6.0 mg, 71 % yield) as a colorless film.

TLC R 0.66 (hexanes:ethyl acetate, 2:1 + 0.5% triethylamine); FTIR (NaCl, film) 3424,
2952, 2876, 1744, 1679, 1496, 1454, 1379, 1240, 1096, 1008, 825, 733, 696, 665 cm;
'H NMR (500 MHz, CDCls) & 9.70 (s, 1H), 7.38 — 7.27 (m, 35H), 5.43 — 5.32 (m, 4H),
5.28 (d, J=12.4 Hz, 1H), 5.13 — 5.07 (m, 4H), 4.92 — 4.86 (m, 3H), 4.86 — 4.81 (m, 3H),
4.76 (s, 2H), 4.72 (d, J=11.8 Hz, 1H), 4.64 — 4.59 (m, 3H), 4.57 — 4.52 (m, 2H), 4.47 —
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4.39 (m, 3H), 4.18 (d, J = 7.3 Hz, 1H), 4.12 — 4.06 (m, 2H), 3.96 — 3.90 (m, 3H), 3.89 —
3.72 (m, 7H), 3.68 — 3.44 (m, 14H), 3.39 (dd, J= 9.5, 2.5 Hz, 1H), 3.38 — 3.32 (m, 2H),
3.26 (dt, J = 8.8, 7.3 Hz, 2H), 3.19 (dd, J = 11.6, 9.0 Hz, 1H), 3.13 (t, J = 10.9 Hz, 1H),
2.56 — 2.49 (m, 1H), 2.39 — 2.29 (m, 4H), 2.22 — 2.08 (m, 2H), 2.08 — 1.99 (m, 1H), 1.92
— 1.75 (m, 4H), 1.74 — 1.57 (m, 8H), 1.55 (s, 5H), 1.35 (s, 5H), 1.33 (s, 3H), 1.31 — 1.17
(m, 22H), 1.14 — 1.03 (m, 4H), 1.02 — 0.88 (m, 106H), 0.85 (s, 3H), 0.80 (s, 3H), 0.74 (s,
65H); °C NMR (151 MHz, CDCls) & 212.63, 173.67, 173.21, 168.33, 151.68, 142.11,
138.78, 138.51, 138.24, 137.83, 137.38, 136.11, 135.24, 128.52, 128.45, 128.42, 128.39,
128.30, 128.29, 128.27, 128.15, 128.14, 128.12, 127.98, 127.94, 127.83, 127.77, 127.73,
127.54, 124.83, 109.02, 103.67, 102.43, 101.38, 100.82, 98.46, 93.36, 83.97, 82.49,
79.92, 78.78, 78.70, 78.13, 78.00, 76.43, 75.91, 75.81, 75.65, 75.04, 74.97, 74.58, 73.72,
73.23, 72.59, 72.50, 71.96, 71.37, 71.08, 68.46, 66.84, 66.05, 65.32, 64.43, 63.86, 60.20,
56.05, 53.77, 49.21, 47.34, 46.65, 46.10, 45.99, 41.23, 39.63, 37.86, 36.92, 36.11, 35.99,
3433, 33.15, 32.47, 32.20, 31.98, 30.55, 29.70, 29.44, 29.38, 29.22, 29.14, 27.81, 26.45,
26.39, 25.85, 25.32, 24.96, 24.59, 23.50, 20.18, 18.08, 17.00, 15.79, 14.14, 12.24, 7.56,
7.46,7.24,7.15,7.13, 7.05, 6.98, 6.85, 6.78, 5.92, 5.63, 5.43, 5.36, 5.33, 5.25, 5.22, 4.87,

4.40; HRM S (ESI) mVz: Caled for [M+H]", found.
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(101P) A solution of fully protected B-carbamate analogue (94f) (9 mg, 0.003 mmol, 1.0
equiv) in tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was
charged with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (13
mg, 0.011 mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi)
overnight, then filtered through a 0.45 pm polyvinylidene fluoride filter disk, washed
with methanol (5 mL), and concentrated. To the hydrogenation product was added a pre-
cooled (0 °C) solution of trifluoroacetic acid (2.0 mL, TFA/H,O 3:1). After vigorous
stirring for 60 min, the solution was concentrated in vacuo at 0 °C to give white solid
residue. This crude product was partially dissolved in a solution of aqueous acetonitrile
(5:1 water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18

column (5 pm, 10 X 250 mm) using a linear gradient of 15 *+ 51% acetonitrile (0.05%

TFA) in over 18 min at a flow rate of 5 mL/min. The fraction containing the major peak
(tR = 17.35 min) was collected and lyophilized to dryness to afford SQS-0-5-5-5 (101B)

(3.3 mg, 77 % yield) as a fluffy white solid.
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'H NMR (600 MHz, D,0/CDsCN) & 9.90 (s, 1H), 5.98 — 5.94 (m, 1H), 5.87 (s, 1H), 5.73
(d, J= 8.0 Hz, 1H), 5.44 (s, 1H), 5.21 (d, J= 7.8 Hz, 1H), 5.10 (d, J = 7.8 Hz, 1H), 5.00
(d, J=7.8 Hz, 2H), 4.92 (d, J = 7.9 Hz, 1H), 4.44 — 4.37 (m, 4H), 4.34 — 4.19 (m, 6H),
4.17 - 4.10 (m, SH), 4.08 — 3.93 (m, 8H), 3.93 — 3.82 (m, 4H), 3.77 — 3.66 (m, 4H), 3.63
(q, J=7.2 Hz, 1H), 3.00 — 2.92 (m, 1H), 2.83 — 2.71 (m, 7H), 2.65 — 2.61 (m, 1H), 2.31 —
2.14 (m, SH), 2.12 — 2.02 (m, SH), 2.01 — 1.94 (m, 1H), 1.85 (s, 3H), 1.62 (s, 3H), 1.51 —
1.45 (m, 6H), 1.42 — 1.33 (m, 9H); HRMS (ESI) m/z: Calcd for CgH2,N,035Na

[M+Na]" 1645.7726, found 1645.7681.
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(87a): An excess of hydrogen sulfide was bubbled through an ice-cooled solution of
azide 82a (29 mg, 0.010 mmol, 1 eq) in pyridine and triethylamine (3.5:1, 4.5 mL) for

two min via steel needle, then needle removed from septum. After stirring for 2 min, ice-
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bath was removed and warmed to ambient temperature. After 6 hr, the dark green
solution was purged of excess hydrogen sulfide, then volatiles removed with a stream of
nitrogen. The resulting light-orange solid was purified by silica gel chromatography
(hexanes:ethyl acetate + 0.5% triethylamine, 8:1 to 1:1) to give amine (87a) (22.5 mg,

78% vield).

TLC Rr0.11 (hexanes:ethyl acetate, 2:1 + 0.5% triethylamine); FTIR (NaCl, film) 3426,
3066, 3033, 2955, 2913, 2878, 1741, 1498, 1458, 1415, 1382, 1314, 1242, 1098, 1009,
904, 865, 827, 735, 699, 667 cm™; *H NMR (600 MHz, CDCl3) § 9.68 (s, 1H), 7.40 —
7.27 (m, 33H), 6.00 (d, J = 3.6 Hz, 1H), 5.37 (s, 1H), 5.33 — 5.25 (m, 2H), 5.09 (d, J =
12.4 Hz, 1H), 4.89 (d, J=11.1 Hz, 1H), 4.85 (d, J=11.0 Hz, 1H), 4.82 (d, J=7.3 Hz,
1H), 4.79 (d, J=11.0 Hz, 1H), 4.70 (d, J=11.7 Hz, 1H), 4.68 — 4.49 (m, 7H), 4.42 (d, J
= 7.3 Hz, 1H), 4.40 (s, 1H), 4.34 (s, 1H), 4.19 — 4.07 (m, 4H), 4.02 (t, J= 6.2 Hz, 1H),
3.95—3.89 (m, 3H), 3.88 — 3.77 (m, 4H), 3.75 (t, J=9.2 Hz, 1H), 3.71 (dd, J = 10.0, 3.6
Hz, 1H), 3.67 — 3.51 (m, 9H), 3.50 — 3.44 (m, 2H), 3.42 — 3.38 (m, 1H), 3.35 (t, J=8.5
Hz, 2H), 3.31 (t, J=7.7 Hz, 1H), 3.27 — 3.23 (m, 1H), 3.19 (dd, J=11.5, 9.1 Hz, 1H),
3.13 (t, J=10.9 Hz, 1H), 2.48 (dd, J= 13.4, 2.7 Hz, 0H), 2.32 — 2.20 (m, 2H), 1.94 —
1.76 (m, 5H), 1.75 — 1.67 (m, 1H), 1.68 — 1.57 (m, 2H), 1.53 — 1.47 (m, 3H), 1.35 — 1.32
(m, 2H), 1.31 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H), 1.22 (d, = 6.0 Hz, 3H), 1.13 — 1.07 (m,
2H), 1.03 — 0.88 (m, 105H), 0.86 (s, 4H), 0.85 (s, 4H), 0.80 (s, 3H), 0.79 — 0.53 (m, 66H);
3C NMR (151 MHz, CDCl3) § 212.18, 168.37, 151.64, 142.45, 138.81, 138.46, 138.24,
138.00, 137.81, 135.24, 128.45, 128.44, 128.39, 128.26, 128.25, 128.18, 128.12, 127.90,

127.88, 127.83, 127.74, 127.58, 127.46, 127.36, 124.25, 109.02, 103.49, 102.43, 101.35,
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100.82, 98.69, 91.74, 83.75, 81.55, 78.71, 78.21, 77.91, 76.44, 75.81, 75.47, 75.05, 74.49,
73.71,73.70, 73.10, 72.59, 72.48, 71.39, 71.20, 71.10, 70.42, 68.82, 66.85, 65.40, 65.32,
63.61, 60.29, 55.89, 53.75, 49.28, 49.10, 46.71, 45.98, 44.92, 41.08, 39.67, 37.77, 36.31,
35.94, 33.27, 32.51, 32.16, 31.99, 30.65, 29.70, 27.70, 26.57, 26.22, 25.28, 24.42, 23.40,
20.17,17.45,16.74, 15.70, 12.04, 7.56, 7.46, 7.25,7.18, 7.13, 7.12, 6.98, 6.85, 6.79, 5.92,

5.63, 5.44,5.36, 5.33,5.25,5.22,4.89, 4.41.
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(940): Isobutyl chloroformate (4.5 uL, 0.037 mmol, 5 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (14 mg, 0.045 mmol, 6 equiv) and triethylamine (8.3 uL,
0.060 mmol, 8 equiv) in tetrahydrofuran (2 mL) and stirred for 3 hours, then transferred
via cannula to an ice-cooled solution of amine 87 (22.5 mg, 0.008 mmol, 1 equiv) in
tetrahydrofuran (0.6 mL). After 2.5 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 x 25 ml). Combined organics were

washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
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chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give amide

94a. (23 mg, 93 % yield) as a colorless film.

TLC R 0.73 (hexanes:ethyl acetate, 2:1 + 0.5% triethylamine); FTIR (NaCl, film) 3421,
3089, 3064, 3031, 2953, 2913, 2876, 1740, 1678, 1655, 1607, 1587, 1456, 1413, 1380,
1312, 1240, 1165, 1097, 1008, 908, 863, 825, 735, 697, 666 cm™; *H NMR (600 MHz,
CDCl3) 6 9.69 (s, 1H), 7.38 — 7.27 (m, 35H), 5.99 (d, J = 3.6 Hz, 1H), 5.50 (d, J = 10.1
Hz, 1H), 5.36 (s, 1H), 5.31 (s, 1H), 5.28 (d, J = 12.4 Hz, 1H), 5.10 (d, J = 14.9 Hz, 3H),
4.91 — 4.87 (m, 2H), 4.86 — 4.77 (m, 4H), 4.70 (d, J=11.7 Hz, 1H), 4.63 (d, J=11.1 Hz,
1H), 4.61 (d, J=11.7 Hz, 1H), 4.56 (d, J=7.4 Hz, 1H), 4.51 (d, J=11.6 Hz, 1H), 4.46 —
4.40 (m, 4H), 4.33 (s, 1H), 4.18 (d, J= 7.3 Hz, 1H), 4.15 — 4.09 (m, 3H), 3.95 — 3.89 (m,
3H), 3.88 — 3.73 (m, 7H), 3.65 — 3.52 (m, 8H), 3.51 — 3.45 (m, 3H), 3.40 (d, J = 9.4 Hz,
1H), 3.37 — 3.33 (m, 2H), 3.30 (t, J = 7.6 Hz, 1H), 3.25 (t, J = 8.0 Hz, 1H), 3.19 (dd, J =
13.6, 6.8 Hz, 1H), 3.13 (t, J = 10.9 Hz, 1H), 2.47 (dd, J = 13.6, 2.4 Hz, 1H), 2.34 (t, J =
7.6 Hz, 2H), 2.30 — 2.15 (m, 4H), 1.90 — 1.57 (m, 13H), 1.52 — 1.47 (m, 2H), 1.46 (s, 3H),
1.33 (s, 4H), 1.30 — 1.20 (m, 24H), 1.13 — 1.02 (m, 6H), 1.02 — 0.90 (m, 95H), 0.89 (s,
3H), 0.87 (s, 3H), 0.85 (s, 6H), 0.80 — 0.51 (m, 66H); *C NMR (151 MHz, CDCl;) &
212.23, 173.69, 173.41, 168.36, 151.40, 142.24, 138.78, 138.40, 138.24, 138.05, 137.56,
136.11, 135.24, 128.52, 128.45, 128.42, 128.39, 128.25, 128.19, 128.15, 128.14, 128.12,
128.00, 127.90, 127.80, 127.73, 127.63, 127.47, 124.43, 109.00, 103.51, 102.53, 101.36,
100.82, 98.90, 91.22, 86.13, 83.77, 81.49, 78.78, 78.71, 78.14, 77.90, 76.44, 76.26, 76.10,
75.92, 75.82, 75.50, 75.06, 74.48, 73.83, 73.75, 73.09, 72.59, 72.48, 71.68, 71.40, 71.10,

70.85, 69.88, 68.76, 66.84, 66.05, 65.40, 65.32, 63.62, 60.29, 56.00, 53.76, 49.12, 46.88,
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46.68, 45.97, 44.85, 41.05, 39.64, 37.78, 36.96, 36.28, 35.93, 34.33, 33.25, 32.49, 32.14,
31.97, 30.63, 29.70, 29.40, 29.37, 29.31, 29.19, 29.12, 27.69, 26.57, 26.20, 25.87, 25.29,
24.94, 24.40, 23.38, 22.70, 20.15, 17.48, 16.63, 15.74, 14.14, 12.05, 7.56, 7.46, 7.25,
7.19, 7.13, 7.11, 6.98, 6.85, 6.79, 5.92, 5.63, 5.44, 5.36, 5.33, 5.25, 5.22, 4.89, 4.41;

HRM S (ESI) m/z: Caled for C15:H204N203sNaSiy [M+Na] 3342.9108, found 3342.9001.
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(101ax) A solution of fully protected B-carbamate analogue (94a) (5 mg, 0.0015 mmol,
1.0 equiv) in tetrahydrofuran (1 mL) and ethanol (1 mL) in a 25 mL round bottom flask
was charged with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W
(4 mg, 0.004 mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50
psi) overnight, then filtered through a 0.45 um polyvinylidene fluoride filter disk, washed
with methanol (5 mL), and concentrated. To the hydrogenation product was added a pre-

cooled (0 °C) solution of trifluoroacetic acid (1.0 mL, TFA/H,O 3:1). After vigorous
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stirring for 60 min, the solution was concentrated in vacuo at 0 °C to give white solid
residue. This crude product was partially dissolved in a solution of aqueous acetonitrile
(5:1 water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18

column (5 pm, 10 X 250 mm) using a linear gradient of 15 *+ 51% acetonitrile (0.05%

TFA) in over 18 min at a flow rate of 5 mL/min. The fraction containing the major peak
(tR = 17.2 min) was collected and lyophilized to dryness to afford SQS-0-5-8-5 (101la)

(2.0 mg, 82 % yield) as a fluffy white solid.

'H NMR (600 MHz, D,0/CD;CN) & 9.90 (s, 1H), 6.45 (d, J= 3.7 Hz, 1H), 6.11 (s, 1H),
5.89 (s, 1H), 5.31 (s, 1H), 5.19 (d, J= 7.8 Hz, 1H), 5.07 (d, J = 7.8 Hz, 1H), 4.97 (d, J =
7.8 Hz, 1H), 4.93 (d, J = 7.8 Hz, 1H), 4.86 (s, 1H), 4.47 (t, J = 6.3 Hz, 1H), 4.46 — 4.36
(m, 3H), 4.35 — 4.20 (m, 5H), 4.18 — 4.11 (m, 2H), 4.11 — 3.95 (m, 5H), 3.93 — 3.82 (m,
4H), 3.77 - 3.66 (m, 3H), 2.98 (dd, J = 13.5, 1.7 Hz, 1H), 2.77 — 2.72 (m, 1H), 2.46 —
2.35 (m, 3H), 2.31 — 2.14 (m, 4H), 2.01 — 1.98 (m, 1H), 1.82 (s, 3H), 1.72 (d, J= 6.1 Hz,

3H), 1.63 (s, 2H), 1.60 — 1.53 (m, 1H), 1.48 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H).
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(70): Solid tetrabutylammonium borohydride (32 mg, 0.124 mmol, 2 equiv) was added
to an ice-cooled solution of acyl chloride 65 (130 mg, 0.062 mmol, 1 equiv) in
dichloromethane (4 mL) for 4 hr then diluted with a saturated solution of sodium
bicarbonate (50 mL). Aqueous mixture was extracted with dichloromethane (3x25 mL),
organic fractions combined, washed with brine, dried over sodium sulfate, filtered,
concentrated, and purified with silica gel chromatography (hexanes:ethyl acetate, 30:1 to

10:1) to give neopentyl alcohol 70 as a white foam (99 mg, 77%).

TLC R;0.38 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3538 (OH st), 2952, 2877,
1754, 1722, 1459, 1413, 1377, 1239, 1171, 1103, 1005, 908, 863, 825, 774, 728, 695
cm™; 'TH-NMR (600 MHz, CDCls) § 9.60 (s, 1H), 7.31 — 7.17 (m, 5H), 5.17 (d, J = 12.4
Hz, 1H), 5.14 (t, J=3.7 Hz, 1H), 4.97 (d, J= 12.4 Hz, 1H), 4.44 (d, J= 7.4 Hz, 1H), 4.31
(d, J=7.2 Hz, 1H), 4.07 (d, J= 7.4 Hz, 1H), 3.96 (t, J = 3.3 Hz, 1H), 3.82 (s, 1H), 3.80
(d, J= 8.9 Hz, 1H), 3.77 — 3.66 (m, 4H), 3.63 (t, J = 9.2 Hz, 1H), 3.52 — 3.42 (m, 3H),
3.36 (ddd, J=10.5, 8.4, 5.1 Hz, 1H), 3.28 (dd, J= 9.4, 2.5 Hz, 1H), 3.26 — 3.18 (m, 3H),
3.13 (t, J= 8.0 Hz, 1H), 3.01 (dt, J = 10.9, 5.4 Hz, 2H), 2.08 (t, J = 13.2 Hz, 1H), 1.87
(dd, J=13.9, 4.3 Hz, 1H), 1.80 — 1.50 (m, 9H), 1.50 — 1.28 (m, 5H), 1.26 (s, 4H), 1.19 (s,
3H), 1.16 — 0.93 (m, 5H), 0.92 — 0.71 (m, 100H), 0.71 — 0.38 (m, 58H); *C-NMR (151
MHz, CDCl3) & 212.67, 168.37, 143.98, 135.27, 128.47, 128.45, 128.28, 128.14, 121.89,
103.62, 101.40, 100.84, 86.32, 78.81, 78.73, 76.45, 75.96, 75.82, 75.08, 74.40, 72.62,
72.53,71.39, 71.31, 71.09, 66.84, 65.34, 60.26, 53.89, 49.42, 47.44, 46.13, 42.10, 41.58,
40.33, 39.90, 38.02, 36.03, 35.96, 33.34, 32.85, 32.19, 30.78, 29.60, 26.76, 25.39, 24.37,

23.39,20.27,16.83, 15.95, 12.24,7.57, 7.50, 7.48, 7.26, 7.21, 7.17, 7.15, 7.08, 7.02, 7.00,
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6.96, 6.86, 6.80, 5.93, 5.66, 5.46, 5.42, 5.38, 5.35, 5.32, 5.30, 5.27, 5.24, 5.21, 5.07, 4.43;

HRMS (ESI) m/z: Calcd for C108H206019Na8i9 [M+Na]+ 20822975, found 2082.2942.
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(77): To a suspension of primary alcohol acceptor 70 (58 mg, 0.0280mmol, 1.0 equiv),
bromide donor 76 (29 mg, 0.0280 mmol, 1.0 equiv), 2.,4,5-tritertbutylpyridine (20.8 mg,
0.084 mmol, 3.0 equiv), and ~25 mg 4 A MS in 1 mL dichloromethane, cooled to —40 °C,
was added solid AgOTf (15 mg, 0.058 mmol, 2.1 equiv). After 45 min, reaction was
warmed to 0 °C, stirred for 15 min, then diluted with 5 mL dichloromethane. Crude
suspension was sonicated for two min, filtered through a pad of celite, concentrated, and
purified with silica gel chromatography (hexanes:ethyl acetate, 15:1 to 4:1) to give

B-glycoside 77 (58 mg, 0.0192 mmol, 69% yield).

TLC R;0.45 (hexanes:ethyl acetate, 5:1); FTIR (NaCl film) 2953, 2911, 2876, 2106,
1753, 1725, 1456, 1413, 1379, 1240, 1170, 1097, 1006, 910, 863, 825, 800, 735 cm™;

H-NMR (600 MHz, CDCl3-d) & 9.69 (s, 1H), 7.42 — 7.16 (m, 30H), 5.37 (s, 1H), 5.28

139



(d, J=12.4 Hz, 1H), 5.15 (t, J= 3.6 Hz, 1H), 5.09 (d, J = 12.4 Hz, 1H), 4.89 — 4.80 (m,
4H), 4.72 — 4.66 (m, 2H), 4.64 — 4.60 (m, 2H), 4.57 — 4.51 (m, 4H), 4.42 (d, J= 7.3 Hz,
1H), 4.19 (d, J= 7.4 Hz, 1H), 4.14 — 4.11 (m, 2H), 4.09 (d, J = 7.6 Hz, 1H), 4.00 — 3.97
(m, 2H), 3.97 — 3.89 (m, 4H), 3.87 — 3.72 (m, 8H), 3.64 — 3.53 (m, 10H), 3.52 — 3.45 (m,
2H), 3.39 (dd, J=9.5, 2.5 Hz, 1H), 3.37 — 3.27 (m, 4H), 3.27 — 3.16 (m, 4H), 3.13 (t, J=
10.9 Hz, 1H), 2.17 (t, J = 13.2 Hz, 1H), 1.98 (dd, J = 14.1, 4.5 Hz, 1H), 1.85 — 1.75 (m,
3H), 1.75 — 1.60 (m, 6H), 1.45 (s, 3H), 1.43 — 1.32 (m, 8H), 1.30 (s, 4H), 1.28 (s, 3H),
1.26 — 1.24 (m, 1H), 1.22 (d, J = 6.1 Hz, 3H), 1.19 — 1.03 (m, 4H), 1.02 — 0.88 (m,
102H), 0.88 — 0.81 (m, 11H), 0.81 — 0.52 (m, 66H); *C-NMR (151 MHz, CDCl;) &
212.35, 168.38, 144.17, 138.79, 138.60, 138.22, 137.52, 137.08, 135.24, 128.53, 128.52,
128.49, 128.45, 128.44, 128.41, 128.37, 128.32, 128.30, 128.27, 128.26, 128.24, 128.21,
128.14, 128.12, 128.08, 128.04, 128.01, 128.00, 127.99, 127.91, 127.90, 127.86, 127.82,
127.80, 127.76, 127.75, 127.72, 127.65, 127.51, 127.49, 121.68, 109.17, 103.48, 102.78,
102.07, 101.37, 100.83, 97.66, 86.06, 83.81, 82.06, 80.79, 78.78, 78.71, 78.25, 78.11,
78.01, 77.47, 76.42, 76.00, 75.81, 75.53, 75.49, 75.06, 74.69, 74.61, 74.36, 73.72, 73.18,
72.59, 72.51, 72.09, 71.38, 71.28, 71.06, 68.26, 66.83, 65.72, 65.33, 63.75, 60.25, 58.96,
53.90, 49.29, 47.41, 46.05, 41.98, 41.37, 39.90, 39.50, 37.96, 37.67, 35.99, 33.03, 32.85,
32.06, 31.59, 30.86, 30.79, 30.77, 30.31, 30.27, 29.70, 29.05, 27.78, 27.73, 26.63, 26.52,
26.41, 26.33,26.27, 25.32, 25.27, 24.48, 23.36, 22.66, 20.21, 18.16, 18.13, 17.45, 16.85,
15.94, 14.14, 12.17, 11.45, 7.56, 7.48, 7.46, 7.25, 7.22, 7.20, 7.17, 7.13, 7.07, 7.00, 6.98,
6.95, 6.94, 6.91, 6.85, 6.79, 6.78, 5.91, 5.64, 5.44, 5.40, 5.36, 5.34, 5.30, 5.29, 5.27, 5.25,
5.23, 490, 441, 440, HRMS (ESI) m/zz Caled for Ci¢3H267N303;SigNa [M+Na]

3037.7230, found 3037.7188.
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(88): Hydrogen sulfide was bubbled via cannula through an ice-cooled solution of azide
77 (45 mg, 0.015 mmol, 1 equiv) in pyridine/triethylamine (3.5:1, 4.5 mL) for two min.
Vent needle and cannula were removed, septum sealed with Teflon tape and parafilm,
then warmed to RT and stirred overnight. Hydrogen sulfide was removed with a stream
of nitrogen. The resulting orange solution was concentrated and purified via silica gel
chromatography (hexanes:[ethyl acetate + 1% triethylamine], 5:1 to 2:1) furnishing

amine 88 (40 mg, 88 % yield).

TLC R 0.41 (hexanes:ethyl acetate, 2:1 + 0.5% triethylamine); FTIR (NaCl film) 3608,
3583, 3028, 2954, 2910, 2876, 1753, 1725, 1631, 1497, 1454, 1413, 1380, 1240, 1168,
1095, 1006, 900, 862, 825, 799, 730, 695, 665 cm™'; "H-NMR (600 MHz, CDCl;-d) &
9.70 (s, 1H), 7.38 — 7.22 (m, 31H), 5.40 (s, 1H), 5.29 (d, J=12.3 Hz, 1H), 5.17 (d, J =
3.8 Hz, 1H), 5.10 (d, J = 12.3 Hz, 1H), 491 (d, J = 7.6 Hz, 1H), 4.89 — 4.81 (m, 3H),
4.71 (d, J=11.7 Hz, 1H), 4.65 — 4.62 (m, 2H), 4.61 (d, J=4.9 Hz, 1H), 4.58 — 4.55 (m,

3H), 4.49 (d, J= 11.5 Hz, 1H), 4.43 (d, J = 7.3 Hz, 1H), 4.20 (d, J= 7.3 Hz, 1H), 4.19 —
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4.13 (m, 3H), 4.03 — 3.98 (m, 1H), 3.98 — 3.90 (m, 3H), 3.91 — 3.69 (m, 7H), 3.68 — 3.53
(m, 9H), 3.48 (ddd, J=10.5, 8.5, 5.1 Hz, 1H), 3.42 — 3.19 (m, 10H), 3.14 (t, J= 10.9 Hz,
1H), 2.19 (t, J= 13.2 Hz, 1H), 2.02 (dd, J = 14.0, 4.2 Hz, 1H), 1.86 — 1.50 (m, 13H), 1.47
(s, 3H), 1.35 (s, 6H), 1.31 (s, 3H), 1.29 (s, 3H), 1.23 (d, J= 6.2 Hz, 3H), 1.20 — 1.12 (m,
3H), 1.11 — 1.05 (m, 2H), 1.04 — 0.90 (m, 89H), 0.89 — 0.82 (m, 10H), 0.81 — 0.55 (m,
56H). ®C-NMR (151 MHz, CDCLy) 212.40, 168.40, 144.16, 138.82, 138.60, 138.25,
138.00, 137.61, 135.27, 128.51, 128.49, 128.47, 128.44, 128.31, 128.29, 128.25, 128.15,
128.09, 127.92, 127.90, 127.81, 127.79, 127.77, 127.76, 127.55, 127.52, 121.77, 109.16,
103.50, 102.96, 102.10, 101.40, 100.86, 97.56, 86.07, 83.84, 82.12, 81.65, 78.82, 78.74,
78.27, 78.19, 78.04, 76.45, 76.04, 75.84, 75.67, 75.56, 75.09, 74.77, 74.53, 73.61, 73.28,
73.22, 72.62, 72.54, 71.42, 71.20, 71.09, 69.16, 66.86, 65.56, 65.36, 63.79, 60.29, 53.94,
49.35, 48.97, 47.44, 46.09, 42.01, 41.42, 39.96, 39.59, 38.01, 36.08, 36.02, 33.08, 32.89,
32.11, 30.82, 30.32, 27.80, 26.67, 26.36, 25.35, 24.53, 23.39, 20.24, 18.19, 16.96, 15.97,
12.19, 7.59, 7.49, 7.28, 7.26, 7.24, 7.20, 7.16, 7.03, 7.01, 6.88, 6.82, 5.94, 5.67, 5.47,
5.39, 5.37, 5.31, 5.28, 5.26, 4.95, 4.45; HRMS (ESI) m/z. Caled for C163H270NO3;Si

[M+H]" 2989.7505, found 2989.7542.
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(95): Isobutyl chloroformate (7.0 uL, 0.053 mmol, 4 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (26 mg, 0.081 mmol, 6 equiv) and triethylamine (37 uL,
0.268 mmol, 20 equiv) in tetrahydrofuran (2 mL) and stirred for 2 hours, then transferred
via cannula to an ice-cooled solution of amine 88 (40 mg, 0.0134 mmol, 1 equiv) in
tetrahydrofuran (1.5 mL). After 4 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 x 25 ml). Combined organics were
washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give

glycosyl ether 95 (25 mg, 57 % yield) as a colorless film.

TLC R;0.24 (hexanes:ethyl acetate, 4:1); 'H-NMR (600 MHz, CDCl5) & 9.70 (s, 1H),
7.40 — 7.16 (m, 35H), 5.52 (d, J=10.1 Hz, 1H), 5.38 (s, 1H), 5.28 (d, J= 12.3 Hz, 1H),
5.15 (t, J=3.6 Hz, 1H), 5.13 — 5.07 (m, 3H), 4.92 — 4.78 (m, 5H), 4.76 (d, J=11.1 Hz,
1H), 4.71 (d, J=11.6 Hz, 1H), 4.63 (t, J=10.9 Hz, 2H), 4.56 (d, J= 7.4 Hz, 1H), 4.55 —

4.47 (m, 2H), 4.43 (d, J = 7.2 Hz, 1H), 439 (d, J = 11.0 Hz, 1H), 421 — 4.14 (m, 3H),
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4.12 (d, J=5.9 Hz, 1H), 3.99 (s, 1H), 3.97 — 3.90 (m, 3H), 3.89 — 3.71 (m, 6H), 3.65 —
3.42 (m, 13H), 3.40 (dd, J=9.4, 2.5 Hz, 1H), 3.38 — 3.17 (m, 7H), 3.13 (t, J = 10.9 Hz,
1H), 2.35 (t, J="7.5 Hz, 2H), 2.24 — 2.14 (m, 3H), 2.02 (dd, J= 14.0, 4.3 Hz, 1H), 1.86 —
1.75 (m, 3H), 1.75 — 1.49 (m, 15H), 1.44 — 1.05 (m, 33H), 1.04 — 0.82 (m, 104H), 0.82 —
0.50 (m, 60H); ®C-NMR (151 MHz, CDCl;) & 212.46, 173.70, 173.26, 168.40, 144.02,
138.82, 138.57, 138.24, 137.73, 137.59, 136.13, 135.27, 128.55, 128.47, 128.43, 128.35,
128.31, 128.29, 128.28, 128.21, 128.18, 128.17, 128.14, 128.09, 127.91, 127.86, 127.83,
127.79, 127.77, 127.74, 127.69, 127.61, 127.52, 121.90, 109.20, 103.53, 103.16, 102.13,
101.40, 100.86, 97.60, 86.15, 83.84, 82.15, 79.25, 78.82, 78.73, 78.30, 78.15, 78.13,
78.03, 76.45, 76.01, 75.85, 75.83, 75.76, 75.57, 75.12, 75.09, 74.82, 74.51, 73.72, 73.23,
72.70, 72.62, 72.54, 71.41, 71.09, 71.00, 68.86, 66.86, 66.08, 65.74, 65.36, 63.80, 60.28,
53.90, 49.32, 47.35, 46.18, 46.06, 41.92, 41.41, 39.94, 39.66, 38.00, 36.98, 36.08, 36.00,
34.35, 33.08, 32.86, 32.09, 30.81, 30.36, 29.73, 29.46, 29.41, 29.38, 29.28, 29.25, 29.16,
27.73, 26.66, 26.23, 25.90, 25.34, 24.98, 24.47, 23.39, 20.23, 18.07, 17.00, 15.96, 12.20,
7.59,7.51,7.49, 7.32,7.28, 7.25, 7.23, 7.20, 7.16, 7.09, 7.05, 7.03, 7.01, 6.97, 6.92, 6.88,
6.82,5.94,5.67,5.59, 5.56, 5.46, 5.43, 5.39, 5.37, 5.33, 5.30, 5.28, 5.26, 5.19, 5.17, 5.14,
5.08, 4.99, 495, 4.44; HRMS (ESI) m/z Calcd for CigH95sN3034Si9Na [MJrNa]+

3133.9207, found 3133.9258.
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(202): A solution of fully protected ether analogue (95) (25 mg, 0.008 mmol, 1.0 equiv)
in tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was charged
with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (25 mg, 0.023
mmol, 3 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi) overnight,
then filtered through a 0.45 pm polyvinylidene fluoride filter disk, washed with methanol
(5 mL), and concentrated. To the hydrogenation product was added a pre-cooled (0 °C)
solution of trifluoroacetic acid (3.0 mL, TFA/H,O 3:1). After vigorous stirring for 60
min, the solution was concentrated in vacuo at 0 °C to give white solid residue. This
crude product was partially dissolved in a solution of aqueous acetonitrile (4:1
water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18 column

(5 wm, 10 x 250 mm) using a linear gradient of 20 * 66% acetonitrile (0.05% TFA) in

water (0.05% TFA) over 16 min at a flow rate of 5 mL/min. The fraction containing the
major peak (tR = 12.55 min) was collected and lyophilized to dryness to afford SQS-0-

12-5-5 (102) (7.5 mg, 62 % yield) as a white solid.
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'H-NMR (600 MHz, D,O/CD;CN, 1:1) § 9.97 (s, 1H), 7.73 (d, J= 9.7 Hz, 1H), 5.82 (t, J
=3.6 Hz, 1H), 5.74 (d, J=1.9 Hz, 1H), 5.26 (d, J=7.8 Hz, 1H), 5.13 (d, J= 7.8 Hz, 1H),
5.08 (d, J=7.8 Hz, 1H), 5.01 (d, J= 7.8 Hz, 1H), 4.78 (s, 1H), 4.71 (d, J= 7.6 Hz, 1H),
4.61 (d, J=4.0 Hz, 1H), 4.51 — 4.43 (m, 4H), 4.43 — 4.33 (m, 5H), 4.30 (t, J = 8.9 Hz,
2H), 4.25 - 4.18 (m, 2H), 4.17 — 4.00 (m, 9H), 3.93 (p, J = 8.9, 8.5 Hz, 6H), 3.86 — 3.77
(m, 4H), 3.78 — 3.72 (m, 1H), 2.90-2.77 (m, J= 7.5 Hz, 5H), 2.75 — 2.65 (m, 2H), 2.48 —
241 (m, 3H), 2.41 — 2.01 (m, 17H), 1.90 (s, 3H), 1.83 (d, J = 6.3 Hz, 5H), 1.74 (d, J =
12.2 Hz, 1H), 1.69 (s, 3H), 1.64 (t, J=12.9 Hz, 1H), 1.55 (s, 3H), 1.47 (s, 3H), 1.46 (s,
3H), 2.83 — 2.77 (m, 1H), 1.43 (s, 3H); HRMS (ESI) m/z. Calcd for C7sH;23NO34Na

[M+Na]+ 1616.7824, found 1616.7848

Me Me
TESO TESO
TES Me O
TEsoTESO TES' Me

TESO OTES
TESO

AC

Me Me
TESO TESO
TES Me O
TESOTESO TES Me
TESO OTES

TESO

(71): Triflic anhydride (12.6 uL, 0.075 mmol, 1.5 equiv) was added to an ice-cooled
solution of neopentyl alcohol 70 (103 mg, 0.05 mmol, 1 equiv) and pyridine (80 uL, 1.0
mmol, 20 equiv) and dichloromethane (4 mL). After 15 min, dichloromethane was
removed with a stream of argon. Residual volatiles were removed under reduced

pressure. Resulting oil was taken up in tetrahydrofuran (2 mL), cooled to 0 °C, then
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treated with 4 A MS (~100 mg), and dimethylformamide (2 mL). Suspension was treated
with potassium thioacetate (57 mg, 0.5 mmol, 10 equiv). After 2.5 hr, suspension was
decanted into a saturated solution of sodium bicarbonate and extracted with ethyl acetate
(3 x25 mL). Combined organics were washed with brine, dried over sodium sulfate,
concentrated and purified with silica gel chromatography (hexanes: ethyl acetate, 50:1 to

25:1) to give thioaceate 71 (98 mg, 92%).

TLC Rs0.60 (10:1 hexanes/ethyl acetate); FTIR (NaCl film) 2953, 2911, 2876, 1754,
1723, 1700, 1696, 1653, 1635, 1576, 1560, 1539, 1457, 1414, 1375, 1239, 1171, 1103,
1005, 970, 898, 864, 826, 799, 736, 695, 668, 628 cm™; *H-NMR (600 MHz, CDCls) &
9.65 (s, 1H), 7.31 — 7.22 (m, 5H), 5.25 - 5.19 (m, 2H), 5.02 (d, J=12.4 Hz, 1H), 4.48 (d,
J=7.4 Hz, 1H), 4.36 (d, J= 7.3 Hz, 1H), 4.11 (d, J= 7.4 Hz, 1H), 3.88 — 3.81 (m, 3H),
3.81 = 3.70 (m, 4H), 3.68 (t, J= 9.2 Hz, 1H), 3.56 — 3.47 (m, 3H), 3.41 (ddd, J = 10.5,
8.4, 5.1 Hz, 1H), 3.32 (dd, J= 9.4, 2.5 Hz, 1H), 3.30 — 3.24 (m, 2H), 3.18 (dd, J = 8.7,
7.4 Hz, 1H), 3.06 (t, J=11.0 Hz, 1H), 2.86 (d, J = 13.4 Hz, 1H), 2.57 (d, J = 13.5 Hz,
1H), 2.25 (s, 3H), 2.16 (dd, J=13.9, 12.4 Hz, 1H), 2.07 (dd, J= 14.0, 4.0 Hz, 1H), 1.88 —
1.51 (m, 10H), 1.49 — 1.44 (m, 2H), 1.43 — 1.30 (m, 3H), 1.29 (s, 3H), 1.24 (s, 3H), 1.16
— 1.10 (m, 2H), 1.07 — 0.99 (m, 2H), 0.97 — 0.81 (m, 93H), 0.79 (s, 3H), 0.75 — 0.47 (m,
56H); *C-NMR (151 MHz, CDCls) & 212.83, 195.72, 168.36, 143.29, 135.26, 128.48,
128.46, 128.30, 128.15, 128.11, 122.68, 103.65, 101.42, 100.84, 86.43, 78.82, 78.73,
76.45, 76.30, 75.95, 75.83, 75.81, 75.09, 72.62, 72.53, 71.38, 71.08, 66.85, 65.34, 60.22,
53.89, 49.43, 47.57, 46.13, 45.72, 41.44, 41.02, 39.89, 38.86, 38.02, 36.34, 36.03, 33.41,

32.80, 32.13, 31.71, 30.83, 30.81, 26.82, 25.40, 24.29, 23.48, 20.24, 16.73, 15.94, 12.30,
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7.58,7.48,7.27,7.18,7.17,7.15, 7.00, 6.87, 6.81, 6.80, 5.93, 5.66, 5.46, 5.38, 5.36, 5.29,
5.27, 5.24, 5.01, 4.43; HRMS (ESI) m/zz Caled for C;i9H208019SSisNa [M+Na]+

2140.2883, found 2140.2852.

Ac

BnO e

TESOTESO TES’ Me
TESO OTES
TESO
BnO e
TEsoTESO TES' Me

TESO OTES

TESO
(72): Hydrazine (10 pL, 0.323 mmol, 7 equiv) was added to a solution of thioacetate 71
(98 mg, 0.046 mmol, 1 equiv) and dithiothreitol (21 mg, 0.139 mmol, 3 equiv) in
tetrahydrofuran (4 mL, 1:1) for 6 hr, concentrated and purified with silica gel
chromatography (hexanes: ethyl acetate) to give thiol 72 as a colorless film (86 mg,

90%).

TLC R:0.71 (10:1 hexanes/ethyl acetate); FTIR (NaCl film) 2953, 2911, 2877, 1756,
1726, 1653, 1458, 1414, 1375, 1240, 1172, 1104, 1006, 971, 899, 865, 827, 801, 739,
695, 679, 668; "H-NMR (600 MHz, CDCl3) § 9.72 (s, 1H), 7.34 (m, 5H), 5.29 — 5.25 (m,
2H), 5.09 (d, J=12.4 Hz, 1H), 4.56 (d, J=7.5 Hz, 1H), 4.43 (d, J= 7.3 Hz, 1H), 4.18 (d,
J=7.4 Hz, 1H), 4.14 — 4.09 (m, 1H), 3.94 — 3.89 (m, 2H), 3.88 — 3.77 (m, 4H), 3.75 (t, J
= 9.3 Hz, 1H), 3.63 — 3.54 (m, 3H), 3.51 — 3.45 (m, 1H), 3.39 (dd, J= 9.3, 2.5 Hz, 1H),

3.37 — 3.32 (m, 2H), 3.25 (t, J = 8.0 Hz, 1H), 3.13 (t, J = 10.9 Hz, 1H), 2.38 — 2.31 (m,
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1H), 2.31 — 2.22 (m, 2H), 2.15 (dd, J = 14.0, 4.1 Hz, 1H), 1.87 (dt, J = 11.1, 4.1 Hz, 2H),
1.82 — 1.73 (m, 2H), 1.72 — 1.38 (m, 10H), 1.37 (s, 3H), 1.31 (s, 2H), 1.25 (s, 1H), 1.23 —
1.15 (m, 2H), 1.16 — 1.05 (m, 3H), 1.04 — 0.89 (m, 92H), 0.87 (s, 3H), 0.87 (s, 3H), 0.81
—0.55 (m, 57H); ®C-NMR (151 MHz, CDCl3) 5 212.71, 168.34, 143.60, 135.25, 128.50,
128.46, 128.44, 128.27, 128.15, 128.13, 128.09, 122.34, 103.63, 101.40, 100.83, 78.80,
78.72, 76.44, 75.94, 75.81, 75.71, 75.08, 72.61, 72.51, 71.38, 71.08, 66.83, 65.33, 60.23,
41.39, 39.82, 38.41, 37.99, 36.71, 36.43, 36.42, 36.01, 33.12, 32.84, 32.09, 30.96, 30.84,
26.76, 25.38, 24.23, 23.43, 20.23, 16.71, 15.92, 12.25, 7.57, 7.49, 7.47, 7.25, 7.19, 7.15,
7.14,7.01, 6.99, 6.85, 6.79, 6.78, 5.92, 5.65, 5.45, 5.41, 5.37, 5.35, 5.30, 5.28, 5.26, 5.23,

5.04, 4.42, 4.40; HRMS (ESI) m/z: Calcd for CosH206013NaSisS [M+Na]+ 2098.2746,

found 2098.2778.
BnO OBn
BnO
THESo A — OTESO Me OT
=]
O BnO
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TESO OTES o Me
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TESO

(78): A solution of bromide 76 (32 mg, 0.031 mmol, 1.5 equiv) in tetrahydrofuran (1.5
mL) was added dropwise to a suspension of thiol 72 (43 mg, 0.021 mmol, 1.0 equiv) and
sodium hydride (60% dispersion in mineral oil, 2.5 mg, 0.062, 3.0 equiv) in
tetrahydrofuran/dimethylformamide (2 mL, 1:1) over four min. After 20 min, a saturated
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solution of ammonium chloride was added, diluted with water, and extracted with
(3 x25mL). Combined extracts were washed with brine, dried over sodium sulfate, and
concentrated. Before loading onto silica column, silver triflate (2 mg) was added to crude
solution in DCM to destroy excess glycosyl bromide. Mixture was purified with silica
gel chromatography (benzene:ethyl acetate, 1:0 to 30:1) to give glycosyl thioether 78 as a
colorless film (43 mg, 69% yield). Note: Extended reaction times gave lower yields, due
to formation of the trisaccharide glycal, through base-promoted elimination of the

thiolate.

TLC R:0.52 (benzene:ethyl acetate, 20:1); FTIR (NaCl film) 3032, 2953, 2912, 2876,
2107, 1752, 1724, 1701, 1497, 1457, 1413, 1380, 1240, 1169, 1094, 1006, 899, 864, 826,
736, 697, 668, 610 cm™'; "H-NMR (600 MHz, CDCl;-d) & 9.69 (s, 1H), 7.40 — 7.24 (m,
30H), 5.53 (s, 1H), 5.28 (d, J=12.4 Hz, 1H), 5.19 (t, J=3.7 Hz, 1H), 5.09 (d, J =124
Hz, 1H), 4.91 (d, J=5.3 Hz, 1H), 4.89 (d, J=8.5 Hz, 1H), 4.87 —4.79 (m, 2H), 4.72 (t, J
=11.1 Hz, 2H), 4.64 (d, J=10.8 Hz, 1H), 4.61 (d, J=11.7 Hz, 1H), 4.57 — 4.52 (m, 4H),
442 (d, J="7.2 Hz, 1H), 4.20 — 4.16 (m, 2H), 4.14 (d, J= 9.6 Hz, 1H), 4.10 (d, J=3.4
Hz, 1H), 4.08 — 4.01 (m, 2H), 4.00 — 3.97 (m, 1H), 3.96 — 3.73 (m, 9H), 3.64 — 3.52 (m,
9H), 3.48 (ddd, J=10.5, 8.4, 5.1 Hz, 1H), 3.39 (dd, J=9.4, 2.5 Hz, 1H), 3.37 — 3.32 (m,
2H), 3.30 (dd, J= 8.9, 7.5 Hz, 1H), 3.25 (dd, J = 8.7, 7.4 Hz, 1H), 3.22 — 3.16 (m, 1H),
3.13 (t, J=11.0 Hz, 1H), 2.49 — 2.37 (m, 2H), 2.21 — 2.05 (m, 2H), 1.84 — 1.73 (m, 3H),
1.55 - 1.46 (m, 7H), 1.39 — 1.22 (m, 16H), 1.11 — 0.83 (m, 99H), 0.83 — 0.50 (m, 63H);
B3C-NMR (151 MHz, CDCly) § 212.40, 168.35, 143.40, 138.78, 138.60, 138.23, 137.48,

137.46, 136.69, 135.23, 128.55, 128.51, 128.46, 128.44, 128.41, 128.32, 128.29, 128.27,
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128.26, 128.24, 128.20, 128.18, 128.13, 128.12, 128.09, 128.02, 127.93, 127.91, 127.87,
127.76, 127.75, 127.54, 127.51, 127.49, 122.30, 108.91, 103.49, 102.27, 102.24, 101.37,
100.83, 98.65, 86.14, 84.66, 83.87, 83.20, 82.12, 78.78, 78.70, 78.25, 78.07, 77.99, 77.98,
76.42,76.32, 76.10, 75.96, 75.80, 75.58, 75.43, 75.05, 74.81, 74.03, 73.75, 73.73, 73.19,
72.59, 72.51, 71.58, 71.38, 71.05, 68.23, 66.84, 65.44, 65.32, 63.80, 60.25, 58.59, 53.87,
49.24, 47.56, 46.05, 45.40, 45.35, 42.86, 41.53, 41.27, 41.20, 39.78, 39.54, 39.02, 39.01,
38.70, 37.94, 36.40, 36.38, 35.98, 35.95, 34.00, 33.03, 32.77, 32.04, 31.93, 31.65, 30.74,
30.73, 30.38, 29.73, 29.70, 28.91, 27.77, 26.76, 26.73, 26.61, 26.40, 25.31, 24.47, 24.35,
24.34, 23.76, 23.72, 23.35, 22.99, 22.97, 22.70, 20.22, 17.56, 17.54, 16.81, 16.09, 15.88,
14.14, 14.07, 14.06, 13.15, 12.19, 10.98, 10.96, 7.56, 7.46, 7.25, 7.19, 7.16, 7.13, 6.98,
6.85, 6.79, 6.78, 5.91, 5.64, 5.43, 5.36, 5.33, 5.27, 5.25, 5.22, 4.94, 4.41; HRMS (ESI)

m/z: Calcd for C163H267N3O30N3.Sigs 3053.7001 [M+Na]+, found 3053.7014.
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(89): Hydrogen sulfide was bubbled via cannula through an ice-cooled solution of azide

78 (41 mg, 0.014 mmol, 1.0 equiv) in pyridine/triethylamine (3.5:1, 4.5 mL) for two min.
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Vent needle and cannula were removed, and septum sealed with Teflon tape and
parafilm, then warmed to RT and stirred overnight. Hydrogen sulfide was removed with
a stream of nitrogen, then resulting orange solution was concentrated and purified via
silica gel chromatography (hexanes:[ethyl acetate + 1% triethylamine], 5:1 to 2:1)

furnishing amine 89 (38 mg, 94 % yield).

TLC R;0.47 (hexanes:ethyl acetate, 2:1+0.5% triethylamine); FTIR (NaCl film) 3608,
2953, 2911, 2876, 1754, 1725, 1692, 1530, 1497, 1454, 1413, 1380, 1240, 1094, 1005,
825, 734, 696 cm™'; *C-NMR (151 MHz, CDCls) & 212.39, 168.36, 143.46, 138.81,
138.78, 138.57, 138.24, 137.97, 137.18, 135.23, 128.49, 128.46, 128.44, 128.42, 128.41,
128.37, 128.33, 128.28, 128.25, 128.13, 128.09, 128.00, 127.96, 127.93, 127.91, 127.87,
127.85, 127.83, 127.78, 127.75, 127.70, 127.66, 127.57, 127.52, 127.50, 122.28, 108.89,
103.50, 102.32, 102.29, 101.36, 100.83, 98.44, 86.11, 84.76, 83.97, 83.89, 82.18, 78.78,
78.71, 78.25, 78.10, 78.00, 77.98, 77.92, 76.54, 76.43, 76.40, 76.24, 75.97, 75.80, 75.60,
75.05, 74.86, 73.93, 73.65, 73.63, 73.20, 73.17, 72.59, 72.51, 71.39, 71.06, 70.64, 69.42,
66.84, 66.81, 65.34, 65.32, 63.81, 60.27, 53.87, 49.26, 49.02, 47.52, 46.03, 45.36, 42.86,
41.71,41.31, 41.29, 41.22, 39.80, 39.56, 39.09, 39.03, 37.95, 36.61, 36.40, 36.37, 35.98,
35.96, 35.95, 33.07, 32.78, 32.01, 31.93, 31.71, 30.78, 30.75, 29.70, 29.66, 29.37, 28.40,
27.81,27.78, 26.73, 26.71, 26.61, 26.42, 26.35, 25.31, 24.68, 24.40, 24.37, 23.34, 22.70,
22.39, 20.20, 17.56, 17.07, 16.92, 16.91, 16.09, 15.90, 15.88, 14.14, 13.13, 12.16, 7.56,
7.48,7.46,7.25,7.21,7.19,7.17,7.13, 7.00, 6.98, 6.95, 6.93, 6.88, 6.85, 6.79, 6.78, 5.91,
5.75, 5.64, 5.44, 5.40, 5.36, 5.33, 5.28, 5.27, 5.25, 5.23, 4.96, 4.94, 4.41, 4.40; HRMS

ESI m/Z: Calcd for C163H270N03()Si98 3005.7277 [M+H +, found 3005.7317.
(
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(96): Isobutyl chloroformate (6.4 UL, 0.049 mmol, 4 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (23.5 mg, 0.073 mmol, 6 equiv) and triethylamine (17 uL,
0.122 mmol, 10 equiv) in tetrahydrofuran (3 mL) and stirred for 3 hours, then transferred
via cannula to an ice-cooled solution of amine 89 (37 mg, 0.012 mmol, 1 equiv) in
tetrahydrofuran (1 mL). After 16 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 X 25 ml). Combined organics were
washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give

glycosyl thioether 96 27 mg, 67 % yield) as a colorless film

TLC R (hexanes:ethyl acetate, 2:1+0.5% triethylamine);FTIR (NaCl film) 2952, 2876,
1752, 1741, 1732, 1886, 1681, 1497, 1455, 1380, 1240, 1100, 1006, 826, 734, 697cm’';
'H-NMR (600 MHz, CDCl3)  9.69 (s, 1H), 7.38 — 7.26 (m, 35H), 5.54 (s, 1H), 5.49 (d, J
=10.2 Hz, 1H), 5.28 (d, J=12.4 Hz, 1H), 5.18 (s, 1H), 5.13 — 5.06 (m, 3H), 4.94 — 4.80

(m, 5H), 4.76 (d, J= 11.0 Hz, 1H), 4.71 (d, J=11.7 Hz, 1H), 4.63 (dd, J=13.9, 11.2 Hz,
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2H), 4.56 (d, J = 7.4 Hz, 1H), 4.52 — 4.47 (m, 2H), 4.44 — 4.39 (m, 2H), 4.23 (d, J = 8.6
Hz, 1H), 4.20 — 4.16 (m, 2H), 4.11 (d, J = 5.7 Hz, 1H), 4.05 (dd, J = 10.1, 6.1 Hz, 1H),
3.96 — 3.90 (m, 4H), 3.88 — 3.72 (m, SH), 3.67 — 3.53 (m, 9H), 3.52 — 3.45 (m, 3H), 3.40
(dd, J=9.4, 2.5 Hz, 1H), 3.31 (dd, J = 9.0, 7.5 Hz, 3H), 3.25 (dd, J = 8.7, 7.4 Hz, 1H),
3.20 (dd, J=12.1, 10.2 Hz, 1H), 3.13 (t, J= 10.9 Hz, 1H), 2.56 (d, J= 12.2 Hz, 1H), 2.39
(d, J=12.2 Hz, 1H), 2.35 (t, J = 7.6 Hz, 2H), 2.15 (dtt, J = 18.0, 14.0, 8.5 Hz, 4H), 1.82
— 1.75 (m, 3H), 1.74 — 1.52 (m, 13H), 1.36 (s, 3H), 1.34 — 1.17 (m, 25H), 1.05 — 0.83 (m,
99H), 0.81 — 0.53 (m, 65H); *C-NMR (151 MHz, CDCLy) § 212.41, 173.72, 173.38,
168.38, 143.46, 138.79, 138.58, 138.56, 138.26, 137.76, 137.19, 137.17, 136.14, 135.26,
128.74, 128.55, 128.53, 128.48, 128.46, 128.45, 128.43, 128.35, 128.32, 128.31, 128.29,
128.25, 128.18, 128.16, 128.15, 128.11, 127.96, 127.94, 127.83, 127.81, 127.79, 127.77,
127.74, 127.73, 127.70, 127.68, 127.63, 127.56, 127.53, 122.34, 108.90, 103.53, 102.44,
101.39, 100.86, 98.66, 86.14, 85.30, 83.91, 82.26, 81.10, 78.81, 78.73, 78.25, 78.18,
78.01, 77.46, 76.45, 76.30, 75.98, 75.84, 75.82, 75.63, 75.09, 74.91, 74.76, 73.73, 73.71,
73.22, 72.62, 72.54, 71.41, 71.09, 70.71, 69.10, 66.86, 66.84, 66.07, 65.46, 65.35, 63.85,
60.29, 53.86, 49.25, 47.40, 46.47, 46.03, 45.22, 42.86, 42.37, 41.30, 41.22, 39.81, 39.58,
39.10, 37.96, 36.92, 36.40, 36.37, 36.09, 35.95, 34.68, 34.55, 34.36, 33.14, 32.78, 31.96,
31.83, 31.62, 30.78, 29.73, 29.51, 29.46, 29.42, 29.40, 29.37, 29.29, 29.24, 29.21, 29.16,
29.08, 27.83, 26.76, 26.64, 26.49, 26.45, 25.90, 25.34, 25.30, 24.99, 24.39, 23.37, 22.69,
20.73, 20.20, 18.79, 17.51, 17.48, 16.86, 16.12, 15.91, 14.17, 13.15, 12.20, 11.48, 7.59,
7.51,7.49,7.30, 7.28, 7.22, 7.20, 7.19, 7.16, 7.03, 7.01, 6.88, 6.82, 6.81, 5.94, 5.66, 5.46,
5.42, 5.39, 5.36, 5.34, 5.31, 5.30, 5.28, 5.25, 4.96, 4.44, 4.42; HRMS (ESI) m/z: Calcd

for C15,H20sNO33NaSisS 3329.8978 [M+Na]", found 3329.9033.
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(103): A solution of fully protected thioether analogue (96) (26 mg, 0.008 mmol, 1.0
equiv) in tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was
charged with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (33
mg, 0.031 mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi)
overnight, then filtered through a 0.45 um polyvinylidene fluoride filter disk, washed
with methanol (5 mL), and concentrated. To the hydrogenation product was added a pre-
cooled (0 °C) solution of trifluoroacetic acid (4.0 mL, TFA/H,O 3:1). After vigorous
stirring for 60 min, the solution was concentrated in vacuo at 0 °C to give white solid
residue. This crude product was partially dissolved in a solution of aqueous acetonitrile
(4:1 water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18

column (5 pm, 10 X 250 mm) using a linear gradient of 20 - 75% acetonitrile (0.05%

TFA) in water (0.05% TFA) over 19 min at a flow rate of 5 mL/min. The fraction
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containing the major peak (tR = 12.60 min) was collected and lyophilized to dryness to

afford SQS-0-14-5-5 (103) (5.8 mg, 46 % yield) as a white solid.

'H-NMR (600 MHz, D,0/CDsCN, 1:1 ) § 9.9 (s, 1H), 7.64 (d, J = 9.6 Hz, 1H), 5.89 (t,
J=3.7Hz, 1H), 5.60 (d, J= 1.8 Hz, 1H), 5.28 (d, J = 7.8 Hz, 1H), 5.15 (d, J = 7.8 Hz,
1H), 5.08 (d, J= 7.8 Hz, 1H), 5.02 (d, J = 7.8 Hz, 1H), 4.80 (d, J= 9.7 Hz, 1H), 4.72 (dq,
J=9.7,6.2 Hz, 1H), 4.58 — 4.54 (m, 1H), 4.52 — 4.50 (m, 1H), 4.50 — 4.45 (m, 1H), 4.42
— 429 (m, 7H), 4.25 — 4.21 (m, 2H), 4.16 — 4.05 (m, SH), 4.05 — 4.00 (m, 1H), 3.98 —
3.88 (m, 4H), 3.85 — 3.79 (m, 3H), 3.79 — 3.74 (m, 1H), 3.20 (d, J = 11.8 Hz, 1H), 3.13
(d, J=11.8 Hz, 1H), 2.88 (t, J = 7.5 Hz, 2H), 2.86 — 2.80 (m, 2H), 2.80 — 2.75 (m, 2H),
2.71 - 2.68 (m, OH), 2.52 — 2.41 (m, 5H), 2.35 — 2.23 (m, 5H), 2.18 — 2.06 (m, 7H), 1.94
(s, 3H), 1.84 (d, J= 6.1 Hz, 3H), 1.77 — 1.73 (m, 1H), 1.72 (s, 3H), 1.57 (s, 3H), 1.50 (s,
3H), 1.48 (s, 3H), 1.45 (s, 3H); HRMS (ESI) m/z: Calcd for C76H 5sNO33Na$S 1632.7596

[M+Na]", found 1632.7648.
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(83): Sodium hydride was added to a solution of hemiacetal 73 (28 mg, 0.029 mmol, 1.5
equiv) in tetrahydrofuran/dimethylformamide (2.0 mL, 1:1) at -20 C. After 5 min, a
solution acyl chloride 65 (40 mg, 0.019 mmol, 1.0 equiv) in tetrahydrofuran (1.5 mL)
was added over 1 min. After 10 min, concentrated aqueous ammonium chloride (0.5 mL)
was added. Suspension was diluted with water and extracted with benzene (3 X 25 mL).
Combined organics were washed with brine, dried over sodium sulfate, concentrated, and
purified with silica gel chromatography (hexanes/ethyl acetate, 20:1 to 4:1) furnishing

separable esters (a-35 mg (83a), -6 mg 83, 70% total yield).

TLC R 0.55 (benzene:ethyl acetate, 20:1); FTIR (NaCl film) 2953, 2876, 2106, 1752,
1736, 1455, 1380, 1240, 1098, 1005, 825, 732, 696 cm™; *H-NMR (600 MHz, CDCl;-d)
0 9.74 (s, 1H), 7.47 — 7.26 (m, 30H), 6.12 (d, J= 3.7 Hz, 1H), 5.35 — 5.28 (m, 2H), 5.27
(t, J=3.8 Hz, 1H), 5.12 (d, J=12.4 Hz, 1H), 4.93 (d, J=11.1 Hz, 1H), 4.89 (d, J=7.4
Hz, 1H), 4.89 — 4.80 (m, 2H), 4.77 (d, J=11.7 Hz, 1H), 4.73 (d, J= 11.7 Hz, 1H), 4.70

(d,J=11.1 Hz, 1H), 4.64 (dd, J=11.7, 4.1 Hz, 2H), 4.59 (d, J= 7.5 Hz, 1H), 4.57 — 4.49
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(m, 3H), 4.46 (d, J="7.2 Hz, 1H), 4.23 (dd, J= 9.9, 3.8 Hz, 1H), 4.20 (d, J = 7.4 Hz, 1H),
4.17 (dd, J = 3.5, 1.6 Hz, 1H), 4.13 (dd, J = 7.1, 5.6 Hz, 1H), 4.05 (d, J = 5.6 Hz, 1H),
3.99 —3.79 (m, 10H), 3.78 (t, J= 9.2 Hz, 1H), 3.68 — 3.54 (m, 9H), 3.55 — 3.45 (m, 2H),
3.42 (dd, J = 9.4, 2.5 Hz, 1H), 3.41 — 3.33 (m, 2H), 3.35 — 3.29 (m, 1H), 3.28 (t, J = 8.0
Hz, 1H), 3.26 — 3.19 (m, 1H), 3.16 (t, J = 11.0 Hz, 1H), 2.94 (dd, J = 14.4, 4.4 Hz, 1H),
2.15 (t, J= 13.6 Hz, 1H), 1.86 — 1.75 (m, 4H), 1.77 — 1.55 (m, 7H), 1.52 — 1.47 (m, 2H),
1.38 (s, 4H), 1.33 (s, 6H), 1.24 (d, J = 5.6 Hz, 3H), 1.14 — 0.86 (m, 101H), 0.87 — 0.56
(m, 78H); °C-NMR (151 MHz, CDCl5) & 212.86, 174.19, 168.33, 142.70, 138.80,
138.41, 138.25, 137.45, 137.28, 135.26, 128.56, 128.52, 128.50, 128.48, 128.44, 128.40,
128.31, 128.28, 128.26, 128.23, 128.16, 128.13, 128.00, 127.96, 127.94, 127.90, 127.81,
127.78, 127.58, 127.50, 122.32, 109.19, 103.63, 102.83, 101.41, 100.85, 99.33, 91.33,
86.48, 83.78, 81.31, 78.83, 78.73, 78.32, 78.21, 77.98, 77.68, 76.65, 76.46, 76.09, 75.93,
75.82, 75.56, 75.08, 74.95, 74.51, 73.62, 73.15, 72.92, 72.62, 72.54, 72.41, 71.40, 71.09,
70.05, 68.30, 66.87, 65.35, 65.08, 63.70, 60.24, 59.95, 53.85, 49.60, 49.37, 46.37, 46.05,
41.50, 40.22, 39.53, 37.86, 36.09, 35.08, 34.69, 34.59, 34.55, 32.48, 32.40, 31.41, 30.36,
29.09, 27.83, 26.37, 26.32, 25.34, 25.30, 24.22, 23.21, 20.73, 20.27, 17.37, 17.13, 15.78,
12.27, 11.48, 7.59, 7.49, 7.27, 7.24, 7.22, 7.16, 7.01, 6.88, 6.81, 5.94, 5.66, 5.46, 5.39,
5.36,5.33, 5.28, 5.25, 5.21, 5.04, 4.43; HRM'S (ESI) m/z: Calcd for C163HassN3O3,NaSio

3051.7023 [M+Na], found 3051.7041.
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(90): Hydrogen sulfide was bubbled via cannula through an ice-cooled solution of azide
83 (44 mg, 0.015 mmol, 1.0 equiv) in pyridine/triethylamine (3.5:1, 4.5 mL) for two min.
Vent needle and cannula were removed, and septum sealed with Teflon tape and
parafilm, then warmed to ambient temperature and stirred overnight. Hydrogen sulfide
was removed with a stream of nitrogen, then resulting orange solution was concentrated
and purified via silica gel chromatography (hexanes:[ethyl acetate + 1% triethylamine],

5:1 to 2:1) furnishing amine 90 (36 mg, 83 % yield) as a colorless oil.

TLC Rr0.33 (hexanes:ethyl acetate, 2:1+0.5% triethylamine; FTIR (NaCl film) 2951,
2876, 1753, 1726 cm-1; *H-NMR (600 MHz, CDCls-d) & 9.70 (s, 1H), 7.42 — 7.25 (m,
33H), 6.15 (d, J= 3.8 Hz, 1H), 5.30 — 5.26 (m, 2H), 5.24 (t, J= 3.8 Hz, 1H), 5.09 (d, J =
12.4 Hz, 1H), 491 (d, J=11.1 Hz, 1H), 4.87 (d, J = 7.4 Hz, 1H), 4.85 — 4.77 (m, 2H),
4.72 — 4.65 (m, 3H), 4.61 (d, J=11.7 Hz, 1H), 4.58 — 4.52 (m, 4H), 4.47 (d, J= 12.1 Hz,
1H), 4.42 (d, J= 7.3 Hz, 1H), 4.19 — 4.13 (m, 2H), 4.11 (dd, J=7.6, 5.5 Hz, 1H), 4.06 (d,

J=5.5Hz, 1H), 3.98 — 3.89 (m, 4H), 3.88 — 3.71 (m, 6H), 3.67 — 3.51 (m, 10H), 3.51 —
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3.45 (m, 2H), 3.41 — 3.28 (m, 5H), 3.25 (t, J= 8.0 Hz, 1H), 3.20 (ddd, J=11.4, 7.6, 3.5
Hz, 1H), 3.13 (t, J= 11.0 Hz, 1H), 2.92 (dd, J = 14.4, 4.4 Hz, 1H), 2.12 (t, J = 13.6 Hz,
1H), 1.87 — 1.73 (m, 4H), 1.73 — 1.53 (m, 6H), 1.52 (s, 3H), 1.50 — 1.43 (m, 4H), 1.36 (s,
3H), 1.35 — 1.24 (m, 10H), 1.21 (d, J = 6.1 Hz, 3H), 1.08 — 0.89 (m, 92H), 0.88 (s, 3H),
0.80 (s, 3H), 0.78 (d, = 7.8 Hz, 2H), 0.76 (s, 3H), 0.75 — 0.56 (m, 60H); *C-NMR (151
MHz, CDCl3) & 212.88, 174.27, 168.33, 142.87, 138.82, 138.40, 138.26, 137.75, 137.70,
135.26, 128.48, 128.47, 128.43, 128.39, 128.38, 128.36, 128.31, 128.27, 128.25, 128.18,
128.15, 127.95, 127.93, 127.81, 127.78, 127.77, 127.72, 127.68, 127.64, 127.59, 127.56,
127.49, 122.20, 109.15, 103.63, 102.88, 101.40, 100.85, 99.05, 91.41, 86.48, 83.76,
81.20, 78.83, 78.73, 78.33, 78.29, 78.13, 77.99, 76.46, 76.19, 75.94, 75.82, 75.54, 75.08,
74.99, 74.47, 73.41, 73.14, 72.62, 72.53, 71.97, 71.58, 71.46, 71.39, 71.09, 68.86, 66.86,
65.34, 64.96, 63.68, 60.23, 53.85, 49.59, 49.58, 49.43, 46.43, 46.07, 42.86, 41.48, 40.17,
39.99, 39.54, 37.86, 36.09, 35.12, 34.56, 32.41, 31.46, 30.37, 29.73, 27.87, 26.40, 26.37,
26.34, 25.35,24.25, 23.21, 21.48, 20.28, 17.78, 17.77, 17.39, 17.06, 15.77, 14.20, 13.13,
12.28,12.17, 7.59, 7.49, 7.27, 7.25, 7.16, 7.14, 7.01, 6.88, 6.81, 5.94, 5.66, 5.46, 5.39,
5.32, 5.28, 5.25, 5.04, 4.43; HRMS (ESI) nVz: Calcd for C;gH93NO;35SigNa [MJrNa]+

3327.8999, found 3327.9016.
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(97): TIsobutyl chloroformate (6.3 uL, 0.048 mmol, 4 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (23 mg, 0.072 mmol, 6 equiv) and triethylamine (17 uL,
0.122 mmol, 10 equiv) in tetrahydrofuran (3 mL) and stirred for 3 hours, then transferred
via cannula to an ice-cooled solution of amine 90 (36 mg, 0.012 mmol, 1 equiv) in
tetrahydrofuran (1 mL). After 16 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 X 25 ml). Combined organics were
washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give fully

protected o-ester analogue 97 (30 mg, 76 % yield) as a colorless film.

TLC R:0.60 (hexanes:ethyl acetate, 2:1+0.5% triethylamine; 'H-NMR (600 MHz,
CDCl5-d) 6 9.69 (s, 1H), 7.40 — 7.21 (m, 35H), 6.15 (d, J= 3.7 Hz, 1H), 5.50 (d, J=10.0
Hz, 1H), 5.30 — 5.26 (m, 2H), 5.19 (t, J= 3.8 Hz, 1H), 5.11 (s, 2H), 5.09 (d, J= 12.4 Hz,
1H), 491 (d, J=11.2 Hz, 1H), 4.89 — 4.85 (m, 2H), 4.84 (d, J=11.0 Hz, 1H), 4.79 (d, J

=8.0 Hz, 1H), 4.77 (d, = 8.7 Hz, 1H), 4.70 (d, J = 9.6 Hz, 1H), 4.68 (d, J=9.2 Hz, 1H),
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4.61 (d, 1H), 4.55 (d, J="7.5Hz, 1H), 4.53 (d, J=3.2 Hz, 1H), 4.49 (d, J=12.2 Hz, 1H),
4.44 —4.39 (m, 3H), 4.16 (d, J= 7.4 Hz, 1H), 4.10 (dd, J= 7.6, 5.5 Hz, 1H), 4.08 — 4.04
(m, 2H), 3.94 — 3.89 (m, 3H), 3.87 — 3.76 (m, 6H), 3.74 (t, J= 9.2 Hz, 1H), 3.67 — 3.62
(m, 1H), 3.62 — 3.51 (m, 6H), 3.50 — 3.43 (m, 2H), 3.43 — 3.28 (m, 5H), 3.25 (t, J= 8.1
Hz, 1H), 3.22 — 3.17 (m, 1H), 3.13 (t, J= 10.9 Hz, 1H), 2.89 (dd, J= 14.4, 4.4 Hz, 1H),
2.35 (t, J=17.5 Hz, 2H), 2.18 (t, J= 7.6 Hz, 2H), 2.11 (t, J= 13.6 Hz, 1H), 1.81 — 1.71
(m, 4H), 1.71 — 1.53 (m, 10H), 1.51 (s, 4H), 1.49 — 1.41 (m, 2H), 1.38 (s, 3H), 1.34 —
1.16 (m, 25H), 1.03 — 0.88 (m, 86H), 0.87 (s, 3H), 0.79 — 0.78 (m, 3H), 0.75 (s, 3H), 0.74
—0.55 (m, 55H); ®C-NMR (151 MHz, CDCl3) 8 212.77, 174.17, 173.72, 173.57, 168.34,
142.80, 138.80, 138.34, 138.26, 137.68, 137.58, 136.13, 135.25, 128.55, 128.50, 128.48,
128.43, 128.38, 128.35, 128.30, 128.27, 128.25, 128.25, 128.21, 128.18, 128.17, 128.15,
128.02, 127.93, 127.77, 127.72, 127.70, 127.57, 127.50, 122.23, 109.16, 103.62, 102.88,
101.39, 100.84, 99.01, 90.84, 86.44, 83.75, 81.03, 78.81, 78.72, 78.23, 78.18, 77.97,
76.45, 76.04, 75.93, 75.85, 75.82, 75.55, 75.07, 74.92, 74.40, 73.35, 73.15, 72.62, 72.53,
72.12,71.39, 71.27, 71.08, 70.92, 68.93, 66.86, 66.08, 65.34, 65.03, 63.69, 60.23, 53.83,
49.62, 49.40, 47.03, 46.38, 46.04, 41.47, 40.18, 39.52, 37.85, 36.99, 36.08, 35.09, 34.54,
34.35, 32.37, 32.32, 31.45, 30.33, 29.42, 29.38, 29.31, 29.27, 29.21, 29.18, 29.14, 27.85,
26.38, 26.33, 25.90, 25.33, 24.97, 24.21, 23.17, 20.24, 17.44, 17.00, 15.77, 12.27, 7.58,
7.48,7.27,7.22,7.15,7.14,7.01, 6.87, 6.81, 5.94, 5.66, 5.46, 5.39, 5.32, 5.28, 5.24, 5.01,
4.43; HRMS (ESI) m/z Calcd for C;gH,93NO35SigNa [M+Na]+ 3327.8999, found

3327.9016.
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(104): A solution of fully protected o-ester analogue (97) (9 mg, 0.003 mmol, 1.0 equiv)
in tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was charged
with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (13 mg, 0.011
mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi) overnight,
then filtered through a 0.45 um polyvinylidene fluoride filter disk, washed with methanol
(5 mL), and concentrated. To the hydrogenation product was added a pre-cooled (0 °C)
solution of trifluoroacetic acid (2.0 mL, TFA/H,O 3:1). After vigorous stirring for 60
min, the solution was concentrated in vacuo at 0 °C to give white solid residue. This
crude product was partially dissolved in a solution of aqueous acetonitrile (5:1
water:acetonitrile) and purified by RP—-HPLC on an XBridge Prep BEH300 C18 column

(5 wm, 10 X 250 mm) using a linear gradient of 20 * 75% acetonitrile (0.05% TFA) in

over 19 min at a flow rate of 5 mL/min. The fraction containing the major peak (tR =
10.10 min) was collected and lyophilized to dryness to afford SQS-0-0-8-5 (104) (3.3 mg,

77 % yield) as a fluffy white solid
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'H NMR (600 MHz, D,0, CDsCN, 1:1 ) §9.29 (s, 1H), 5.97 (d, J = 4.0 Hz, 1H), 5.26 (t,
J=13.5Hz, 1H), 4.72 (d, J= 1.7 Hz, 1H), 4.60 (d, J = 7.7 Hz, 1H), 4.48 (d, J = 7.8 Hz,
1H), 4.39 (t, J= 4.2 Hz, 1H), 4.36 (d, J = 7.8 Hz, 1H), 4.34 (d, J= 4.6 Hz, 1H), 432 (d, J
= 8.0 Hz, 1H), 3.97 (dd, J = 10.5, 4.6 Hz, 1H), 3.88 — 3.78 (m, 5H), 3.78 — 3.59 (m, SH),
3.59 —3.51 (m, 2H), 3.50 — 3.33 (m, 9H), 3.33 — 3.21 (m, 6H), 3.20 — 3.04 (m, 5H), 2.77
(dd, J=14.1, 4.5 Hz, 1H), 2.20 (t, J = 7.5 Hz, 3H), 2.18 — 2.00 (m, 4H), 1.88 — 1.76 (m,
4H), 1.71 — 1.57 (m, 5H), 1.55 — 1.41 (m, 8H), 1.41 — 1.30 (m, 4H), 1.23 (s, 3H), 1.12 (d,
J = 5.6 Hz, 3H), 1.01 (s, 3H), 0.86 (s, 3H), 0.82 (s, 3H), 0.80 (s, 3H), 0.78 — 0.73 (m,
1H), 0.62 (s, 3H); HRMS (ESI) m/z: Caled for Cy¢Hi2NOssNa [M+Na]” 1630.7617,

found 1630.7596.
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(76): Oxalyl bromide was added to an ice-cooled solution of hemiacetal 73 (125 mg,
0.128 mmol, 1.0 equiv), 2,4,6-tri-tertbutylpyridine (127 mg, 0.513 mmol, 4.0 equiv), and
diemethylformamide (150 pL, 1.925 mmol, 15 equiv) in dichloromethane (2 mL) with
immediate evolution of CO and CO,. After five min, ice-bath was removed and warmed
to ambient temperature. After three hours, solvent was removed with a stream of
nitrogen and crude mixture was purified directly via silica gel chromatography
(hexanes:ethyl acetate, 10:1 to 4:1) to give glycosyl bromide as a colorless, thin, and

flaky film 76 (98 mg, 74% yield).
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TLC Rs 0.43 (hexanes:ethyl acetate, 4:1); FTIR (NaCl film); H-NMR (600 MHz, C¢Ds-
de) 8 7.49 — 7.06 (m, 25H), 6.62 (d, J = 3.7 Hz, 1H), 5.34 (s, 1H), 5.16 (d, J = 7.5 Hz,
1H), 5.02 (d, J=11.3 Hz, 1H), 4.93 (d, J= 11.5 Hz, 1H), 4.86 (d, J=11.5 Hz, 1H), 4.77
(d, J=11.3 Hz, 1H), 4.48 (d, J=12.0 Hz, 1H), 4.40 — 4.32 (m, 3H), 4.33 — 4.25 (m, 3H),
424 (d, J= 5.8 Hz, 1H), 4.20 (d, J = 11.7 Hz, 1H), 4.12 (dg, J = 9.9, 6.2 Hz, 1H), 4.07
(dd, J= 9.6, 3.8 Hz, 1H), 3.97 (dd, J = 9.9, 7.4 Hz, 1H), 3.92 (dd, J = 9.7, 3.6 Hz, 1H),
3.86 (dd, J= 3.6, 1.6 Hz, 1H), 3.82 (dd, J= 11.5, 5.3 Hz, 1H), 3.65 — 3.46 (m, 5H), 3.18
(dd, J=11.6, 9.8 Hz, 1H), 1.45 — 1.40 (m, 6H), 1.20 (s, 3H); *C-NMR (151 MHz, C¢Ds-
de) & 139.63, 139.44, 139.01, 138.08, 137.99, 128.63, 128.44, 128.39, 128.34, 128.32,
128.23, 127.68, 127.67, 127.65, 127.55, 127.43, 109.18, 102.71, 100.72, 93.84, 84.15,
82.33, 78.60, 78.32, 78.10, 77.92, 76.85, 76.45, 75.43, 74.81, 73.55, 72.84, 72.76, 72.36,
67.98, 67.71, 66.32, 63.97, 60.24, 27.74, 26.18, 25.69, 17.73; HRMS (ESI) m/z: Calcd

for
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(S81): Cesium carbonate (77 mg, 0.237 mmol, 5 equiv) was added to an ice-cooled
solution of thiolacetic acid (67 mL, 0.946 mmol, 20 equiv) and bromide 76 (49 mg, 0.047
mmol, 1 equiv) and in tetrahydrofuran/dimethylformamide (2 mL, 1:1). After one hour,
reaction was diluted with ethyl acetate, washed with a saturated sodium bicarbonate and

brine, dried over sodium sulfate, concentrated and purified with silica gel
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chromatography (hexanes/ethyl acetate, 10:1 to 2:1) to give thioacetate as a colorless oil

S81 (42 mg, 87% yield).

TLC R 0.55 (hexanes:ethyl acetate, 2:1); FTIR (NaCl film) 3088, 3063, 3030, 2983,
2904, 2872, 2162, 2109, 1706, 1704, 1700, 1496, 1453, 1419, 1381, 1363, 1310, 1274,
1241, 1221, 1091, 1021, 989, 952, 912, 864, 862, 814, 790, 736, 697, 668, 625 cm-1;
H-NMR (600 MHz, CDCl;-d) § 7.36 — 7.20 (m, 25H), 5.44 (s, 1H), 4.98 (d, J=10.1 Hz,
1H), 4.85 (d, J= 7.6 Hz, 1H), 4.84 — 4.75 (m, 3H), 4.70 (d, J=11.2 Hz, 1H), 4.66 (d, J=
11.7 Hz, 1H), 4.62 (d, J = 11.0 Hz, 1H), 4.57 (d, J= 11.7 Hz, 1H), 4.55 — 4.45 (m, 3H),
4.11 (d, J=2.8 Hz, 1H), 4.07 (dd, J= 7.4, 5.7 Hz, 1H), 4.02 (d, J= 5.7 Hz, 1H), 3.98 (t, J
=9.5 Hz, 1H), 3.89 (dd, J=11.8, 4.1 Hz, 1H), 3.76 — 3.66 (m, 3H), 3.60 — 3.48 (m, 5H),
3.26 (t, J=8.1 Hz, 1H), 3.19 - 3.11 (m, 1H), 2.21 (s, 3H), 1.44 (s, 3H), 1.25 (s, 3H), 1.23
(d, J = 6.2 Hz, 3H); ®C-NMR (151 MHz, CDCl;) & 192.87, 138.78, 138.59, 138.23,
137.47, 136.58, 128.62, 128.56, 128.53, 128.45, 128.39, 128.36, 128.31, 128.29, 128.26,
128.11, 128.08, 128.04, 127.96, 127.94, 127.81, 127.78, 127.62, 127.56, 109.04, 101.99,
98.83, 83.86, 83.16, 81.94, 81.47, 78.09, 77.94, 77.72, 76.17, 75.70, 75.58, 74.70, 73.70,
73.21, 73.05, 71.80, 67.89, 65.32, 63.81, 58.58, 30.77, 27.75, 26.42, 17.17; HRM S (ESI)

mV/z: Calcd for Cs7HgsN3O13SNa [MJrNa]+ 1054.4136, found 1054.4182.
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(81): Hydrazine (6.1 puL, 0.194 mmol, 5.0 equiv) was added to a solution of thioacetate
S81 (40 mg, 0.039 mmol, 1 equiv) and dithiothreitol (18 mg, 0.116 mmol, 3 equiv) in
tetrahydrofuran/methanol (2 mL, 1:1). After 1 hr, reaction contents was diluted with
ethyl acetate, washed with water and brine, dried over sodium sulfated, concentrated, and

purified with silica gel chromatography to give thiohemiacetal as a clear oil 81 (36 mg,

94%).

TLC R 0.51 (hexanes:ethyl acetate, 2:1; FTIR (NaCl film) 3583, 3063, 3031, 2983,
2870, 2106, 1496, 1453, 1369, 1274, 1241, 1220, 1091, 1021, 990, 912, 862, 793, 736,
697, 665 cm™; 'H-NMR (500 MHz, CDCl3) § 7.40 — 7.26 (m, 25H), 5.52 (s, 1H), 4.93 —
4.80 (m, 4H), 4.71 (q, J=11.2, 10.7 Hz, 3H), 4.62 (d, J = 11.7 Hz, 1H), 4.59 — 4.51 (m,
3H), 435 (t, J= 8.9 Hz, 1H), 4.17 (dd, J = 7.5, 5.7 Hz, 1H), 4.11 (d, J = 3.4 Hz, 1H),
4.08 (d, J=5.7 Hz, 1H), 4.04 (dd, J=9.9, 6.6 Hz, 1H), 3.94 (dd, J=11.9, 4.1 Hz, 1H),
3.86 (t, J=9.2 Hz, 1H), 3.66 — 3.57 (m, 7H), 3.31 (dd, J=9.5, 8.7 Hz, 1H), 3.24 - 3.14
(m, 1H), 2.31 (d, J = 8.4 Hz, 1H), 1.49 (s, 3H), 1.31 (s, 3H), 1.23 (d, J = 6.2 Hz, 3H);
B3C-NMR (151 MHz, CDCly) & 138.75, 138.71, 138.20, 137.39, 136.55, 128.57, 128.51,
128.40, 128.32, 128.27, 128.25, 128.22, 128.06, 128.05, 128.04, 127.91, 127.76, 127.75,
127.50, 127.48, 108.97, 101.96, 98.80, 83.86, 82.88, 81.90, 79.70, 78.14, 77.92, 77.69,

77.60, 76.27, 75.71, 75.53, 74.71, 73.73, 73.17, 71.66, 68.25, 65.38, 63.76, 58.53, 27.74,
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26.42, 17.24; HRMS (ESI) mVz: Calcd for CssHg3N301,SNa [M+Na]™ 1012.4030, found

1012.4025.
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(84): Sodium hydride (60% dispersion in mineral oil, 4.7 mg, 0.115 mmol, 3 equiv) was
added to an ice-cooled solution of thiohemiacetal 81 (38 mg, 0.038 mmol, 1.0 equiv) and
acyl chloride 66 (88 mg, 0.042 mmol, 1.1 equiv) in tetrahydrofuran (5 mL). After two
hours, saturated ammonium chloride (I mL) was added and the mixture diluted with
dichloromethane and washed with water and brine, then dried over sodium sulfate,
concentrated, and purified with silica gel chromatography (hexanes/ethyl acetate, 20:1 to
4:1) to give glycosyl thioester 84 (102 mg, 87% vyield) as a flaky white film.
Characteristic chemical shift of newly formed thioester anomeric proton at 4.84 ppm, J =

10.0 Hz and carbon at 81.6 ppm.

TLC R 0.80 (hexanes:ethyl acetate, 2:1) FTIR (NaCl film) 2953, 2876, 2109, 1751,

1685, 1456, 1380, 1240, 1096, 1006, 900, 808, 733, 696, 665; "H-NMR (500 MHz,
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CDCl5-d) 6 9.68 (s, 1H), 7.39 — 7.27 (m, 30H), 5.55 (s, 1H), 5.32 (t, J=3.8 Hz, 1H), 5.29
(d, J=12.3 Hz, 1H), 5.09 (d, J=12.4 Hz, 1H), 491 (d, J=7.6 Hz, 1H), 4.86 — 4.80 (m,
3H), 4.76 — 4.70 (m, 2H), 4.63 (d, J= 9.3 Hz, 1H), 4.61 (d, J= 8.3 Hz, 1H), 4.58 — 4.51
(m, 4H), 4.49 (s, 1H), 4.42 (d, J="7.2 Hz, 1H), 4.19 (d, J=7.3 Hz, 1H), 4.15 (dd, J=3.4,
1.4 Hz, 1H), 4.13 — 4.04 (m, 3H), 3.99 — 3.66 (m, 13H), 3.65 — 3.53 (m, 7H), 3.51 — 3.32
(m, 7H), 3.30 — 3.23 (m, 2H), 3.19 (dd, J=11.5, 9.2 Hz, 1H), 3.13 (t, J = 10.9 Hz, 1H),
2.84 (dd, J = 13.3, 3.3 Hz, 1H), 2.22 (t, J = 13.3 Hz, 1H), 1.95 - 1.75 (m, 4H), 1.74 —
1.57 (m, 5H), 1.53 — 1.46 (m, 5H), 1.45 —1.23 (m, 17H), 1.19 — 1.05 (m, 2H), 1.03 — 0.85
(m, 114H), 0.84 — 0.52 (m, 77H); *C-NMR (151 MHz, CDCL) & 212.51, 204.16,
168.32, 142.00, 138.68, 138.48, 138.21, 137.60, 136.58, 135.23, 128.55, 128.46, 128.43,
128.42, 128.34, 128.32, 128.29, 128.24, 128.21, 128.14, 128.12, 128.11, 128.03, 128.01,
128.00, 127.88, 127.85, 127.79, 127.75, 127.60, 127.59, 123.87, 108.91, 103.51, 102.28,
101.37, 100.82, 98.50, 86.26, 83.92, 83.61, 82.46, 81.62, 78.78, 78.70, 78.23, 78.01,
77.80, 76.43, 76.16, 75.94, 75.80, 75.76, 75.57, 75.53, 75.05, 75.03, 73.60, 73.20, 72.59,
72.50, 71.64, 71.60, 71.38, 71.05, 67.93, 66.84, 65.38, 65.32, 63.84, 60.25, 58.80, 56.19,
53.84, 53.43, 49.30, 46.67, 46.09, 41.81, 41.21, 39.84, 37.85, 36.04, 35.01, 33.94, 32.56,
32.20, 32.04, 30.32, 27.74, 26.46, 26.39, 25.31, 24.64, 23.40, 20.21, 17.57, 17.10, 15.75,
12.22, 7.55, 7.46, 7.25, 7.16, 7.13, 7.09, 6.98, 6.85, 6.78, 5.91, 5.63, 5.43, 5.36, 5.33,
5.31, 5.25, 5.22, 4.88, 4.40; HRM S (ESI) m/z: Calcd for C;63H265N3031NaSioS [MJrNa]+

3067.6794, found 3067.6711.
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(85): An excess of hydrogen sulfide was bubbled via cannula through an ice-cooled
solution of azide 84 (80 mg, 0.026 mmol, 1.0 equiv) in pyridine/triethylamine (3.5:1, 4.5
mL) for two min. Vent needle and cannula were removed, and septum sealed with
Teflon tape and parafilm, then warmed to ambient temperature and stirred overnight.
Hydrogen sulfide was removed with a stream of nitrogen, then resulting orange solution
was concentrated and purified via silica gel chromatography (hexanes:[ethyl acetate + 1%

triethylamine], 5:1 to 2:1) furnishing amine 85 (71 mg, 90 % yield).

TLC R 0.50 (hexanes:ethyl acetate, 2:1 +0.5% triethylamine); FTIR (NaCl film) 3583,
2951, 2876, 1751, 1724, 1685, 1496, 1457, 1380, 1240, 1097, 1006, 900, 807, 731 cm™;
'H-NMR (600 MHz, CDCl5-d) & 9.69 (s, 1H), 7.37 — 7.26 (m, 30H), 5.57 (s, 1H), 5.32 (t,
J=3.8 Hz, 1H), 5.29 (d, J=12.3 Hz, 1H), 5.09 (d, J=12.4 Hz, 1H), 4.92 (d, J= 7.6 Hz,
1H), 4.88 — 4.81 (m, 4H), 4.74 — 4.68 (m, 2H), 4.64 (d, J= 8.3 Hz, 1H), 4.62 (d,J="7.4
Hz, 1H), 4.58 (d, J=11.8 Hz, 1H), 4.56 (d, J=7.5 Hz, 1H), 4.53 — 4.49 (m, 3H), 4.42 (d,

J=7.3Hz, 1H), 4.18 (d, J= 7.4 Hz, 1H), 4.13 (dd, J = 7.4, 5.6 Hz, 1H), 4.10 (d, = 5.7
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Hz, 1H), 4.00 (dd, J = 10.3, 8.5 Hz, 1H), 3.97 — 3.90 (m, 4H), 3.87 (d, J = 9.2 Hz, 1H),
3.85—3.72 (m, 6H), 3.68 — 3.53 (m, 10H), 3.48 (ddd, J=10.5, 8.4, 5.1 Hz, 1H), 3.39 (dd,
J=9.4,2.5 Hz, 1H), 3.37 — 3.32 (m, 2H), 3.28 (dd, J= 8.7, 7.5 Hz, 1H), 3.25 (t, J= 8.0
Hz, 1H), 3.20 (dd, J=11.7, 9.3 Hz, 1H), 3.13 (t, J= 11.0 Hz, 1H), 2.84 (dd, J = 13.4, 4.6
Hz, 1H), 2.22 (t, J=13.2 Hz, 1H), 1.95 — 1.74 (m, 5H), 1.73 — 1.53 (m, 7H), 1.51 (s, 4H),
1.45 — 1.38 (m, 2H), 1.34 (s, 4H), 1.33 — 1.26 (m, 11H), 1.16 — 0.89 (m, 97H), 0.88 (s,
3H), 0.82 (s, 3H), 0.80 — 0.51 (m, 61H); *C-NMR (151 MHz, CDCls) § 212.59, 204.03,
168.36, 142.34, 138.70, 138.50, 138.24, 137.93, 136.88, 135.26, 128.55, 128.52, 128.49,
128.46, 128.44, 128.38, 128.35, 128.33, 128.31, 128.24, 128.18, 128.16, 128.15, 128.07,
128.05, 127.82, 127.78, 127.72, 127.65, 127.63, 123.70, 108.96, 103.55, 102.32, 101.39,
100.85, 98.36, 86.28, 83.95, 82.49, 81.76, 78.81, 78.73, 78.22, 78.03, 77.85, 76.45, 76.24,
75.97, 75.83, 75.79, 75.68, 75.09, 75.07, 73.59, 73.23, 72.62, 72.53, 71.41, 71.08, 70.80,
69.05, 66.86, 65.35, 63.87, 60.28, 56.29, 53.86, 49.36, 49.04, 46.84, 46.10, 41.68, 41.28,
39.86, 37.88, 36.08, 35.06, 33.95, 32.58, 32.19, 32.10, 30.35, 29.73, 27.81, 26.46, 26.44,
25.34, 24.66, 23.46, 20.24, 17.62, 17.21, 15.80, 12.24, 7.58, 7.49, 7.27, 7.19, 7.16, 7.12,
7.01, 6.88, 6.81, 5.94, 5.66, 5.46, 5.39, 5.36, 5.28, 5.25, 4.92, 4.43; HRMS (ESI) m/z:

Calcd for Cy63H26sNO3;SioS [M+H]" 3019.7070, found 3019.7112.
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(92): Isobutyl chloroformate (3.5 UL, 0.0264 mmol, 4 equiv) was added to an ice-cooled
solution of carboxylic acid 106 (11 mg, 0.033 mmol, 5 equiv) and triethylamine (9 uL,
0.066 mmol, 10 equiv) in tetrahydrofuran (3 mL) and stirred for 2 hours, then transferred
via cannula to an ice-cooled solution of amine 85 (20 mg, 0.007 mmol, 1 equiv) in
tetrahydrofuran (1 mL). After 2 hr, suspension was diluted with saturated sodium
bicarbonate and then extracted with ethyl acetate (3 X 25 ml). Combined organics were
washed with brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate + 0.5% triethylamine, 10:1 to 1:1) to give fully

protected thioester analogue 92 (19 mg, 87 % yield) as a colorless film.

TLC Ri0.57 (hexanes:dichloromethane:ethyl acetate, 4:2:1) FTIR (NaCl film) 3583,
3381, 2954, 2876, 1751, 1738, 1682, 1497, 1455, 1414, 1380, 1240, 1099, 1005, 901,
863, 806, 732, 696, 665 cm™; 'H-NMR (600 MHz, CDCl5-d) § 9.70 (s, 1H), 7.39 — 7.25
(m, 35H), 5.89 (s, 1H), 5.52 (s, 1H), 5.31 (d, J= 3.7 Hz, 1H), 5.28 (d, J = 12.4 Hz, 1H),
5.11 (s, 2H), 5.09 (d, J=12.4 Hz, 1H), 4.93 — 4.87 (m, 2H), 4.89 — 4.74 (m, 6H), 4.72 (d,
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J=11.7 Hz, 1H), 4.64 (d, J = 3.4 Hz, 1H), 4.62 (d, J = 4.4 Hz, 1H), 4.55 (d, J= 7.4 Hz,
1H), 4.52 (d, J = 11.8 Hz, 2H), 4.47 — 4.40 (m, 3H), 4.17 (d, J= 7.4 Hz, 1H), 4.12 (dd, J
=7.4,5.6 Hz, 1H), 4.09 (d, J = 5.6 Hz, 1H), 3.97 — 3.72 (m, 12H), 3.65 — 3.51 (m, 8H),
3.48 (ddd, J=10.4, 8.4, 5.1 Hz, 1H), 3.44 — 3.31 (m, 6H), 3.28 (dd, J= 8.7, 7.4 Hz, 1H),
3.25 (t, J=8.0 Hz, 1H), 3.19 (dd, J = 11.6, 9.1 Hz, 1H), 3.13 (t, J= 11.0 Hz, 1H), 2.83
(dd, J=13.6, 4.5 Hz, 1H), 2.34 (t, J= 7.6 Hz, 2H), 2.25 — 2.14 (m, 3H), 1.92 — 1.81 (m,
2H), 1.83 — 1.74 (m, 1H), 1.41 (ddd, J=13.5, 9.3, 3.8 Hz, 1H), 1.71 — 1.53 (m, 12H) 1.50
(s, 3H) 1.35 (s, 3H), 1.33 — 1.03 (m, 31H), 1.03 — 0.87 (m, 99H), 0.87 (s, 3H), 0.83 (s,
4H), 0.81 — 0.50 (m, 70H); *C-NMR (151 MHz, CDCls) & 212.56, 203.39, 173.67,
173.31, 168.34, 142.85, 138.68, 138.49, 138.22, 137.85, 137.19, 136.12, 135.24, 128.72,
128.52, 128.44, 128.43, 128.39, 128.32, 128.31, 128.26, 128.25, 128.21, 128.15, 128.13,
128.08, 128.05, 128.02, 127.90, 127.79, 127.74, 127.63, 127.61, 127.59, 127.53, 122.89,
108.98, 103.57, 102.26, 101.37, 100.82, 98.39, 86.32, 83.91, 82.38, 81.95, 81.74, 78.79,
78.70, 78.06, 77.98, 77.92, 76.43, 76.12, 75.92, 75.84, 75.80, 75.74, 75.06, 74.99, 73.53,
73.20, 72.59, 72.50, 71.38, 71.07, 70.75, 68.76, 66.84, 66.03, 65.32, 65.26, 63.84, 60.25,
56.54, 53.80, 49.29, 46.86, 46.19, 45.99, 41.33, 41.28, 39.81, 37.83, 36.93, 36.03, 35.10,
34.33, 33.90, 32.53, 32.11, 32.08, 30.30, 29.70, 29.45, 29.40, 29.38, 29.24, 29.22, 29.14,
27.79, 26.42, 26.41, 25.87, 25.32, 24.97, 24.51, 23.40, 20.18, 17.67, 17.07, 15.79, 12.24,
7.55,7.46,7.24,7.15, 7.13,7.09, 6.98, 6.85, 6.78, 5.91, 5.63, 5.44, 5.36, 5.33, 5.25, 5.22,
4.90, 4.40; HRM S (ESI) m/z: Calcd for C;3,Hy93NO034NaSiyS [M+Na]+ 3343.8771, found

3343.8735.
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(99): A solution of fully protected B-thioester analogue (92) (18 mg, mmol, 1.0 equiv) in
tetrahydrofuran (2 mL) and ethanol (2 mL) in a 25 mL round bottom flask was charged
with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (13 mg, 0.011
mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi) overnight,
then filtered through a 0.45 pm polyvinylidene fluoride filter disk, washed with methanol
(5 mL), and concentrated. To the hydrogenation product was added a pre-cooled (0 °C)
solution of trifluoroacetic acid (2.0 mL, TFA/H,O 3:1). After vigorous stirring for 60
min, the solution was concentrated in vacuo at 0 °C to give white solid residue. This
crude product was partially dissolved in a solution of aqueous acetonitrile (4:1
water:acetonitrile) and purified by RP-HPLC on an XBridge Prep BEH300 C18 column

(5 pm, 10 x 250 mm) using a linear gradient of 20 * 66% acetonitrile (0.05% TFA) in

over 16 min at a flow rate of 5 mL/min. The fraction containing the major peak (tR =
13.2 min) was collected and lyophilized to dryness to afford SQS-0-13-5-5 (99) (3.1 mg,

33 % yield) as a fluffy white solid.
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'H NMR (600 MHz, D,O/CD;CN, 1:1) § 9.91 (s, 1H), 5.87 (t, J = 4.1 Hz, 1H), 5.55 (d, J
= 2.0 Hz, 1H), 5.38 (d, J = 10.0 Hz, 1H), 5.22 (d, J = 7.8 Hz, 1H), 5.10 (d, J = 7.8 Hz,
1H), 5.00 — 4.95 (m, 2H), 4.92 (d, J = 7.8 Hz, 1H), 4.46 — 4.36 (m, 5H), 4.35 — 4.25 (m,
4H), 4.24 — 4.12 (m, 6H), 4.09 — 3.95 (m, 6H), 3.93 — 3.84 (m, 4H), 3.82 (dd, J = 11.5,
6.3 Hz, 1H), 3.78 — 3.70 (m, 3H), 3.67 (dd, J = 9.3, 7.7 Hz, 1H), 3.45 (dd, J = 13.6, 2.9
Hz, 1H), 2.81 (t, J = 7.6 Hz, 3H), 2.79 — 2.67 (m, 3H), 2.47 — 2.32 (m, 5H), 2.32 — 2.14
(m, 6H), 2.07 (q, J = 6.9 Hz, 6H), 1.97 (t, J=9.7 Hz, 2H), 1.89 (d, J = 15.4 Hz, 2H), 1.85
(s, 3H), 1.76 — 1.69 (m, 2H), 1.64 (s, 3H), 1.63 — 1.58 (m, 2H), 1.48 (s, 3H), 1.4 (s, 4H),
1.40 (s, 3H), 1.38 (d, J = 6.7 Hz, 2H), 1.19 (s, 3H); HRMS (ESI) m/z Caled for

C76H121NO34N8.S [M+Na]+ 16467388, found 1646.7373.
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APPENDIX B
EXPERIMENTAL PROCEDURESFOR CHAPTER 3

General Procedures. Reactions were performed in flame-dried sealed-tubes or
modified Schlenk (Kjeldahl shape) flasks fitted with a glass stopper under a positive
pressure of argon, unlessotherwise noted. Air- and moisture-sensitive liquids and
solutions were transferred via syringe. The appropriate carbohydrate and sulfoxide
reagents were dried via azeotropic removal of water with toluene. Molecular sieves were
activated at 350 °C and were crushed immediately prior to use, then flame-dried under
vacuum. Organic solutions were concentrated by rotary evaporation below 30 °C. Flash
column chromatography was performed employing 230—400 mesh silica gel. Thin-layer
chromatography was performed using glass plates pre-coated to a depth of 0.25 mm with
230400 mesh silica gel impregnated with a fluorescent indicator (254 nm).

Materials. Dichloromethane, tetrahydrofuran, diethyl ether, and toluene were
purified by passage through two packed columns of neutral alumina under an argon
atmosphere. Methanol was distilled from magnesium at 760 Torr.
Trifluoromethanesulfonic anhydride was distilled from phosphorus pentoxide at 760
Torr. Boron trifluoride diethyl etherate was distilled from calcium hydride at 760 Torr.
All other chemicals were obtained from commercial vendors and were used without
further purification unless noted otherwise.

Instrumentation. Infrared (IR) spectra were obtained using a Perkin Elmer
Spectrum BX spectrophotometer or a Bruker Tensor 27. Data are presented as the
frequency of absorption (cm™). Proton and carbon-13 nuclear magnetic resonance (‘H

NMR and CNMR) spectra were recorded on a Bruker Avance III instrument; chemical
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shifts are expressed in parts per million (6 scale) downfield from tetramethylsilane and
are referenced to residual proton in the NMR solvent (d-chloroform: & 7.26 for '"H NMR,
8 77.16 for °C NMR; d6-benzene: § 7.16 for 'H NMR, § 128.06 for °C NMR; d4-
methanol: § 3.31 for "H NMR, & 49.00 for Bc NMR; d3-acetonitrile: & 1.94 for "H NMR,
8 1.32 for >C NMR; deuterium oxide: & 4.79 for '"H NMR). Data are presented as
follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t =
triplet, q = quartet, m = multiplet and/or multiple resonances), coupling constant in Hertz
(Hz), integration, assignment. RP-HPLC purification and analyses were carried out on a
Waters 2545 binary gradient HPLC system equipped with a Waters 2996 photodiode

array detector, and absorbances were monitored at wavelengths of 210-600 nm.

O OH (o] OBn
Me Me Me Me
Me Me
B ———
HO ) HO )
Mé Me ‘Me Mé Me ‘Me
Me Me

(124): To a suspension of oleanolic acid monohydrate (12 g, 25.3 mmol, 1 equiv) in
dimethylformamide (50 mL) was added benzyl bromide (4.5 mL, 38.5 mmol, 1.5 equiv)
followed by cesium carbonate (11 g, 25.3 mmol, 1 equiv). After 4 hrs, the solution was
diluted with water (200 mL) and extracted with ethyl acetate (3 X 100 mL). Combined
organics were washed with brine, then dried over magnesium sulfate, filtered,
concentrated, and purified with silica gel chromatography to give benzyl ester 124

(11.1 g, 80% yield) as a white foam.

TLC R:0.24 (10:10:1 benzene:hexanes:ethyl acetate); FTIR (NaCl film) 3432, 2960,

2921, 1723, 1498, 1462, 1452, 1384, 1362, 1259, 1199, 1180, 1039, 1015 cm™; *H NMR
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(600 MHz, CDCl3) & 7.37 — 7.28 (m, 5H), 5.29 (t, J = 3.7 Hz, 1H), 5.12 — 5.02 (m, 2H),
3.20 (dd, J=11.3, 4.3 Hz, 1H), 2.90 (dd, J = 13.8, 4.6 Hz, 1H), 1.98 (td, J=13.6, 4.1 Hz,
1H), 1.85 (dd, J=9.0, 3.7 Hz, 2H), 1.75 — 1.48 (m, 10H), 1.42 (td, J = 12.6, 4.0 Hz, 1H),
1.38 — 1.29 (m, 3H), 1.27 — 1.15 (m, 3H), 1.12 (s, 3H), 1.06 — 1.01 (m, 1H), 0.98 (s, 3H),
0.95 (d, J = 4.2 Hz, 1H), 0.92 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H), 0.77 (s, 3H), 0.71 (dd, J
=11.8, 2.0 Hz, 1H), 0.60 (s, 3H); *C NMR (151 MHz, CDCl5) & 177.42, 143.65, 136.39,
128.38, 127.94, 127.87, 122.46, 78.96, 65.90, 55.16, 47.57, 46.71, 45.83, 41.65, 41.33,
39.24, 38.72, 38.40, 36.97, 33.83, 33.10, 32.67, 32.34, 30.68, 28.08, 27.59, 27.16, 25.86,
23.63, 23.37, 23.02, 18.29, 16.85, 15.57, 15.28; HRMS mvz (ESI): Calcd for C37Hss03

[M+] 547.4151, found 545.4124.
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HO

Me Me “Me
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(123): To a suspension of benzyl oleanolate 124 (5.0 g, 9.1 mmol, 1 equiv), 2,4,6-tri-
tert-butylpyridine (5.6 g, 22.9 mmol, 2.5 equiv), and PhI(OAc), (3.5 g, 11 mmol, 1.2
equiv) in benzene (200 mL) in a 500 mL round bottomed flask was added crystalline
iodine (1.15 g, 4.57 mmol, 0.5 equiv) and placed in a photo-box equipped with 10 visible
full-spectrum visible light bulbs (wattage). After 50 min and 85 min, an additional
portion of iodine was added (0.46 g, 1.8 mmol, 0.2 equiv, and 0.23, 0.9 mmol, 0.1 equiv,
respectively). When TLC showed consumption of starting material (105 min total),
reaction was diluted with saturated sodium thiosulfate, and extracted with ethyl acetate
(2% 100 mL). Combined organics were washed with brine, dried over sodium sulfate,

decanted, concentrated, and purified with silica gel chromatography
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((benzene/hexanes):ethyl acetate, 1:1:0 to 2:2:1) to give 123 (3.5 g, 70% yield) as a white

foam.

TLC R 0.51 (10:10:1 benzene:hexanes:ethyl acetate); FTIR (NaCl film) 2949, 1726,
1639, 1499, 1456, 1387, 1303, 1263, 1161, 1123, 1082, 1034, 894, 738, 699 cm';
'H NMR (600 MHz, CDCl3) § 9.73 (t, J = 1.9 Hz, 1H), 7.41 — 7.28 (m, 5H), 5.29 (t, J =
3.5 Hz, 1H), 5.14 — 5.01 (m, 2H), 4.84 (bs, 1H), 4.62 (bs, 1H), 2.91 (ddd, J = 14.3, 4.9,
1.8 Hz, 1H), 2.47 (dddd, J=16.3, 11.5, 5.0, 1.7 Hz, 1H), 2.30 (dddd, J=16.7, 10.9, 6.3,
2.2 Hz, 1H), 2.03 — 1.88 (m, 3H), 1.77 — 1.72 (m, 2H), 1.72 (s, 3H), 1.70 — 1.56 (m, 4H),
1.55 - 1.48 (m, 2H), 1.45 (td, J=13.0, 4.1 Hz, 1H), 1.40 — 1.30 (m, 2H), 1.24 — 1.16 (m,
3H), 1.15 (s, 3H), 1.08 (dt, J=13.9, 3.4 Hz, 1H), 0.92 (s, 3H), 0.91 (s, 3H), 0.90 (s, 3H),
0.66 (s, 3H); ®*C NMR (151 MHz, CDCl3) & 202.70, 177.40, 147.40, 143.71, 136.36,
128.40, 128.32, 127.99, 127.92, 122.16, 113.53, 65.95, 50.65, 46.73, 45.77, 42.19, 41.44,
39.02, 38.99, 38.30, 38.07, 33.84, 33.09, 32.31, 31.42, 30.75, 30.70, 27.58, 25.73, 24.32,
23.61, 23.55, 23.15, 23.01, 19.48, 16.92; HRM'S m/z (ESI): Calcd for C;7Hs305 [M+]

545.3995, found 545.3988.

(122): Selenium dioxide (102 mg, 0.918 mmol, 0.5 equiv) was added to a flame dried 25
mL schlenk flask followed by addition of dichloromethane (4 mL) and tert-butanol

hydroperioxide (5.5 M solution in decane, 1.0 mL, 5.50 mmol, 3 equiv). Enal 123 was
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added as a solution in dichloromethane (5 mL). After 24 hr, reaction was diluted with
sodium bicarbonate, then extracted with ethyl aceate (3 X 50 mL). Combined organics
were washed with brine, then dried over sodium sulfate, concentrated, and purified with
silica gel chromatography ([hexanes/benzene, 1:1]:ethyl acetate, 10:1 to 5:1) to give

dialdehyde 122 (740 mg, 72% yield) as a white foam.

TLC Rf0.20 (10:10:1 benzene:hexanes:ethyl acetate); FTIR (NaCl film) 2945, 1723,
1691, 1497, 1455, 1386, 1364, 1301, 1259, 1232, 1160, 1120, 1079, 1032, 968, 735,
696 cm™; '"H NMR (600 MHz, CDCl3) & 9.67 (d, J = 1.8 Hz, 1H), 9.43 (s, 1H), 7.38 —
7.28 (m, 5H), 6.30 (s, 1H), 6.13 (s, 1H), 5.28 (t, J = 3.6 Hz, 1H), 5.12 — 5.02 (m, 2H),
2.96 — 2.83 (m, 2H), 2.68 (dd, J=13.0, 2.7 Hz, 1H), 2.22 (dddd, J=17.3, 12.0, 5.5, 2.1
Hz, 1H), 1.99 (td, J = 13.7, 4.1 Hz, 1H), 1.93 — 1.65 (m, 8H), 1.62 — 1.54 (m, 2H), 1.51
(td, J=12.9, 3.6 Hz, 1H), 1.42 — 1.31 (m, 3H), 1.30 — 1.24 (m, 2H), 1.24 (s, 2H), 1.18 (s,
3H), 1.09 (dt, J=13.7, 3.3 Hz, 1H), 0.92 (s, 3H), 0.91 (s, 3H), 0.84 (s, 3H), 0.68 (s, 3H);
3C NMR (151 MHz, CDCls) & 202.87, 194.99, 177.36, 152.54, 143.69, 137.71, 136.34,
128.29, 127.97, 127.90, 122.04, 65.91, 46.71, 45.74, 42.25, 41.43, 38.99, 38.87, 38.47,
38.11, 37.79, 33.82, 33.07, 32.28, 31.44, 31.12, 30.67, 27.55, 25.75, 24.88, 23.80, 23.58,
22.99, 18.28, 16.91; HRMS m/z (ESI): Calcd for C;7Hs504 [M+H] 559.3787, found

559.3773.
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Representative procedurefor tandem Michael-aldol reaction.

To an ice-cooled solution of enal 122 (148 mg, 0.265 mmol, 1.0 equiv) and t-BuSH
(90 uL, 0.795 mmol, 3.0 equiv) in tetrahydrofuran (5 mL) was added n-BuLi (132 L,
1.6 M solution in hexanes, 0.8 equiv). After 20 min, saturated ammonium chloride (1
mL) was added, then diluted with water. Mixture was extracted with ethyl acetate
(3 x50 mL). Combined organics were washed with brine, dried over sodium sulfate,
concentrated, and  purified with  silica  gel  chromatography  ([2:1
hexanes:dichloromethane]:ethyl acetate, 1:0 to 5:1) to give thioether 129a (121 mg, 70%)

as a white foam.

M'Vele7< Me

(129a): TLC R 0.45 (4:1 hexanes:ethyl acetate); "H NMR (600 MHz, CDCls) & 9.83 (d,
J=2.1Hz, 1H), 7.37 — 7.28 (m, 5H), 5.28 (t, J = 3.7 Hz, 1H), 5.11 — 5.02 (m, 2H), 3.71
(ddd, J = 11.6, 5.6, 2.1 Hz, 1H), 2.94 — 2.83 (m, 3H), 2.01 — 1.93 (m, 1H), 1.92 — 1.75
(m, 4H), 1.76 — 1.39 (m, 13H), 1.35 (s, 9H), 1.32 — 1.14 (m, 8H), 1.13 (s, 3H), 1.08 —
0.98 (m, 3H), 0.97 (d, J = 6.7 Hz, 0H), 0.92 (s, 3H), 0.90 (s, 3H), 0.79 (s, 3H), 0.58 (s,
3H); 3C NMR (151 MHz, CDCls) ¢ 206.86, 177.38, 143.80, 136.35, 128.40, 128.38,
127.98, 127.90, 122.17, 71.44, 65.91, 55.31, 50.96, 46.67, 46.39, 45.76, 42.69, 41.74,

41.34, 39.04, 37.78, 36.93, 34.65, 34.51, 33.80, 33.08, 32.36, 32.31, 31.58, 30.80, 30.69,
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27.86,27.54, 27.51, 26.89, 25.84, 25.83, 25.26, 23.69, 23.62, 22.98, 22.65, 20.70, 18.52,
16.86, 14.92, 14.14; HRM S mVz (ESI): Calcd for C4HgO4sNaS [M+Na] 671.4110, found

671.4121.

@ 0Os_0Bn
Me

S Me

HO )
o= Me “Me
Me

(121): Major Isomer, Shown Above TLC R; 0.22 (4:1 hexanes:ethyl acetate); *H NMR
(600 MHz, CDCls) § 9.80 (s, 1H), 7.39 — 7.27 (m, 9H), 7.24 — 7.18 (m, 1H), 5.28 (t, J =
3.7 Hz, 1H), 5.14 — 5.00 (m, 3H), 4.31 (q, J = 2.9 Hz, 1H), 3.34 (s, 2H), 3.08 (d, J = 2.7
Hz, 1H), 2.90 (dd, J= 13.7, 4.1 Hz, 1H), 2.03 — 1.93 (m, 2H), 1.92 — 1.80 (m, 3H), 1.78 —
1.62 (m, 7H), 1.62 — 1.60 (m, 1H), 1.60 — 1.41 (m, 8H), 1.37 — 1.23 (m, 7H), 1.14 (s, 4H),
0.99 (s, 3H), 0.97 (d, J = 6.7 Hz, 1H), 0.91 (s, 4H), 0.90 (s, 4H), 0.60 (s, 3H); °C NMR
(151 MHz, CDCls) 6 208.57, 177.41, 143.70, 137.04, 136.37, 130.04, 129.15, 128.39,
127.96, 127.90, 126.75, 122.00, 68.86, 65.90, 55.80, 47.50, 46.68, 46.67, 45.80, 45.76,
45.18, 41.72, 41.32, 39.40, 36.90, 36.88, 35.63, 34.65, 34.51, 33.83, 33.81, 33.08, 32.30,
32.18, 32.10, 31.58, 30.69, 27.49, 26.90, 25.95, 25.92, 25.27, 24.83, 23.64, 23.62, 23.61,
23.20, 22.96, 22.65, 20.70, 19.72, 16.81, 16.24, 14.14; HRMS nvz (ESI): Calcd for

C43Hs604NaS [M+Na] 691.3797, found 691.3804.
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(131a): Major Isomer, Shown Above TLC R 0.29 (4:1 hexanes:ethyl acetate); FTIR
(NaCl film) 3409, 2947, 1719, 1460, 1385, 1262, 1160, 1028, 773, 736, 697, 666 cm’';
IH NMR (600 MHz, CDCl3) § 9.80 (d, J = 2.1 Hz, 1H), 7.39 — 7.31 (m, 5H), 7.17 — 7.09
(m, 3H), 5.32 (t, J = 3.8 Hz, 1H), 5.13 — 5.06 (m, 2H), 3.92 (ddd, J = 12.2, 5.2, 2.2 Hz,
1H), 3.12 (d, J= 12.3 Hz, 1H), 3.00 (d, J= 12.2 Hz, 1H), 2.94 (dd, J = 13.6, 4.2 Hz, 1H),
2.61 (s, 6H), 2.01 (td, J = 13.6, 4.1 Hz, 1H), 1.97 — 1.80 (m, 5H), 1.78 — 1.49 (m, 12H),
1.40 (dd, J = 12.8, 2.0 Hz, 3H), 1.26 — 1.18 (m, 3H), 1.16 (s, 3H), 0.95 (s, 3H), 0.93 (s,
3H), 0.82 (s, 3H), 0.60 (s, 3H); 3C NMR (151 MHz, CDCl3) & 206.05, 177.41, 143.80,
142.98, 136.37, 133.00, 128.43, 128.42, 128.36, 128.32, 128.04, 127.99, 127.95, 122.20,
72.19, 65.97, 65.96, 60.43, 56.05, 50.73, 46.71, 46.70, 46.56, 45.83, 41.79, 41.41, 39.06,
37.92, 37.06, 34.87, 33.85, 33.12, 32.34, 32.07, 30.73, 30.71, 27.59, 27.56, 25.83, 25.82,
23.75, 23.64, 23.02, 22.05, 22.03, 21.10, 18.74, 16.94, 15.01, 14.23.; HRM S nvz (ESI):

Calcd for C4sHgpO4NaS [M+Na] 719.4110, found 719.4132.

O, OBn

\ Me

(130b): Major Isomer, Shown Above: TLC R;0.29 (4:1 hexanes:ethyl acetate); FTIR

(NaCl film) 3508, 2945, 1722, 1553, 1454, 1262, 1159, 1083, 1032, 777, 736, 697,

183



666 cm™; *H NMR (600 MHz, CDCls) § 9.89 (s, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.36 —
7.27 (m, 6H), 7.20 (t, = 8.0 Hz, 1H), 5.27 (t, J= 3.6 Hz, 1H), 5.11 — 5.00 (m, 2H), 4.39
—4.32 (m, 1H), 3.33 (d, J = 13.1 Hz, 1H), 3.26 (d, = 13.1 Hz, 1H), 3.11 (d, J=2.7 Hz,
1H), 2.89 (dd, J = 14.1, 4.1 Hz, 1H), 2.04 — 2.00 (m, 1H), 1.97 (td, J = 13.7, 4.1 Hz, 1H),
1.91 - 1.79 (m, 2H), 1.77 — 1.41 (m, 14H), 1.36 — 1.28 (m, 4H), 1.22 — 1.15 (m, 3H), 1.13
(s, 3H), 1.04 — 0.99 (m, 1H), 0.94 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H), 0.57 (s, 3H); °C
NMR (151 MHz, CDCly) § 208.78, 177.40, 143.69, 140.74, 136.36, 134.09, 130.10,
128.78, 128.40, 128.38, 127.96, 127.90, 121.98, 68.61, 65.89, 60.40, 55.52, 47.51, 46.66,
45.79, 45.33, 41.71, 41.31, 39.39, 36.80, 36.51, 34.65, 33.81, 33.07, 32.30, 32.18, 32.06,
31.58, 30.68, 27.48, 26.90, 25.95, 25.27, 24.85, 23.62, 23.19, 22.96, 22.65, 21.07, 20.70,
19.71, 16.77, 16.23, 1420, 14.14; HRMS mz (ESI): Caled for Cu3Hs;04sSCLNa

[M+Na] 759.3018, found 759.2994.

O OBn
Me Me
\

(132): TLC R 0.30 (4:1 hexanes:ethyl acetate); FTIR (NaCl film) 3532, 3057, 3030,
2945, 2864, 1719, 1594, 1489, 1445, 1385, 1364, 1319, 1302, 1209, 1159, 1121, 1080,
1030, 1006, 972, 907, 822, 741, 699, 666 cm™; *H NMR (600 MHz, CDCl3) & 9.55 (d, J
= 1.5 Hz, 1H), 7.52 — 7.45 (m, 6H), 7.36 — 7.27 (m, 10H), 7.24 — 7.20 (m, 3H), 5.26 (t, J
=3.7 Hz, 1H), 5.10 — 5.02 (m, 3H), 3.71 — 3.62 (m, 1H), 2.92 - 2.87 (m, 1H), 2.51 (d, J=

11.9 Hz, 1H), 2.42 (d, J= 11.9 Hz, 1H), 2.11 (d, J = 8.4 Hz, 1H), 1.98 (td, J = 13.6, 4.0
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Hz, 1H), 1.89 — 1.47 (m, 13H), 1.46 — 1.28 (m, 5H), 1.24 — 1.12 (m, 5H), 1.11 (s, 3H),
1.07 = 1.04 (m, 1H), 0.91 (s, 3H), 0.90 (s, 3H), 0.69 (s, 3H); *C NMR (151 MHz,
CDCly) & 205.78, 177.38, 171.14, 144.43, 143.82, 136.35, 129.70, 129.65, 129.52,
128.40, 128.39, 128.38, 128.01, 127.99, 127.98, 127.94, 127.91, 127.89, 127.87, 126.81,
126.77, 122.11, 72.03, 66.70, 65.92, 60.39, 55.72, 51.24, 46.66, 46.36, 45.78, 41.71,
41.30, 39.01, 37.67, 36.96, 33.80, 33.08, 32.39, 32.32, 31.72, 31.58, 30.69, 30.66, 27.54,
27.12, 25.94, 23.70, 23.63, 23.61, 22.97, 22.65, 21.07, 18.34, 16.77, 15.31, 14.20, 14.14;

HRM S nmVz (ESI): Calcd for CsgHesO4NaS [M+Na] 857.4580, found 857.4573.

SEt

(133): TLC R;0.24 (4:1 hexanes:ethyl acetate); FTIR (NaCl film) 3519, 2947, 2867,
1713.1497, 1455, 1385, 1260, 1209, 1159, 1122, 1080, 1028, 1007, 970, 910, 821, 733,
696 cm™; 'H NMR (600 MHz, CDCl3) & 9.82 (d, J = 2.1 Hz, 1H), 7.38 — 7.28 (m, 5H),
5.28 (t, J= 3.6 Hz, 1H), 5.12 — 5.02 (m, 2H), 3.67 (tdd, J = 11.7, 5.4, 2.1 Hz, 1H), 3.03
(d, J=9.4 Hz, 1H), 2.98 (d, J= 12.9 Hz, 1H), 2.93 — 2.86 (m, 2H), 2.60 (qd, J = 7.4, 4.5
Hz, 2H), 1.98 (td, J=13.7, 4.1 Hz, 1H), 1.92 — 1.77 (m, 4H), 1.74 — 1.53 (m, 10H), 1.51
(dd, J=12.7, 3.1 Hz, 1H), 1.48 — 1.41 (m, 2H), 1.37 — 1.30 (m, 3H), 1.28 (t, J = 7.4 Hz,
4H), 1.22 — 1.14 (m, 2H), 1.13 (s, 3H), 1.09 — 0.99 (m, 3H), 0.92 (s, 3H), 0.90 (s, 3H),
0.80 (s, 3H), 0.58 (s, 3H); ®*C NMR (151 MHz, CDCl3) & 206.92, 177.38, 143.78,
136.35, 128.39, 127.99, 127.91, 122.19, 72.07, 65.92, 55.76, 50.98, 46.67, 46.45, 45.77,
41.74, 41.36, 39.03, 37.82, 36.91, 34.65, 34.51, 33.81, 33.08, 32.38, 32.36, 32.31, 31.58,

30.69, 29.05, 27.95, 27.53, 27.49, 26.90, 25.81, 25.27, 23.71, 23.62, 22.98, 22.65, 20.70,
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18.45, 16.88, 15.01, 14.97, 14.14, 11.45; HRMS m/z (ESI): Calcd for C;oHscO4NaS

[M+Na] 643.3797, found 643.3796.

(134): TLC R;0.57 (4:1 hexanes:ethyl acetate); FTIR (NaCl film) 3517, 2944, 2865,
1723, 1461, 1384, 1260, 1122, 1081, 1012, 882, 823, 736, 696, 647 cm™; *H NMR (600
MHz, CDCl3) & 9.93 (s, 1H), 7.38 — 7.29 (m, 5H), 5.28 (t, J = 3.6 Hz, 1H), 5.12 — 5.00
(m, 2H), 4.52 (dt, J= 4.1, 2.2 Hz, 1H), 3.64 — 3.58 (m, 1H), 3.01 — 2.92 (m, 2H), 2.92 —
2.86 (m, 1H), 2.02 — 1.94 (m, 2H), 1.94 — 1.86 (m, 1H), 1.85 — 1.78 (m, 1H), 1.77 — 1.39
(m, 15H), 1.37 — 1.29 (m, 3H), 1.29 — 1.25 (m, 3H), 1.22 — 1.15 (m, 3H), 1.13 (s, 3H),
1.12 (d, J = 7.3 Hz, 17H), 1.05 (d, J = 1.2 Hz, 5H), 0.92 (s, 3H), 0.91 (s, 3H), 0.90 (s,
3H), 0.63 (s, 3H); 3C NMR (151 MHz, CDCls5) & 209.91, 177.45, 143.66, 136.38,
128.40, 127.87, 127.84, 122.05, 67.52, 65.89, 54.76, 47.47, 46.69, 46.07, 45.77, 41.71,
41.31, 39.29, 37.06, 34.65, 33.81, 33.07, 32.31, 32.14, 32.11, 31.59, 30.69, 27.49, 26.90,
25.95, 25.44, 25.27, 24.39, 23.62, 23.20, 22.96, 22.66, 19.30, 18.62, 18.60, 18.57, 18.54,
17.70, 16.86, 16.27, 14.14, 12.60, 12.26; HRM S nvz (ESI): Calcd for C4H7,04NaSSi

[M+Na] 771.4818, found 771.4833.

186



O OBn

HO
Me

(135): Isomer A

TLC R;0.38 (4:1 hexanes:ethyl acetate); 'H NMR (600 MHz, CDCls3) 6 9.74 (s, 1H),
7.55 —7.50 (m, 2H), 7.37 — 7.26 (m, 7H), 5.28 (t, J = 3.7 Hz, 1H), 5.12 — 5.00 (m, 2H),
4.33 (q, J=3.0 Hz, 1H), 3.32 (d, J=12.7 Hz, 1H), 3.18 (d, J=12.7 Hz, 1H), 2.93 — 2.84
(m, 2H), 2.03 — 1.99 (m, 1H), 1.99 — 1.93 (m, 1H), 1.91 — 1.78 (m, 2H), 1.77 — 1.69 (m,
2H), 1.69 — 1.58 (m, 4H), 1.56 — 1.41 (m, 6H), 1.36 — 1.23 (m, 5H), 1.21 — 1.15 (m, 3H),
1.14 (s, 3H), 1.04 — 1.00 (m, 1H), 0.95 (s, 3H), 0.91 (s, 3H), 0.90 (s, 3H), 0.58 (s, 3H);
3C NMR (151 MHz, CDCls) § 208.77, 177.40, 143.71, 136.37, 133.14, 131.58, 129.28,
128.41, 128.39, 127.97, 127.90, 127.41, 122.00, 69.91, 65.90, 55.89, 47.51, 46.66, 45.81,
45.41, 41.73, 41.32, 39.43, 36.82, 34.65, 33.81, 33.08, 32.30, 32.15, 32.13, 31.59, 30.69,
29.61, 27.49, 25.95, 25.27, 24.99, 23.62, 23.18, 22.96, 22.66, 19.75, 16.79, 16.33, 14.14,

| somer B:

TLC R;0.32 (4:1 hexanes:ethyl acetate); 'H NMR (600 MHz, CDCl5) & 9.79 (s, 1H),
7.58 — 7.53 (m, 2H), 7.38 — 7.26 (m, 8H), 5.27 (t, J = 3.7 Hz, 1H), 5.12 — 5.00 (m, 2H),
4.11 (dt,J=11.7,4.7 Hz, 1H), 3.59 (d, J=12.5 Hz, 1H), 3.19 (d, J= 12.5 Hz, 1H), 2.89
(dd, J=13.8,4.0 Hz, 1H), 2.23 (d, J=4.9 Hz, 1H), 1.96 (td, J=13.7, 4.1 Hz, 1H), 1.86 —
1.81 (m, 2H), 1.78 — 1.60 (m, 7H), 1.59 — 1.50 (m, 5H), 1.45 — 1.24 (m, 6H), 1.22 — 1.11
(m, 4H), 1.10 (s, 3H), 1.07 — 0.97 (m, 3H), 0.96 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H), 0.57
(s, 3H); °C NMR (151 MHz, CDCls) 6 206.42, 177.34, 143.67, 136.34, 133.42, 132.55,

129.21, 128.40, 128.00, 127.98, 127.92, 127.17, 121.91, 73.58, 65.92, 57.74, 52.04,
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52.02, 47.54, 46.67, 46.66, 45.81, 41.66, 41.34, 39.28, 38.03, 36.90, 34.65, 34.52, 33.80,
33.09, 33.07, 32.31, 32.27, 32.16, 31.59, 30.70, 30.68, 29.05, 27.52, 26.90, 25.85, 25.81,
25.79, 25.49, 25.27, 23.61, 23.33, 22.95, 22.66, 20.70, 20.43, 16.72, 16.10, 14.14, 11.45;

HRM S nVz (ESI): Calcd for C43Hs704Se [M+Na] 717.3422, found 717.3398.

n O+_OH
ho_ Me Mo
—_—
HO .
Me Me “M
Me ©

General Procedure for desulfurization:

StBu Me

(136): A slurry of Raney nickel (1 mL, washed with 3 X 5 mL ethanol) is added to a
solution of thioether (10 mg, 0.015 mmol, 1 equiv) in ethanol (2 mL) were heated at
50 °C for 12 hr. After all TLC spots converge to one, reaction was filtered through celite
and acidified to pH 3 with aqueous HCI (1.0 N), diluted with dichloromethane then
washed with a saturated solution of EDTA. Organic layer was washed with brine, dried
over magnesium sulfate, filtered and concentrated. Crude mixture was taken onto the

next step without further purification.

O<_OH 00O
Me Me N
HO Me ~ HO Me ~—
—_—
HO _ HO )
Mée Me “Me Mée Me “Me
Me Me

(S136): To the crude diol carboxylate 136 in dimethylformamide (1 mL) was added allyl
bromide (6 pL, 0.053 mmol, 5 equiv) and cesium carbonate (3.5 mg, 0.011 mmol, 1
equiv). After 24 hr, reaction was diluted with water and washed with ethyl acetate

(3x 10 mL). Combined organics were washed with brine, dried with sodium sulfate,
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concentrated, and purified with silica gel chromatography (hexanes:ethyl acetate, 4:1 to

1:1) to give diol S136.

'H NMR (500 MHz, CDCls)  5.89 — 5.78 (m, 0H), 5.28 — 5.21 (m, 2H), 5.14 (dd, J =
10.2, 0.9 Hz, 1H), 4.46 (s, 2H), 2.85 — 2.77 (m, 1H), 1.94 — 1.86 (m, 1H), 1.86 — 1.74 (m,
3H), 1.68 — 1.54 (m, 5H), 1.44 — 1.25 (m, SH), 1.21 (s, 3H), 1.07 (s, 3H), 0.86 (s, 3H),

0.83 (s, 3H), 0.76 (s, 3H), 0.68 (s, 3H).
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APPENDIX C
EXPERIMENTAL PROCEDURESFOR CHAPTER 4

General Procedures. Reactions were performed in flame-dried sealed-tubes or
modified Schlenk (Kjeldahl shape) flasks fitted with a glass stopper under a positive
pressure of argon, unless otherwise noted. Air- and moisture-sensitive liquids and
solutions were transferred via syringe. The appropriate carbohydrate and sulfoxide
reagents were dried via azeotropic removal of water with toluene. Molecular sieves were
activated at 350 °C and were crushed immediately prior to use, then flame-dried under
vacuum. Organic solutions were concentrated by rotary evaporation below 30 °C. Flash
column chromatography was performed employing 230—400 mesh silica gel. Thin-layer
chromatography was performed using glass plates pre-coated to a depth of 0.25 mm with
230400 mesh silica gel impregnated with a fluorescent indicator (254 nm).

Materials. Dichloromethane, tetrahydrofuran, diethyl ether, and toluene were
purified by passage through two packed columns of neutral alumina under an argon
atmosphere. Methanol was distilled from magnesium at 760 Torr.
Trifluoromethanesulfonic anhydride was distilled from phosphorus pentoxide at 760
Torr. Boron trifluoride diethyl etherate was distilled from calcium hydride at 760 Torr.
All other chemicals were obtained from commercial vendors and were used without
further purification unless noted otherwise.

Instrumentation. Infrared (IR) spectra were obtained using a Perkin Elmer
Spectrum BX spectrophotometer or a Bruker Tensor 27. Data are presented as the
frequency of absorption (cm™). Proton and carbon-13 nuclear magnetic resonance (‘H

NMR and CNMR) spectra were recorded on a Bruker Avance III instrument; chemical
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shifts are expressed in parts per million (6 scale) downfield from tetramethylsilane and
are referenced to residual proton in the NMR solvent (d-chloroform: & 7.26 for '"H NMR,
8 77.16 for °C NMR; d6-benzene: § 7.16 for 'H NMR, § 128.06 for °C NMR; d4-
methanol: § 3.31 for "H NMR, & 49.00 for Bc NMR; d3-acetonitrile: & 1.94 for "H NMR,
8 1.32 for >C NMR; deuterium oxide: & 4.79 for '"H NMR). Data are presented as
follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t =
triplet, q = quartet, m = multiplet and/or multiple resonances), coupling constant in Hertz
(Hz), integration, assignment. RP-HPLC purification and analyses were carried out on a
Waters 2545 binary gradient HPLC system equipped with a Waters 2996 photodiode

array detector, and absorbances were monitored at wavelengths of 210-600 nm.

O/\/
- . o)
WHOH %@OH
Of O_Me
HO Me
“'Ph

Ph
(144): Allyl glycoside 143 (7.0 g, 34.2 mmol, 1 equiv), benzophenone dimethyl acetal
(19.6 g, 85.7 mmol, 2.5 equiv), camphorsulfonic acid (1.6 g, 6.8 mmol, 0.2 equiv), and
dimethylformamide (80 mL) were combined in a 500 ml round-bottomed flask and
placed on a rotary evaporator. Bath temperature was increased to 50 °C while decreasing
pressure to 50 mTorr. After 15 hr, volatiles were removed on rotary evaporator. The
remaining residue was taken up in ethyl acetate (200 mL) and wash with saturated
sodium bicarbonate (100 mL) and brine, then dried with sodium sulfate, concentrated and
the purified by silica gel chromatography (hexanes:ethyl acetatel10:1 to 2:1) to give ketal

144 (8.4 g, 66.5% yield) as a clear oil.
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TLC Rr0.31 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3463, 3062, 2975, 2914,
1492, 1449, 1386, 1315, 1242, 1212, 1138, 1076, 996, 947, 919, 845, 819, 788, 754, 700,
642 cm™; '*H NMR (600 MHz, CDCl3) 8 7.54 — 7.48 (m, 4H), 7.34 — 7.22 (m, 6H), 5.87
(dddd, J=16.9, 10.4, 6.2, 5.3 Hz, 1H), 5.27 (dd, J=17.2, 1.6 Hz, 1H), 5.22 — 5.14 (m,
2H), 4.29 (dd, J=17.0, 6.0 Hz, 1H), 4.21 — 4.14 (m, 1H), 4.08 (d, J= 6.0 Hz, 1H), 4.02 —
3.95 (m, 1H), 3.71 (dq, J=9.2, 6.3 Hz, 1H), 3.38 (dd, J=9.2, 7.0 Hz, 1H), 2.54 (bs, 1H),
1.24 (d, J= 6.3 Hz, 3H); ®*C NMR (151 MHz, CDCl3) § 142.82, 142.40, 133.48, 128.09,
128.07, 128.03, 126.04, 125.94, 117.84, 109.48, 96.11, 78.89, 75.93, 73.85, 68.03, 66.05,

17.47; HRM S m/z (ESI): Calcd for C2,H,505 [M]" 369.1702, found 369.1711.

O/\/ O/\/
Q w
o OH —— o} OBn
o&/ O{el/
od 7P Ph

Ph
($4.1): To an ice-cooled solution of 144 (4.6 g, 12.5 mmol, 1.0 equiv) and benzyl
bromide (3 mL, 25 mmol, 2 equiv) in dimethylformamide (75 mL) was added sodium
hydride (0.75 g, 18.7 mmol, 1.5 equiv). After 3 hr, reaction was diluted with saturated
ammonium chloride (10 mL) and water (200 mL) and extracted with ethyl acetate (3x50
mL). Combined organics were washed with brine, dried over sodium sulfate,
concentrated, and purified with silica gel chromatography (hexanes:ethyl acetate, 20:1 to

10:1) to give 4.1 (4.9 g, 86%) as a clear oil.

TLC R 0.50 (10:1 hexanes/ethyl acetate); FTIR (NaCl film) 3376, 3062, 2917, 1492,
1450, 1389, 1211, 1131, 1072, 1027, 996, 947, 752, 698, 666, 641 cm™; '"H NMR (600
MHz, CDCl3) 6 7.59 — 7.51 (m, 1H), 7.35 - 7.17 (m, 3H), 5.86 (dddd, J=16.9, 10.5, 6.2,
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5.2 Hz, OH), 5.26 (dt, J = 17.1, 1.6 Hz, OH), 5.20 — 5.14 (m, 1H), 4.84 (d, J = 11.5 Hz,
OH), 4.50 (t, J= 6.5 Hz, OH), 4.46 (d, J=11.6 Hz, OH), 4.15 (ddt, J = 12.8, 5.3, 1.5 Hz,
OH), 4.10 (d, J= 6.0 Hz, 0H), 3.96 (ddt, J=12.9, 6.3, 1.4 Hz, OH), 3.71 (dq, J=10.1, 6.3
Hz, 0H), 3.20 — 3.14 (m, OH), 1.17 (d, J = 6.2 Hz, 1H); **C NMR (151 MHz, CDCl;) &
143.13, 142.77, 138.23, 133.59, 128.31, 128.22, 128.11, 128.08, 128.08, 128.05, 128.00,
127.96, 127.55, 126.06, 126.02, 117.69, 109.21, 96.07, 80.62, 79.35, 76.29, 73.03, 67.87,
64.52, 17.71; HRMS m/z (ESI): Calcd for CyyH3;¢0sNa [M+Na]Jr 481.1991, found

481.1980.

HO

© — e
OI OH OI OBn
O{el/ O{el/
“'Ph “'Ph

Ph Ph

(145): To a solution of $4.1 (394 mg, 0.860 mmol, 1.0 equiv) and pyrrolidine (0.564
mL, 6.87 mmol, 8.0 equiv) in dichloromethane/methanol (10 mL, 4:1) in a 25 mL
schlenk flask was added palladium tetrakis (250 mg, 0.215 mmol, 0.25 equiv), then
warmed to 35 °C with an oil bath. After 9 hr the reaction was concentrated then purified
by silica gel chromatography (hexanes:ethyl acetate, 10:1 to 2:1) to give 145 (345 mg,

96%) as a pale yellow foam.

TLC Rf0.41 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3407, 3062, 3030, 2933,
1492, 1450, 1380, 1315, 1243, 1211, 1131, 1071, 1028, 996, 947, 908, 844, 809, 751,
698, 642 cm™; *H NMR (500 MHz, CDCl3) & 7.54 (m, 4H), 7.34 — 7.17 (m, 11H), 5.49

(d, J=3.9 Hz, 1H), 4.82 (d, J = 11.6 Hz, 1H), 4.53 — 4.45 (m, 2H), 4.10 (dd, J= 6.1, 0.9
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Hz, 1H), 3.94 (dq, J = 9.2, 6.3 Hz, 1H), 3.23 (dd, J = 9.2, 6.7 Hz, 1H), 2.90 (d, J = 4.0
Hz, 1H), 1.17 (d, J = 6.3 Hz, 3H); **C NMR (151 MHz, CDCLy) & 171.23, 142.95,
142.58, 138.05, 128.25, 128.24, 128.22, 128.17, 128.11, 128.09, 128.07, 128.05, 128.03,
128.01, 127.95, 127.63, 127.58, 126.25, 126.15, 126.07, 126.06, 125.90, 125.87, 109.26,
91.92, 80.14, 78.65, 76.35, 73.06, 65.01, 60.43, 49.67, 48.81, 24.32, 23.93, 21.05, 18.00,

14.18; HRM S myz (ESI): Calcd for C,6H605Na [M+Na] 441.1678, found 441.1680.

O/\/ HO 5 wo
1
0 e omn o
%@OH T e - . O Me o
O Me 1 OT 08BN
“'Ph Phl’IPh Ph O{e}
“Ph

Ph

(146): Triflic an hydride (150 mL, 0.90 mmol, 1.5 equiv) was added to a solution of
hemiacetal 145 (250 mg, 0.60 mmol, 1.0 equiv), diphenyl sulfoxide (362 mg, 1.79 mmol,
3 equiv), and 24,6-tri-tert-butylpyridine (443 mg, 1.79 mmol, 3 equiv) in
dichloromethane (12 mL) cooled to —78 °C. After 15 min, reaction was warmed to —45
°C. After 85 min, acceptor 144 was added in dichloromethane (5 mL, then 2 mL wash)
via syringe. Cooling bath was removed after 1 hr and warmed to ambient temp for 15
min.  Reaction was concentrated then purified with silica gel chromatography
(hexanes:ethyl acetate 20:1 to 4:1) to give 146 (325 mg, 71% yield) and corresponding

B-anomer (75 mg, 16% yield) as white foams.

TLC R 0.66 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3061, 3030, 2973, 2932,
1491, 1449, 1387, 1313, 1212, 1138, 1070, 1027, 994, 947, 921, 811, 789, 752, 698, 666,
641 cm™; '"H NMR (600 MHz, CDCl3) & 7.63 — 7.54 (m, 6H), 7.52 — 7.46 (m, 2H), 7.39 —
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7.26 (m, 14H), 7.25 — 7.17 (m, 3H), 5.85 (dddd, J = 16.9, 10.4, 6.2, 5.3 Hz, 1H), 5.64 (s,
1H), 5.25 (dt, J=17.2, 1.6 Hz, 1H), 5.17 (dq, J=10.4, 1.4 Hz, 1H), 5.14 (s, 1H), 4.83 (d,
J=11.5Hz, 1H), 448 (d, J=11.5 Hz, 1H), 4.44 (dd, J="7.1, 6.0 Hz, 1H), 4.36 (t, J=6.5
Hz, 1H), 4.16 — 4.10 (m, 2H), 4.09 (d, J = 6.2 Hz, 1H), 3.95 (ddt, J=12.9, 6.2, 1.4 Hz,
1H), 3.61 (ddq, J = 16.3, 9.9, 6.2 Hz, 2H), 3.49 (dd, J = 9.9, 6.8 Hz, 1H), 3.19 (dd, J =
9.9, 7.1 Hz, 1H), 1.17 (d, J= 6.2 Hz, 3H), 1.05 (d, J = 6.2 Hz, 3H); ®*C NMR (151 MHz,
CDCly) & 143.28, 143.12, 142.75, 142.21, 138.20, 133.52, 128.25, 128.18, 128.14,
128.11, 128.08, 128.02, 127.99, 127.98, 127.95, 127.89, 127.61, 126.14, 126.10, 126.06,
125.83, 117.69, 109.68, 109.19, 96.03, 95.47, 80.51, 79.29, 78.67, 76.48, 73.19, 67.92,
65.00, 63.88, 17.93, 17.43; HRMS m/z (ESI): Calcd for C43HysO9Na [M+Na] 791.3196,

found 791.3197.

CI) Me o - o Me o]
0B 4, (e} |__OBn
“pp O " Ph =5 Me
Ph o Me Ph
“'Ph “Ph

Ph Ph

(147): To a solution of 146 (240 mg, 0.312 mmol, 1.0 equiv) and pyrrolidine (0.133 mL,
1.87 mmol, 6.0 equiv) in dichloromethane/methanol (5 mL, 4:1) in a 25 mL schlenk flask
was added tetraki(triphenylphosphine)palladium (54 mg, 0.047 mmol, 0.15 equiv), then
subjected to 3 cycles of freeze-pump-thaw, then warmed to 35 °C with an oil bath. After
5 hr the reaction was diluted with acetonitrile (precipitating palladium tetrakis), filtered
through celite, then concentrated and purified by silica gel chromatography

(hexanes:ethyl acetate, 10:1 to 2:1) to give 147 (226 mg, 99%) as a pale yellow foam.
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TLC Rr0.17 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3432, 3061, 3030, 2973,
2933, 1491, 1449, 1384, 1314, 1212, 1129, 1069, 1027, 995, 947, 908, 810, 751, 698, 641
cm™; 'H NMR (600 MHz, CDCl3) & 7.63 — 7.47 (m, 8H), 7.35 — 7.16 (m, 17H), 5.63 (d,
J=2.0 Hz, 1H), 5.47 (d, J=3.3 Hz, 1H), 4.83 (dd, J=11.4, 1.7 Hz, 1H), 4.50 — 4.42 (m,
2H), 4.37 (t, J= 6.5 Hz, 1H), 4.16 — 4.12 (m, 1H), 4.09 (d, J = 6.2 Hz, 1H), 3.87 — 3.80
(m, 2H), 3.61 (qd, J = 6.3, 3.5 Hz, 1H), 3.54 — 3.49 (m, 1H), 3.19 (ddt, J=9.3,7.2,2.3
Hz, 1H), 2.99 (d, J=3.6 Hz, 1H), 2.96 — 2.91 (m, OH), 1.16 (d, J= 6.2 Hz, 3H), 1.06 (d,
J=6.3 Hz, 3H); °C NMR (151 MHz, CDCl3) 5 143.26, 142.98, 142.74, 142.10, 138.14,
128.30, 128.29, 128.26, 128.24, 128.20, 128.18, 128.17, 128.15, 128.13, 128.10, 128.08,
128.06, 128.04, 128.01, 128.00, 127.99, 127.97, 127.91, 127.62, 126.63, 126.13, 126.10,
126.08, 126.03, 125.99, 125.82, 109.68, 109.20, 95.63, 95.60, 91.82, 91.81, 80.46, 79.25,
76.75, 76.53, 73.18, 65.04, 64.28, 64.28, 53.67, 31.71, 29.20, 18.07, 17.43; HRMS m/z

(ESI): Calcd for C45H4409Na [M+Na] 751.2883, found 751.2908.

BnO BnO

OB
WL HO 75708
OBn TIPSO

HO OBn

(249): Triisopropyl chloride (2.5 mL, 12 mmmol, 2 equiv) was added to a solution of
diol 148 (2.7 g, 6.0 mmol, 1.0 equiv) and imidazole (1.6 g, 24 mmol, 4 equiv) in
dimethylformamide (10 mL). After 75 min reaction was diluted with water (100 mL),
then extracted with ethyl acetate (3 X 50 mL). Combined organics were washed with
brine, dried over sodium sulfate, concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate, 10:1 to 2:1) to give 149 (2.5 g, 69% yield) as a

clear oil.
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TLC Rr0.61 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3474, 3030, 2942, 2865,
1496, 1453, 1358, 1114, 1065, 883, 808, 734, 695, 666 cm™; '"H NMR (500 MHz,
CDCls) 6 7.41 —7.18 (m, 17H), 4.95 (d, J=11.2 Hz, 1H), 4.84 (t, J=11.5 Hz, 2H), 4.62
—4.55 (m, 3H), 4.51 (d, J=12.2 Hz, 1H), 3.75 - 3.63 (m, 3H), 3.59 (t, J = 9.0 Hz, 1H),
3.53 — 3.43 (m, 2H), 2.27 (bs, 1H), 1.21 — 1.10 (m, 3H), 1.07 (d, J = 6.9 Hz, 18H);
3C NMR (151 MHz, CDCl3) & 138.77, 138.27, 138.26, 128.36, 128.35, 128.26, 127.88,
127.82, 127.67, 127.56, 127.54, 127.45, 97.45, 84.37, 77.56, 75.11, 75.03, 74.91, 73.39,
68.94, 17.86, 17.80, 12.19; HRMS m/z (ESI): Calcd for Cs;cHs0O¢NaSi [M+Na]

629.3274, found 629.3259.

HO. .
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Ph
(150): Trifluoromethanesulfonic anhydride (38 pL, 0.226, 1.5 equiv) was added to a
solution of hemiacetal 147 (110 mg, 0.151 mmol, 1.00 equiv), diphenyl sulfoxide (92 mg,
0.452 mmol, 3.0 equiv) and 2,4,6-tri-tertbutylpyridine (112 mg, 0.452 mmol, 3.0 equiv)
in dichloromethane (4 mL) at —78 °C. The reaction stirred in a cold bath at —78 °C for 15
min and then was transferred to a bath at 40 °C for 90 min. A solution of acceptor 149
(110 mg, 0.181 mmol, 1.2 equiv) was added in dichloromethane (1.0 ml) via syringe.
After 60 min, flask was transferred to an ice-bath and stirred for 15 min. Triethylamine

was added, concentrated and purified via silica gel chromatography (hexanes:ethyl
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acetate, 10:1 to 2:1) furnishing an analytical sample of B-glycoside 150 and mixture of

150 and acceptor 149, which was taken on to the next step.

TLC R 0.54 (4:1 hexanes/ethyl acetate); FTIR (NaCl film) 3062, 3030, 2941, 2866,
1726, 1599, 1495, 1451, 1364, 1313, 1253, 1210, 1063, 1027, 996, 948, 918, 863, 807,
750, 697, 641 cm™; *H NMR (600 MHz, CDCl3) & 7.63 — 7.58 (m, 4H), 7.55 — 7.51 (m,
2H), 7.41 —7.17 (m, 35H), 5.82 (s, 1H), 5.61 (s, 1H), 4.88 (d, J=11.0 Hz, 1H), 4.83 (d, J
=11.6 Hz, 1H), 4.78 (d, J=10.9 Hz, 1H), 4.68 (d,J=11.0 Hz, 1H), 4.59 (d, J=11.0 Hz,
1H), 4.56 (dd, J=9.7, 2.4 Hz, 2H), 4.49 (dd, J=11.9, 5.8 Hz, 2H), 4.40 (t, J= 6.6 Hz,
1H), 4.24 (t, J=6.4 Hz, 1H), 4.07 (dd, J=9.2, 6.0 Hz, 2H), 3.99 (dt, J=12.2, 6.0 Hz,
1H), 3.72 — 3.54 (m, 6H), 3.42 —3.36 (m, 2H), 3.18 (dd, J=9.9, 7.2 Hz, 1H), 1.12 (d, J =
6.1 Hz, 3H), 1.09 — 1.04 (m, 3H), 1.03 (d, J= 6.2 Hz, 3H), 0.98 (dd, J=7.2, 2.7 Hz,
18H); *C NMR (151 MHz, CDCls) 5 143.64, 143.27, 142.74, 142.57, 138.23, 138.08,
138.02, 137.84, 128.42, 128.39, 128.28, 128.23, 128.21, 128.16, 128.14, 128.11, 128.06,
127.96, 127.91, 127.79, 127.77, 127.73, 127.72, 127.69, 127.67, 127.62, 127.56, 127.51,
126.07, 126.06, 125.96, 125.61, 109.49, 109.19, 96.74, 95.96, 95.27, 85.78, 80.54, 79.35,
78.39, 78.21, 77.37, 76.88, 76.25, 75.56, 75.11, 74.85, 74.70, 73.43, 73.19, 68.67, 64.93,
63.69, 34.64, 34.50, 31.57, 29.04, 25.26, 22.65, 20.70, 18.34, 17.94, 17.86, 17.79, 17.76,
17.39, 14.13, 12.27, 12.18, 11.44; HRM S mVz (ESI): Calcd for Cg;H9,014NaSi [M+Na]

1339.6154, found 1339.6169.
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(151): A solution of tetrabutylammonium fluoride (180 mmol, 1.2 equiv) and acetic acid
(10 uL, 180 mmol, 1.2 equiv) in tetrahydrofuran (5 mL) was added to a solution of
trisaachride 150 monosaccharide 149 (vide supra) in tetrahydrofuran (25 mL). After 5
min, 2 drops of acetic acid was added, reaction concentrated, and purified with silica gel
chromatography (hexanes:ethyl acetate, 4:1 to 2:1) to give hemiacetal 151 (124 mg, 71%

yield, two steps) as a white foam.

TLC Rr0.40 (2:1 hexanes/ethyl acetate); FTIR (NaCl film) 3423, 3062, 3030, 2931,
1494, 1450, 1363, 1211, 1142, 1067, 1027, 995, 947, 750, 697, 666, 641 cm™'; 'H NMR
(500 MHz, CDCl3) & 7.64 — 7.49 (m, 6H), 7.42 — 7.11 (m, 34H), 5.64 (s, 1H), 5.40 (s,
1H), 5.26 (d, J= 3.6 Hz, 1H), 4.82 (t, J=11.7 Hz, 2H), 4.75 — 4.68 (m, 2H), 4.61 — 4.56
(m, 1H), 4.54 — 4.47 (m, 3H), 4.44 (t, J = 6.5 Hz, 1H), 4.35 (t, J= 6.6 Hz, 1H), 4.18 —
4.12 (m, 2H), 4.00 (ddd, J = 10.0, 4.3, 2.2 Hz, 1H), 3.90 (t, J= 9.4 Hz, 1H), 3.79 — 3.71
(m, 2H), 3.70 — 3.54 (m, 5H), 3.51 (dd, J=9.8, 6.9 Hz, 1H), 3.19 (dd, J = 9.9, 7.0 Hz,
1H), 2.81 (s, 1H), 1.14 (d, J= 6.2 Hz, 3H), 1.06 (d, J = 6.3 Hz, 3H); HRM S my/z (ESI):

Calcd for C7,H7,014Na [M+Na] 1183.4820, found 1183.4800.
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(152): Oxalyl bromide (13 mL, 0.142 mmol, 3 equiv) was added to an ice-cooled
solution of hemiacetal 151 (55 mg, 0.047 mmol, 1.0 equiv), 2,4,6-tri-tertbutylpyridine (47
mg, 0.190 mmol, 4 equiv), and dimethylformamide (37 uL, 0..470 mmol, 10 equiv) in
dichloromethane (2 mL). After 5 min the ice-bath was removed and warmed to ambient
temperature. After 4 hr, reaction was diluted with benzene, filtered through celite,
concentrated, and purified with silica gel chromatography
([hexanes:dichloromethane]:ethyl acetate, 1:0 to 6:1) to give bromide 152 (48 mg, 83 %

yield) as a flaky white translucent film.

TLC R:0.68 (4:2:1 hexanes:dichloromethane:ethyl acetate); FTIR (NaCl film) 3030,
2931, 1597, 1494, 1450, 1363, 1211, 1068, 1027, 994, 908, 751, 697, 666 cm™; '"H NMR
(600 MHz, Benzene-ds) 6 7.80 — 7.75 (m, 6H), 7.48 (dd, J= 7.0, 1.8 Hz, 2H), 7.29 — 7.17
(m, 12H), 7.15 — 6.96 (m, 20H), 6.64 (d, J= 3.6 Hz, 1H), 6.06 (s, 1H), 5.42 (s, 1H), 4.97
(d, J=11.7 Hz, 1H), 4.85 (d, J=11.2 Hz, 1H), 4.68 (d, J=11.1 Hz, 1H), 4.62 (d, J =
10.6 Hz, 2H), 4.60 — 4.55 (m, 3H), 4.35 — 4.30 (m, 2H), 4.26 — 4.18 (m, 3H), 4.11 (t, J =
9.2 Hz, 1H), 4.00 (dq, J=9.9, 6.2 Hz, 1H), 3.93 (t, J= 6.7 Hz, 1H), 3.86 (t, J= 9.6 Hz,
1H), 3.83 — 3.75 (m, 2H), 3.64 (dd, J=11.3, 3.2 Hz, 1H), 3.51 — 3.45 (m, 3H), 1.17 (d, J
= 6.2 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H); *C NMR (151 MHz, CsD6) & 143.96, 143.46,

143.36, 142.52, 138.84, 138.78, 138.35, 128.53, 128.52, 128.46, 128.43, 128.39, 128.36,
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128.33, 128.25, 128.21, 128.19, 127.96, 127.84, 127.82, 127.59, 126.59, 126.54, 126.47,
126.21, 109.99, 109.74, 100.72, 95.48, 93.65, 81.80, 80.96, 80.80, 79.90, 78.68, 77.13,
76.52, 76.50, 75.98, 75.53, 75.08, 73.46, 73.12, 67.92, 65.62, 65.47, 30.75, 30.49, 17.76,
17.64;, HRMS m/z (ESI): Calcd for C;,H7;10;3BrNa [M+Na] 1245.3976, found

1245.3944.

B“:g% — - B“:ggé&/o\/\

BnO—\= BnO oH N

(154): A solution of dimethyldioxirane (DMDO) in acetone (40 mL, 3.5 mmol, 0.086 M,
2.5 equiv) was added to an ice-cooled solution of glycal 153 (510 mg, 1.44 mmol, 1.0
equiv) in dichloromethane (25 mL). After 2 hr, another aliquot of DMDO (20 mL, 1.75
mmol, 0.086 mmol, 1.25 equiv) was added. After 10 min, the solvent was removed and
azeotroped with toluene (2 mL). A solution of allyl alcohol (0.98 mL, 14.4 mmol, 10
equiv) in dichloromethane was added, cool with an ice-bath, and treated with solid zinc
(IT) chloride (0.392 g, 2.88 mmol, 2 equiv). After 1 hr, reaction was warmed to ambient
temperature for 15 min and diluted with dichloromethane (50 mL) and washed with
water. Aqueous fraction extracted with dichloromethane (2 x50 mL). Combined
organics where washed with brine, dried over sodium sulfate, concentrated and purified
with silica gel chromatography (hexanes:ethyl acetate, 10:1 to 2:1) to give 154 (365 mg,

59%) as a white amorphous solid.

TLC R:0.32 (4:2:1 hexanes:dichloromethane:ethyl acetate); FTIR (NaCl film) 3490,

3064, 3031, 2918, 1750, 1497, 1454, 1439, 1358, 1286, 1256, 1216, 1087, 1031, 913,
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738, 698 cm™; 'H NMR (600 MHz, CDCl3) § 7.39 — 7.20 (m, 10H), 5.90 (dddd, J=17.1,
10.4, 6.5, 5.2 Hz, 1H), 5.31 (dg, J = 17.2, 1.5 Hz, 1H), 5.21 (dq, J = 10.4, 1.3 Hz, 1H),
491 (d, J=11.3 Hz, 1H), 4.84 (d, = 11.3 Hz, 1H), 4.80 (d, J = 10.9 Hz, 1H), 4.60 (d, J
=10.8 Hz, 1H), 4.41 —4.31 (m, 2H), 4.09 (ddt, J=12.8, 6.6, 1.3 Hz, 1H), 3.91 (d, J=9.7
Hz, 1H), 3.86 — 3.81 (m, 1H), 3.72 (s, 3H), 3.65 — 3.56 (m, 2H); *C NMR (151 MHz,
CDCly) & 168.89, 138.31, 137.70, 133.36, 128.45, 128.38, 127.97, 127.90, 127.85,
127.77, 118.27, 101.89, 83.51, 78.94, 75.20, 75.04, 74.56, 74.12, 70.41, 52.51; HRMS

m/z (ESI): Calcd for C,4H,307Na [M+Na] 451.1733, found 451.1725.

MeO
O BnO
OBn
BnO MeQO OBn BnO
&&H BN O
BnO
BnO OH

BzO OH

(156): Trifluoromethanesulfonic anhydride (365 uL, 0.2.16, 3.0 equiv) was added to a
solution of hemiacetal 155 (800 mg, 1.44 mmol, 2.00 equiv), diphenyl sulfoxide (875 mg,
4.33 mmol, 6.0 equiv) and 2,4,6-tri-tertbutylpyridine (1.07 g, 4.33 mmol, 6.0 equiv) in
dichloromethane (30 mL) at —78 °C. The reaction stirred in a cold bath at —78 °C for 10
min and then was transferred to a bath at —40 °C for 55 min. A solution of acceptor 154
(310 mg, 0.721 mmol, 1.0 equiv) was added in dichloromethane (10 mL, then 5 mL
wash) via syringe. After 40min, flask was transferred to an ice-bath and stirred for 20
min. Reaction contents were diluted with water and extracted with dichloromethane (3
x 50 mL), washed with brine, dried over sodium sulfate, concentrated and purified via

silica gel chromatography (benzene:ethyl acetate, 1:0 to 5:1) furnishing a separable
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mixture of o/B-glycosides 156 (500 mg, 72%) and o-glycoside (85 mg, 12%) as colorless

viscous oils.

TLC R 0.37 (4:2:1 hexanes:dichloromethane:ethyl acetate); FTIR (NaCl film) 3087,
3063, 3030, 3006, 2923, 2869, 1748, 1724, 1602, 1584, 1496, 1450, 1361, 1308, 1276,
1217, 1155, 1107, 1070, 1028, 1000, 936, 912, 844, 805, 732, 713, 699 cm™; 'H NMR
(600 MHz, CDCls) & 7.86 — 7.81 (m, 2H), 7.49 (dd, J= 8.2, 6.5 Hz, 1H), 7.37 — 7.01 (m,
29H), 5.83 (ddt, J=17.1, 10.6, 5.3 Hz, 1H), 5.69 (dd, J=10.0, 8.0 Hz, 1H), 5.25 (dq, J=
17.3, 1.7 Hz, 1H), 5.08 (dt, J=10.6, 1.6 Hz, 1H), 5.00 (d, J=11.7 Hz, 1H), 4.94 (d, J=
8.1 Hz, 1H), 4.73 (d, J=11.6 Hz, 1H), 4.63 (d, J=11.7 Hz, 1H), 4.62 — 4.57 (m, 2H),
4.55 (d, J=10.7 Hz, 1H), 4.50 (d, J=11.6 Hz, 1H), 4.46 — 4.38 (m, 4H), 4.31 (ddt, J =
12.7,4.8, 1.6 Hz, 1H), 4.04 — 3.97 (m, 2H), 3.85 (d, J=9.4 Hz, 1H), 3.78 — 3.70 (m, 2H),
3.69 — 3.66 (m, 1H), 3.65 (s, 3H), 3.62 — 3.54 (m, 4H); *C NMR (151 MHz, CDCl3) &
169.36, 165.17, 138.44, 137.71, 137.66, 137.48, 133.77, 132.70, 129.92, 129.77, 128.42,
128.29, 128.25, 128.23, 128.19, 128.16, 128.00, 127.97, 127.88, 127.86, 127.64, 127.59,
127.58, 127.51, 127.25, 127.01, 116.84, 102.10, 100.98, 83.26, 81.77, 80.08, 78.49,
75.21, 74.79, 74.40, 74.10, 73.56, 73.41, 72.38, 72.07, 71.47, 70.43, 68.32, 52.33;

HRM S m/z (ESI): Calcd for CsgHgpO13Na [M+Na] 987.3932, found 987.3936.
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(157): Aqueous sodium hydroxide (2.15 mL, 2.15 mmol, 5 equiv) was added to a
solution of 156 (520 mg, 0.539 mmol, 1.0 equiv) in 1,4-dioxane (10 mL) and heated to 50
°C. After methyl ester saponifcation complete by TLC (4 hr), cesium carbonate (0.874 g,
2.69 mmol, 5 equiv) and methanol were added. After 12 hr reaction was diluted with
dichloromethane (50 mL) and filtered through celite, concentrated, taken up in
dimethylformamide (12 mL) and added potassium bicarbonate (0.81 g, 8.1 mmol, 15
equiv) and benzyl bromide (0.64 mL, 5.38 mmol, 10 equiv). After 6 hr reaction was
diluted with water and extracted with dichloromethane (3 X 50 mL). Combined organics
were washed with brine, dried over sodium sulfate, concentrated, and purified with silica
gel chromatography (hexanes:ethyl acetate 10:1 to 2:1) to give 157 (430 mg, 85%) as a

white foam.

TLC Rr0.49 (2:1 hexanes:ethyl acetate); FTIR (NaCl film) 3474, 3031, 2917, 1745,
1496, 1453, 1361, 1268, 1212, 1074, 1027, 735, 697 cm™; 'H NMR (600 MHz, CDCl5) &
7.35 -7.21 (m, 28H), 7.13 — 7.07 (m, 2H), 5.83 (ddt, J = 17.1, 10.6, 5.4 Hz, 1H), 5.22
(dq, J=17.3, 1.7 Hz, 1H), 5.18 (d, J=12.2 Hz, 1H), 5.13 (d, J=12.2 Hz, 1H), 5.05 (dq,
J=10.5, 1.5 Hz, 1H), 491 (d, J = 11.5 Hz, 1H), 4.89 — 4.82 (m, 2H), 4.70 — 4.63 (m,
3H), 4.58 (d, J=11.6 Hz, 1H), 4.54 — 4.50 (m, 1H), 4.49 (d, J= 7.7 Hz, 1H), 4.46 (d, J =
10.7 Hz, 1H), 4.39 (s, 2H), 4.33 — 4.28 (m, 1H), 4.07 — 4.02 (m, 1H), 3.94 — 3.84 (m, 4H),

3.77 - 3.69 (m, 2H), 3.63 (dd, J = 8.0, 6.9 Hz, 1H), 3.57 — 3.50 (m, 2H), 3.40 (dd, J= 9.8,
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2.9 Hz, 1H), 2.91 (d, J = 2.2 Hz, 1H); *C NMR (151 MHz, CDCl;) & 168.38, 138.72,
138.44, 137.73, 137.53, 137.48, 134.90, 133.71, 128.52, 128.51, 128.46, 128.45, 128.34,
128.32, 128.30, 128.11, 128.03, 127.94, 127.91, 127.84, 127.75, 127.73, 127.51, 127.46,
127.33, 116.93, 104.64, 102.11, 82.86, 81.48, 81.26, 79.46, 75.87, 74.80, 74.48, 74.34,
73.71, 73.39, 73.32, 72.96, 72.45, 70.70, 68.31, 67.30; HRMS mvz (ESI): Calcd for

C57H60012Na [M+Na] 9593982, found 959.4026.
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(158): Trifluoromethanesulfonic anhydride (260 pL, 1.54, 3.0 equiv) was added to a
solution of hemiacetal 145 (433 mg, 1.03 mmol, 2.00 equiv), diphenyl sulfoxide (621 mg,
3.07 mmol, 6.0 equiv) and 2,4,6-tri-tertbutylpyridine (0.760 g, 3.07 mmol, 6.0 equiv) in
dichloromethane (30 mL) at —78 °C. The reaction stirred in a cold bath at —78 °C for 15
min and then was transferred to a bath at 45 °C for 90 min. A solution of acceptor 157
(480 mg, 0.512 mmol, 1.0 equiv) was added in dichloromethane (6 mL, then 4 mL wash)
via syringe. After 60 min, flask was transferred to an ice-bath and stirred for 30 min.
Reaction contents were diluted with water and extracted with dichloromethane (3% 50
mL), washed with brine, dried over sodium sulfate, concentrated and purified via silica
gel chromatography (hexanes:ethyl acetate, 20:1 to 4:1) furnishing a-glycoside 158 (653

mg, 95%) as a sticky colorless foam.
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TLC R 0.57 (2:1 hexanes:ethyl acetate); FTIR (NaCl film) 3062, 3030, 2870, 1745,
1585, 1496, 1452, 1363, 1308, 1210, 1155, 1070, 1026, 996, 733, 697, 666 cm’';

H NMR (600 MHz, CDCl3) & 7.96 — 7.90 (m, 1H), 7.53 — 7.40 (m, 5H), 7.35 — 7.07 (m,
39H), 5.78 (ddt, J=17.2, 10.4, 5.1 Hz, 1H), 5.74 (s, 1H), 5.30 (dd, J=17.3, 1.8 Hz, 1H),
5.16 - 5.10 (m, 2H), 5.02 (dt, J=10.6, 1.6 Hz, 1H), 4.88 (d, J=11.6 Hz, 1H), 4.83 —
4.78 (m, 2H), 4.76 (d, J=12.0 Hz, 1H), 4.70 (d, J=10.8 Hz, 1H), 4.65 (d, J= 7.8 Hz,
1H), 4.62 (d, J=11.8 Hz, 1H), 4.57 (d, J=11.6 Hz, 1H), 4.54 — 4.50 (m, 2H), 4.46 —
4.40 (m, 3H), 4.38 (d, J=11.8 Hz, 1H), 4.26 — 4.21 (m, 2H), 4.14 (dq, J=10.1, 6.2 Hz,
1H), 4.08 (dd, J=9.8, 7.7 Hz, 1H), 4.05 — 3.98 (m, 3H), 3.96 — 3.90 (m, 2H), 3.88 (dd, J
=8.3,5.7 Hz, 1H), 3.67 (dd, J=9.5, 8.3 Hz, 1H), 3.63 (dd, J=9.2, 7.7 Hz, 1H), 3.54 (dd,
J=9.2,54 Hz, 1H), 3.45-3.40 (m, 1H), 3.35 (dd, J=9.9, 2.8 Hz, 1H), 3.11 (dd, J =
10.1, 6.8 Hz, 1H), 1.11 (d, J= 6.2 Hz, 3H); *C NMR (151 MHz, CDCl5) & 169.04,
167.11, 159.40, 143.34, 142.87, 141.52, 138.62, 138.47, 138.12, 137.84, 137.80, 137.43,
135.05, 133.66, 133.11, 129.21, 128.53, 128.50, 128.48, 128.42, 128.39, 128.37, 128.34,
128.29, 128.27, 128.25, 128.19, 128.17, 128.13, 128.10, 128.09, 128.07, 128.06, 128.03,
128.00, 127.97, 127.92, 127.88, 127.86, 127.83, 127.82, 127.79, 127.77, 127.75, 127.74,
127.72,127.69, 127.67, 127.64, 127.59, 127.58, 127.57, 127.52, 127.40, 127.17, 126.02,
125.97, 116.73, 112.04, 108.97, 101.59, 101.14, 97.54, 84.26, 82.43, 80.15, 79.52, 78.76,
78.14,76.06, 75.14, 74.70, 74.52, 74.32, 73.56, 73.55, 73.22, 72.37, 72.26, 71.33, 69.77,
68.25, 67.15, 64.76, 37.64, 34.87, 30.84, 30.26, 17.52; HRM SnVz (ESI): Calcd for

Cs3Hs4O16Na [M+Na] 1359.5657, found 1359.5670.
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(159): To a solution of 158 (216 mg, 0.161 mmol, 1.0 equiv) and pyrrolidine (0.135 mL,
1.60 mmol, 10.0 equiv) in dichloromethane/methanol (5 mL, 4:1) in a 25 mL schlenk
flask was added tetrakis(triphenylphosphine)palladium (9.2 mg, 0.008 mmol, 0.05 equiv),
then subjected to 3 cycles of freeze-pump-thaw, then warmed to 35 °C with an oil bath.
After 5 hr the reaction was diluted with acetonitrile (precipitating palladium tetrakis),
filtered through celite, then passed through a short pad of silica gel to give crude 159,

which was taken to the next step without further purification.
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W OCNHCCI3
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Ph Ph

(160): To an ice-cooled solution of crude hemiacetal 159 (44 mg, 0.034 mmol, 1.0
equiv) in dichloromethane (3 mL) was added trichloroacetonitrile (68 uL, 0.678 mmol,
20 equiv) and DBU (5.6 uL, 0.037 mmol, 1.1 equiv). After 6 hr, rxn was concentrated,
then purified with silica gel chromatography, (hexanes:[ethyl acetate+0.5%

triethylamine], 20:1 to 4:1) to give imidate 160 (34 mg, 56 % yield, 2 steps).
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TLC R0.20 (4:1 hexanes:ethyl acetate); FTIR (NaCl, film) 3386, 3062, 3030, 2920,
1746, 1672, 1604, 1549, 1496, 1452, 1364, 1281, 1209, 1176, 1071, 1027, 910, 795, 734,
696, 665 cm™; 'H NMR (500 MHz, C¢Ds) & 8.55 (s, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.54
(d, J=7.2 Hz, 2H), 7.45 (d, J = 7.3 Hz, 2H), 7.35 (d, J = 7.3 Hz, 2H), 7.28 — 7.20 (m,
7H), 7.13 — 6.94 (m, 30H), 6.12 (s, 1H), 5.30 (d, J=11.3 Hz, 1H), 5.05 — 5.00 (m, 2H),
4.88 (d, J=10.1 Hz, 1H), 4.82 —4.71 (m, 5H), 4.62 (d, J=10.9 Hz, 1H), 4.56 (d, J="7.5
Hz, 1H), 4.46 — 4.26 (m, 8H), 4.25 (d, J= 6.3 Hz, 1H), 4.24 — 4.15 (m, 3H), 4.09 — 4.04
(m, 2H), 4.00 (dd, J = 9.6, 3.9 Hz, 1H), 3.72 (s, 1H), 3.67 — 3.62 (m, 1H), 3.53 (dd, J =
8.9, 5.7 Hz, 1H), 3.34 (dd, J = 10.1, 6.8 Hz, 1H), 3.29 (t, J= 6.3 Hz, 1H), 3.24 (dd, J =

9.8, 2.6 Hz, 1H), 1.40 (d, J= 6.1 Hz, 3H).
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(165): A solution of tris-pentafluorophenylborane (0.45 mg, 0.0086 mmol, 0.05 equiv) in
dichloromethane (50 uL) was added to a solution of imidate 160 (25 mg, 0.173 mmol, 1.0
equiv) and allyl oleanolate 164 (17 mg, 0.35 mmol, 2.0 equiv) in dichloromethane (1
mL).  After 50 min, reaction and concentrated and purified with silica gel
chromatography (2% acetone in 1:1 hexanes:benzene) to give 165 (22 mg, 72% yield).

Analysis of crude NMR showed 14:1 B:a-glycosides.

TLC R:0.60 (20:1 benzene:ethyl acetate); FTIR (NaCl film) 3062, 3030, 2943, 2874,
1748, 1726, 1496, 1452, 1362, 1260, 1208, 1174, 1156, 1071, 1027, 912, 750, 733, 697
cm™; '"H NMR (600 MHz, CDCls-d) § 7.55 — 7.47 (m, 2H), 7.42 (dd, J = 6.7, 3.0 Hz,
2H), 7.33 — 7.04 (m, 41H), 5.92 (ddt, J = 17.3, 10.8, 5.5 Hz, 1H), 5.74 (s, 1H), 5.37 —
5.30 (m, 1H), 5.29 (t, 3= 3.7 Hz, 1H), 5.22 (dq, J = 10.6, 1.4 Hz, 1H), 5.19 (d, J=12.1
Hz, 1H), 5.10 (d, J=12.3 Hz, 1H), 4.90 (d, J=10.9 Hz, 1H), 4.82 (d, J=10.0 Hz, 1H),
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4.79 —4.73 (m, 2H), 4.72 — 4.66 (m, 3H), 4.54 (td, J= 5.6, 1.6 Hz, 2H), 4.54 — 4.45 (m,
3H), 4.45 - 4.40 (m, 3H), 4.31 (d, J="7.7 Hz, 1H), 4.24 (t, J= 6.4 Hz, 1H), 4.16 (dq, J =
10.0, 6.2 Hz, 1H), 4.04 (dd, J=9.8, 7.7 Hz, 1H), 4.01 (d, J= 6.0 Hz, 1H), 3.94 (d, J=2.7
Hz, 1H), 3.87 (d, J= 9.8 Hz, 1H), 3.84 (dd, J=9.6, 7.9 Hz, 1H), 3.73 (t, J=9.5 Hz, 1H),
3.67 (t, J=8.7 Hz, 1H), 3.59 (t, J=9.4 Hz, 1H), 3.51 (dd, J=9.2, 5.2 Hz, 1H), 3.41 (dd,
J=28.2,5.4 Hz, 1H), 3.36 (dd, J=9.8, 2.7 Hz, 1H), 3.09 (dd, J=10.1, 6.8 Hz, 1H), 2.94
(dd, J=11.8, 4.6 Hz, 1H), 2.89 (dd, J=13.9, 4.6 Hz, 1H), 1.99 (td, J = 14.3, 13.7, 4.1
Hz, 1H), 1.92 — 1.77 (m, 2H), 1.78 — 1.59 (m, 6H), 1.57 — 1.43 (m, 3H), 1.43 — 1.29 (m,
3H), 1.27 — 1.13 (m, 1H), 1.11 (s, 3H), 1.07 (d, J = 6.1 Hz, 3H), 0.93 (s, 3H), 0.91 (s,
3H), 0.90 (s, 3H), 0.84 (s, 3H), 0.72 (s, 3H), 0.66 (s, 3H), 0.59 (dd, J=11.8, 1.9 Hz, 1H);
3C NMR (151 MHz, CDCls) & 177.38, 168.27, 143.73, 143.43, 143.04, 138.85, 138.43,
137.94, 137.92, 137.78, 137.50, 135.13, 132.57, 128.50, 128.42, 128.39, 128.37, 128.35,
128.33, 128.31, 128.24, 128.23, 128.08, 128.05, 128.01, 128.00, 127.97, 127.94, 127.86,
127.81, 127.74, 127.67, 127.64, 127.21, 127.17, 126.01, 125.98, 122.47, 117.64, 108.98,
104.96, 100.74, 97.52, 91.63, 85.32, 82.32, 79.98, 79.65, 79.53, 76.06, 75.99, 75.77,
74.91, 74.42, 74.28, 73.93, 73.68, 72.89, 72.35, 72.23, 71.01, 68.13, 67.06, 64.78, 64.72,
55.63, 47.46, 46.74, 45.87, 41.64, 41.30, 39.33, 39.19, 38.44, 36.61, 33.87, 33.11, 32.64,
32.44, 30.69, 29.25, 27.76, 27.65, 25.90, 25.87, 23.64, 23.41, 23.06, 18.17, 17.69, 16.96,
16.02, 15.24; HRMS m/z (ESI): Calcd for C;13H1300:3Na [M+Na] 1797.9155, found

1797.9110.
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(166): Tetrakis(triphenylphosphine)palladium (I mg, 0.0009 mmol, 0.05 equiv) was
added to a solution of 165 (32 mg, 0.018 mmol, 1.0 equiv) and pyrrolidine (7.5 uL, 0.09
mmol, 5.0 equiv) in dichloromethane (1 mL). After 5 min, contents of reaction was
purified directly with silica gel chromatography (hexanes:ethyl acetate, 4:1 to 2:1) to give

166 (31 mg, 99% yield) as a pale yellow foam.

TLC R 0.32 (2:1 hexanes:ethyl acetate); FTIR (NaCl film) 3030, 2941, 1749, 1697,
1653, 1558, 1540, 1966, 1454, 1362, 1208, 1071, 1027, 732, 696 cm™; *H NMR (600
MHz, CDCls) 6 7.53 — 7.49 (m, 2H), 7.44 — 7.40 (m, 2H), 7.33 — 7.03 (m, 47H), 5.74 (s,
1H), 5.29 (t, J=3.6 Hz, 1H), 5.18 (d, J=12.2 Hz, 1H), 5.10 (d, J= 12.2 Hz, 1H), 4.89
(d, J=10.9 Hz, 1H), 4.82 (d, J=10.0 Hz, 1H), 4.77 (d, J= 6.0 Hz, 1H), 4.76 (d,J=8.2
Hz, 1H), 4.70 (d, J= 6.4 Hz, 1H), 4.68 (dd, J=7.5, 1.8 Hz, 2H), 4.51 (d, J=10.8 Hz,
1H), 4.49 — 4.44 (m, 2H), 4.44 — 4.39 (m, 3H), 4.31 (d,J= 7.6 Hz, 1H), 4.24 (t, J=6.4
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Hz, 1H), 4.16 (dq, J=12.3, 6.2 Hz, 1H), 4.04 (dd, J=9.8, 7.7 Hz, 1H), 4.01 (d, J= 6.0
Hz, 1H), 3.94 (d, J=2.7 Hz, 1H), 3.87 (d, J= 9.6 Hz, 1H), 3.84 (dd, J=9.4, 7.6 Hz, 1H),
3.72 (t, J=9.4 Hz, 1H), 3.67 (t, J= 8.7 Hz, 1H), 3.59 (t, J=9.4 Hz, 1H), 3.51 (dd, J =
9.2, 5.2 Hz, 1H), 3.40 (dd, J= 8.2, 5.4 Hz, 1H), 3.35 (dd, J=9.7, 2.7 Hz, 1H), 3.09 (dd, J
=10.1, 6.8 Hz, 1H), 2.95 (dd, J=11.7, 4.7 Hz, 1H), 2.83 (dd, J=13.8, 4.7 Hz, 1H), 1.98
(dt, J=13.7, 6.9 Hz, 1H), 1.92 — 1.70 (m, 6H), 1.68 — 1.56 (m, 5H), 1.53 — 1.45 (m, 2H),
1.41 — 1.30 (m, 4H), 1.29 — 1.14 (m, 5H), 1.12 (s, 3H), 1.07 (d, J= 6.2 Hz, 3H), 0.94 (s,
3H), 0.91 (d, J= 4.3 Hz, 6H), 0.85 (s, 4H), 0.76 (s, 3H), 0.66 (s, 3H), 0.59 (dd, J=11.8,
1.9 Hz, 1H); ®*C NMR (151 MHz, CDCl5) § 183.49, 168.27, 143.52, 143.43, 143.04,
138.84, 138.43, 137.94, 137.84, 137.79, 137.50, 135.13, 135.01, 129.01, 128.50, 128.45,
128.41, 128.38, 128.37, 128.34, 128.33, 128.30, 128.27, 128.22, 128.20, 128.08, 128.05,
128.01, 128.00, 127.97, 127.94, 127.86, 127.81, 127.74, 127.73, 127.67, 127.64, 127.20,
127.17, 126.01, 125.98, 125.27, 122.67, 108.98, 104.94, 100.73, 97.51, 91.64, 85.32,
82.29, 79.98, 79.65, 79.51, 76.06, 75.98, 75.76, 74.90, 74.41, 74.28, 73.92, 73.67, 72.91,
72.34,72.21,70.98, 68.15, 67.06, 64.71, 55.65, 50.77, 47.47, 46.55, 45.83, 41.62, 41.03,
39.26,39.17, 38.43, 36.62, 33.79, 33.07, 32.58, 32.44, 30.67, 27.76, 27.60, 25.93, 25.91,
25.87,23.70, 23.58, 23.40, 22.93, 21.46, 18.17, 17.70, 16.78, 16.02, 15.23; HRMS m/z

(ESI): Calcd for Cy10H2601sNa  [M+Na] 1757.8842, found 1757.8853.
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"’Ph
(167): Carboxylic acid 166 (21 mg, 0.12 mmol, 1 equiv) bromide 152 (45 mg, 0.036
mmol, 3 equiv), potassium carbonate (8.4 mg, 0.061 mmol, 5 equiv), and
tetrabutylammonium bromide (12 mg, 0.036 mmol, 3 equiv) were combined in a biphasic
mixture of ethyl acetate (1.5 mL) and water (1.5 mL) and heated to 45 °C. After 4 hr,
another aliquot of bromide 152 (15 mg, 0.012 mmol, 1 equiv) in ethyl acetate (0.5 mL)
was added. After 1 hr, rxn was diluted with ethyl acetate (25 mL) and sonicated for 5
min. Saturated aqueous sodium bicarbonate (25 mL) was added to the mixture, then
extracted with ethyl acetate (2 X 50 mL). Combined organics were washed with brine,
dried over sodium sulfate, concentrated and purified with silica gel chromatography

(benzene:ethyl acetate, 1:0 to 10:1) to give 167 (24 mg, 69%) as a sticky white foam.
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TLC Rs0.53 (20:1 benzene:ethyl acetate); FTIR (NaCl film) 3062, 3030, 2934, 1750,
1586, 1548, 1495, 1451, 1363, 1314, 1259, 1210, 1145, 1070, 1027, 996, 948, 909, 791,
750, 735, 697, 666 cm™; 'H NMR (600 MHz, CDCl3) & 7.63 — 7.04 (m, 85H), 5.75 (s,
1H), 5.63 (s, 1H), 5.56 (s, 1H), 5.54 (d, J= 7.0 Hz, 1H), 5.27 (t, J= 3.8 Hz, 1H), 5.20 (d,
J=12.2 Hz, 1H), 5.11 (d, J=12.2 Hz, 1H), 4.90 (d, J = 11.0 Hz, 1H), 4.85 — 4.80 (m,
3H), 4.79 — 4.73 (m, 3H), 4.72 — 4.67 (m, 4H), 4.62 — 4.57 (m, 2H), 4.53 — 4.41 (m, 9H),
440 (d, J=12.1 Hz, 1H), 4.30 (d, J= 7.7 Hz, 1H), 4.24 (t, J = 6.4 Hz, 1H), 4.21 (t, J=
6.6 Hz, 1H), 4.14 (dd, J = 10.6, 6.1 Hz, 1H), 4.10 (d, J = 6.0 Hz, 1H), 4.09 — 4.05 (m,
2H), 4.01 (d, J= 6.0 Hz, 1H), 3.95 (d, J=2.7 Hz, 1H), 3.90 — 3.82 (m, 4H), 3.76 — 3.65
(m, 7H), 3.61 — 3.50 (m, 5H), 3.46 — 3.39 (m, 2H), 3.37 (dd, J = 9.8, 2.7 Hz, 1H), 3.17
(dd, J=9.9, 7.0 Hz, 1H), 3.05 (dd, J=10.1, 6.8 Hz, 1H), 2.93 (dd, J=11.7, 4.7 Hz, 1H),
2.79 (dd, J=13.6, 3.7 Hz, 1H), 1.95 — 1.58 (m, 8H), 1.55 — 1.44 (m, 4H), 1.43 — 1.38 (m,
1H), 1.37 - 1.22 (m, 5H), 1.19 (d, J= 6.2 Hz, 3H), 1.17 — 1.10 (m, 5H), 0.95 (s, 3H), 0.92
(s, 3H), 0.88 (s, 7H), 0.81 (s, 3H), 0.69 (s, 6H), 0.59 (dd, J=11.8, 1.9 Hz, 1H); *C NMR
(151 MHz, CDCl;) & 176.10, 168.31, 143.45, 143.32, 143.27, 143.04, 142.85, 142.26,
138.70, 138.48, 138.29, 138.08, 137.96, 137.90, 137.81, 137.63, 137.54, 135.15, 130.52,
128.53, 128.47, 128.44, 128.42, 128.40, 128.36, 128.33, 128.27, 128.23, 128.20, 128.18,
128.11, 128.07, 128.06, 128.03, 127.99, 127.98, 127.95, 127.91, 127.89, 127.80, 127.76,
127.73, 127.71, 127.62, 127.57, 127.55, 127.39, 127.20, 126.12, 126.07, 126.02, 125.98,
125.96, 125.85, 122.45, 109.58, 109.27, 108.97, 104.94, 100.78, 97.49, 96.15, 95.83,
93.17, 91.62, 85.33, 84.72, 82.48, 80.49, 80.09, 79.65, 79.53, 79.36, 78.39, 77.38, 76.30,
76.13, 76.05, 75.75, 75.08, 74.92, 74.72, 74.49, 74.39, 74.28, 73.82, 73.69, 73.34, 73.08,

72.95, 72.36, 72.10, 71.09, 68.22, 68.18, 67.09, 64.99, 64.67, 64.62, 55.53, 47.45, 46.70,
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45.98, 41.68, 41.27, 39.30, 39.22, 38.53, 36.63, 33.84, 33.02, 32.68, 31.86, 31.71, 30.61,

29.69, 27.95, 27.80, 25.92, 25.51, 23.62, 23.40, 22.79, 18.15,
1608, 1536, HRMS m/z (ESI) Calcd for C182H196031Na

2900.3733.

BnO
BnO
BnO
BnO
Ph
BnO
O
(0]
o) |_OBn

6{7
“'Ph J

Ph

OH HO - HO Me
Me M OH
HO OH

HO

(0]
w“
o7 OH

HO Me

(168): A solution of fully protected lablaboside F 167 (15 mg,

17.93, 17.64, 17.43, 17.01,

[M+Na] 2900.3658, found

O1
HO Me

0.005 mmol, 1.0 equiv) in

tetrahydrofuran (3 mL) and methanol (3 mL) in a 25 mL round bottom flask was charged

with 10% (dry basis) palladium on carbon, wet, Degussa type

mmol, 5 equiv). Reaction mixture was stirred under hydrogen

E101 NE/W (56 mg, 0.026

pressure (50 psi) for 24 hr,

then filtered through a 0.45 um polyvinylidene fluoride filter disk, washed with methanol

(5 mL), and concentrated. This crude product was partially

dissolved in a solution of

aqueous acetonitrile (5:1 HyO:acetonitrile) and purified by RP-HPLC on an XBridge

Prep BEH300 C18 column (5 pm, 10 X 250 mm) using a linear gradient of 20 * 75%
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acetonitrile (0.05% TFA) in over 19 min at a flow rate of 5 mL/min. The fraction
containing the major peak (tR = 10.10 min) was collected and lyophilized to dryness to

afford lablaboside F (168) (3.3 mg, 77 % yield) as a fluffy white solid.

[@]: —44° (Lit —46°) (c 0.38, MeOH); *H NMR (500 MHz, Methanol-dy) 5 5.47 (d, J =
1.7 Hz, 1H), 5.26 (d, J = 8.1 Hz, 1H), 5.15 (d, J = 3.7 Hz, 1H), 5.10 (d, J = 1.7 Hz, 1H),
5.07 (d, J= 1.8 Hz, 1H), 4.70 (d, J= 7.7 Hz, 1H), 4.38 (d, J= 7.5 Hz, 1H), 4.03 (dq, J =
9.7, 6.2 Hz, 1H), 3.89 — 3.84 (m, 1H), 3.82 (dd, J = 3.4, 1.7 Hz, 1H), 3.78 (dd, J = 9.5,
6.2 Hz, 1H), 3.75 (dd, J = 3.5, 1.7 Hz, 1H), 3.73 — 3.52 (m, 13H), 3.54 — 3.44 (m, 6H),
3.46 — 3.37 (m, 2H), 3.37 — 3.25 (m, 4H), 3.10 — 3.03 (m, 1H), 2.70 (dd, = 14.1, 3.7 Hz,
1H), 1.83 — 1.74 (m, 3H), 1.70 — 1.60 (m, 3H), 1.57 — 1.40 (m, 7H), 1.38 — 1.23 (m, 2H),
1.21 (d, J=6.2 Hz, 4H), 1.16 (d, J= 3.2 Hz, 4H), 1.15 (d, J= 3.2 Hz, 10H), 1.10 (s, 3H),
1.07 — 1.03 (m, 1H), 1.01 (s, 4H), 0.93 — 0.86 (m, OH), 0.86 (s, 4H), 0.82 (s, 3H), 0.81 (s,
3H), 0.78 (s, 3H), 0.70 (s, 4H), 0.70 — 0.66 (m, 1H); HRMS mz (ESI): Calcd for

Ce6H106031Na [M+Na] 1417.6616, found 1417.6649.
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S S
0.__0O o

OBn

(170): Carboxylic acid 167 (15 mg, 0.0086 mmol, 1 equiv) bromide 169 (26 mg, 0.043
mmol, 5 equiv), potassium carbonate (3.6 mg, 0.026 mmol, 3 equiv), and
tetrabutylammonium bromide (8 mg, 0.026 mmol, 3 equiv) were combined in a biphasic
mixture of ethyl acetate (1 mL) and water (1 mL) and heated to 45 °C. After 4 hr, rxn
was diluted with ethyl acetate (25 mL) and sonicated for 5 min. Saturated aqueous
sodium bicarbonate (25 mL) was added to the mixture, then extracted with ethyl acetate
(2x 50 mL). Combined organics were washed with brine, dried over sodium sulfate,
concentrated and purified with silica gel chromatography (hexanes:ethyl acetate, 20:1 to

4:1) to give 170 (16 mg, 83%) as a sticky white foam.

TLC R 0.43 (20:1 benzene:ethyl acetate); FTIR (NaCl film) 2924, 1749, 1453, 1362,

1071, 1027, 733, 697, 666 cm™; *H NMR (600 MHz, CDCl3) § 7.53 — 7.48 (m, 2H), 7.44
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—7.40 (m, 2H), 7.35 — 7.26 (m, 39H), 7.25 — 7.05 (m, 20H), 5.74 (s, 1H), 5.54 (d, = 8.1
Hz, 1H), 5.30 (t, J = 3.7 Hz, 1H), 5.19 (d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.3 Hz, 1H),
493 (d, J=11.2 Hz, 1H), 4.88 (d, J= 10.9 Hz, 1H), 4.86 — 4.79 (m, 5H), 4.77 (d, J= 7.3
Hz, 1H), 4.76 (d, J = 9.3 Hz, 1H), 4.72 — 4.67 (m, 3H), 4.62 (d, J = 12.2 Hz, 1H), 4.59 (d,
J=10.7 Hz, 1H), 4.54 — 4.49 (m, 3H), 4.48 (d, J = 11.6 Hz, 1H), 4.45 — 4.40 (m, 3H),
431 (d, J=7.7 Hz, 1H), 4.24 (t, J = 6.4 Hz, 1H), 4.16 (dq, J = 10.0, 6.2 Hz, 1H), 4.05
(dd, J=9.8, 7.7 Hz, 1H), 4.01 (d, J = 6.0 Hz, 1H), 3.97 — 3.93 (m, 1H), 3.89 — 3.82 (m,
2H), 3.81 — 3.66 (m, 6H), 3.64 — 3.50 (m, 4H), 3.42 (dd, J= 8.2, 5.4 Hz, 1H), 3.37 (dd, J
=9.9, 2.8 Hz, 1H), 3.09 (dd, J = 10.1, 6.8 Hz, 1H), 2.94 (dd, J = 11.7, 4.6 Hz, 1H), 2.86
(dd, J=14.2, 4.3 Hz, 1H), 2.07 — 1.96 (m, 1H), 1.90 — 1.58 (m, 9H), 1.55 — 1.45 (m, 2H),
1.41 (dd, J=11.3, 6.7 Hz, 1H), 1.35 (td, J = 13.4, 5.1 Hz, 1H), 1.32 — 1.09 (m, 7H), 1.07
(d, J= 6.2 Hz, 4H), 1.06 (s, 3H), 0.94 (s, 4H), 0.91 (s, 3H), 0.90 (s, 3H), 0.89 — 0.82 (m,
3H), 0.81 (s, 3H), 0.69 (s, 3H), 0.68 (s, 3H), 0.58 — 0.52 (m, 1H); *C NMR (151 MHz,
CDCly) & 176.04, 168.26, 143.43, 143.24, 143.05, 138.99, 138.44, 138.39, 138.19,
138.09, 138.07, 137.94, 137.92, 137.78, 137.50, 135.13, 128.51, 128.42, 128.40, 128.37,
128.36, 128.35, 128.34, 128.30, 128.28, 128.23, 128.05, 128.02, 128.00, 127.98, 127.96,
127.92, 127.87, 127.84, 127.82, 127.80, 127.76, 127.75, 127.74, 127.73, 127.68, 127.62,
127.54, 127.52, 127.42, 127.21, 127.11, 126.01, 125.99, 122.59, 108.98, 104.95, 100.79,
97.55, 94.13, 91.61, 85.34, 85.00, 82.33, 80.71, 79.98, 79.65, 79.54, 77.44, 77.24, 76.08,
76.00, 75.78, 75.68, 75.54, 74.96, 74.92, 74.71, 74.38, 74.28, 73.99, 73.69, 73.31, 72.93,
72.39, 72.35, 71.04, 68.13, 68.03, 67.07, 64.73, 55.64, 47.48, 46.71, 45.94, 41.71, 41.20,

39.20, 38.50, 36.60, 33.90, 33.04, 32.33, 31.85, 30.63, 27.89, 27.80, 25.89, 25.57, 23.61,
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23.42, 23.21, 18.12, 17.70, 16.86, 16.06, 15.30, 14.14; HRMS m/z (ESI): Calcd for

Ci144H160023Na [M+Na] 2280.1248, found 2280.1345.

BnO

OBn
BrOL L

OBn

(171): A solution of fully protected lablaboside A 170 (19 mg, 0.007 mmol, 1.0 equiv) in
tetrahydrofuran (3 mL) and methanol (3 mL) in a 25 mL round bottom flask was charged
with 10% (dry basis) palladium on carbon, wet, Degussa type E101 NE/W (60 mg, 0.028
mmol, 4 equiv). Reaction mixture was stirred under hydrogen pressure (50 psi) for 24 hr,
then filtered through a 0.45 um polyvinylidene fluoride filter disk, washed with methanol
(5 mL), and concentrated. This crude product was partially dissolved in a solution of
aqueous acetonitrile (5:1 HyO:acetonitrile) and purified by RP-HPLC on an XBridge

Prep BEH300 C18 column (5 pm, 10 X 250 mm) using a linear gradient of 20 * 75%

acetonitrile (0.05% TFA) in over 19 min at a flow rate of 5 mL/min. The fraction
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containing the major peak (tR = 12.07 min) was collected and lyophilized to dryness to

afford lablaboside A (171) (6.7 mg, 86 % yield) as a fluffy white solid.

[@]2: —10.1 ° (Lit -9.3 °) ( 0.6, MeOH); *H NMR (600 MHz, Methanol-dy) & 5.40 (d, J
=8.1 Hz, 1H), 5.27 (t, J= 3.7 Hz, 1H), 5.20 (d, J= 1.7 Hz, 1H), 4.82 (d, J= 7.6 Hz, 1H),
4.50 (d, J=7.6 Hz, 1H), 4.16 (dq, J= 9.7, 6.3 Hz, 1H), 3.94 (dd, J = 3.4, 1.7 Hz, 1H),
3.86 — 3.66 (m, 8H), 3.65 — 3.58 (m, 3H), 3.53 (t, J = 9.4 Hz, 1H), 3.46 — 3.35 (m, 6H),
3.19 (dd, J=11.8, 4.5 Hz, 1H), 2.87 (dd, J= 12.9, 3.2 Hz, 1H), 2.07 (td, J=13.5, 3.9 Hz,
1H), 1.97 — 1.86 (m, 3H), 1.85 — 1.79 (m, 1H), 1.79 — 1.70 (m, 4H), 1.67 — 1.47 (m, 5H),
1.46 — 1.36 (m, 2H), 1.36 — 1.31 (m, 1H), 1.28 (d, J = 6.2 Hz, 3H), 1.26 — 1.21 (m, 1H),
1.18 (s, 3H), 1.17 — 1.15 (m, 1H), 1.13 (s, 3H), 0.97 (s, 3H), 0.95 (s, 3H), 0.93 (s, 3H),
0.90 (s, 3H), 0.82 (s, 3H), 0.80 — 0.77 (m, 1H); *C NMR (151 MHz, MeOD) & 178.06,
172.59, 149.48, 149.30, 149.12, 144.84, 138.63, 138.46, 138.30, 125.40, 125.23, 125.06,
123.83, 105.84, 102.79, 102.08, 95.72, 92.44, 78.72, 78.48, 78.32, 78.27, 77.20, 76.92,
76.56, 76.10, 74.25, 73.93, 73.42, 72.28, 72.18, 71.10, 70.94, 69.50, 62.95, 62.40, 57.06,
49.58, 48.04, 47.23, 42.95, 42.63, 40.73, 40.48, 39.80, 37.91, 34.91, 33.96, 33.51, 33.15,
31.56, 28.92, 28.73, 26.97, 26.30, 24.58, 24.01, 23.97, 19.36, 18.26, 17.75, 16.85, 15.98;

HRM S nVz (ESI): Calcd for CssHgsO23Na [M+Na] 1125.5458, found 1125.5460.

220



