

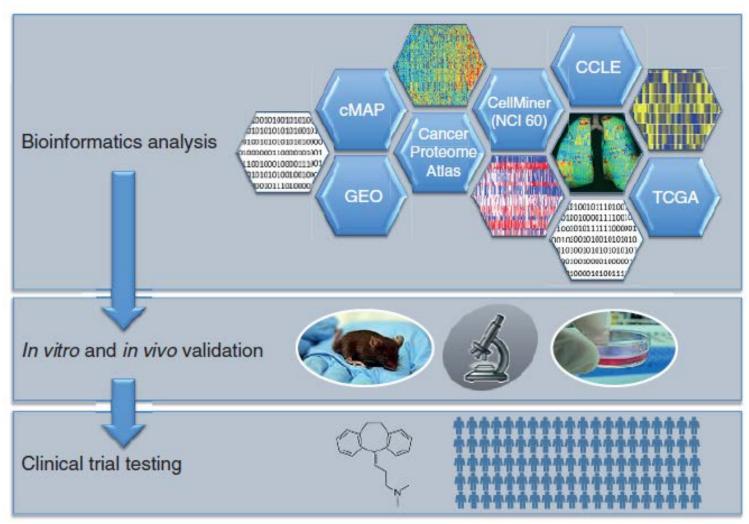
DDR and cell cycle vulnerabilities

Lauren Averett Byers, MD

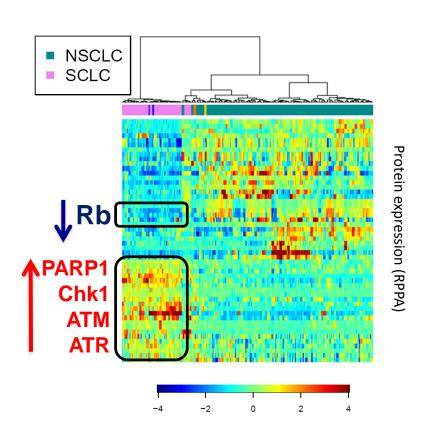
SCLC Research Consortium Meeting
National Cancer Institute
16 March 2018

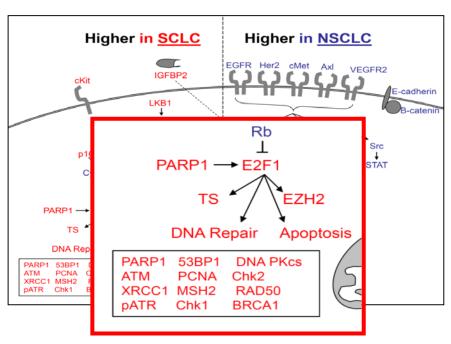
THE UNIVERSITY OF TEXAS

MD Anderson Cancer Center

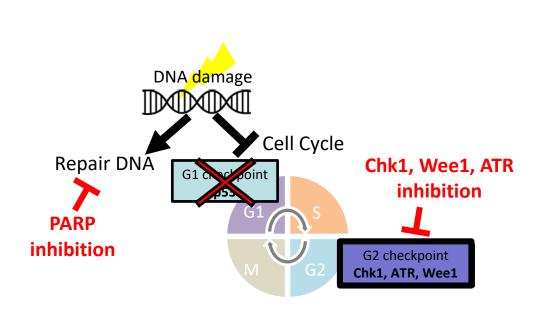

Making Cancer History®

NCI Funded SCLC Projects

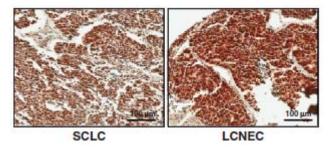

- NIH/NCI R01-CA207295
 - Therapeutic strategies for targeting PARP1 in small cell lung cancer
- NIH/NCI U01-CA213273
 - Novel therapeutic approaches for enhancing antitumor immunity and overcoming PD-1/PD-L1 inhibitor resistance in SCLC
 - Project 1: DNA damage response (DDR) inhibition to enhance anti-PD1/PDL1 response
- UTSW/MDACC Lung SPORE

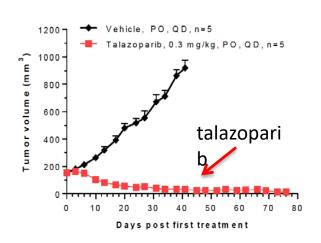


Are there distinct molecular profiles that translate into specific therapeutic vulnerabilities?



Rewiring of Small Cell Lung Cancer promotes increased expression of DDR proteins




DNA Damage Response (DDR) – a therapeutic vulnerability in SCLC?

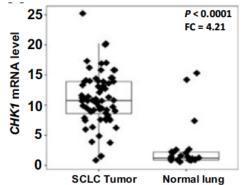
PARP IHC (patient tumors)

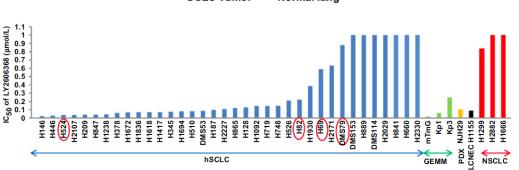
PARP inhibition -- PDX

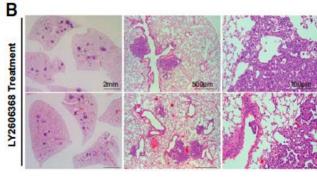
Byers et al. Cancer Discovery, 2012 Cardnell et al. CCR, 2013 Feng et al AACR-NCI-EORTC 2014

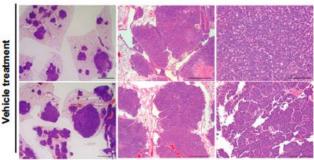
Therapeutics, Targets, and Chemical Biology

Cancer Research

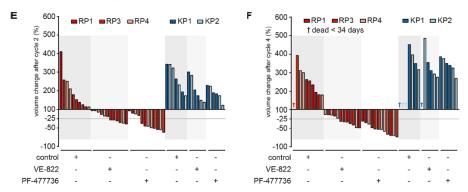

CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib



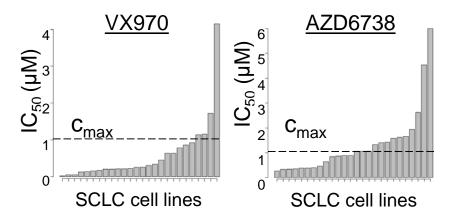

Triparna Sen¹, Pan Tong², C. Allison Stewart¹, Sandra Cristea³,4, Aly Valliani¹, David S. Shames⁵, Abena B. Redwood⁶, You Hong Fan¹, Lerong Li², Bonnie S. Glisson¹, John D. Minna², Julien Sage³,4, Don L. Gibbons¹,8, Helen Piwnica-Worms⁶, John V. Heymach¹,9, Jing Wang², and Lauren Averett Byers¹



Triparna Sen



Targeting a non-oncogene addiction to the ATR/CHK1 axis for the treatment of small cell lung cancer

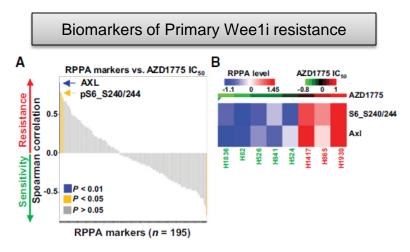

Fabian Doerr^{1,2,3}, Julie George⁴, Anna Schmitt^{1,2}, Filippo Beleggia^{1,2}, Tim Rehkämper^{1,2}, Sarah Hermann^{1,2}, Vonn Walter^{5,6}, Jean-Philip Weber⁷, Roman K. Thomas^{4,8,9}, Maike Wittersheim⁸, Reinhard Büttner⁸, Thorsten Persigehl⁷ & H. Christian Reinhardt^{1,2}

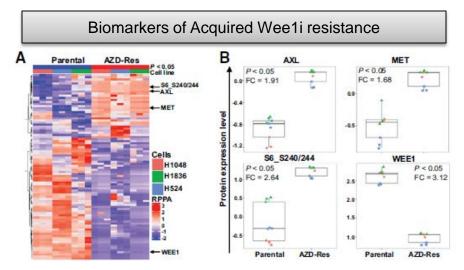
Scientific Reports, Nov 2017

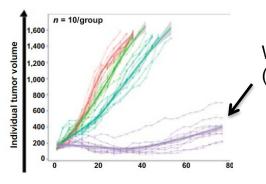
ATRi (VE-822), Chk1i (PF-477736)

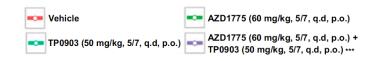
ATRi sensitivity in human cell lines

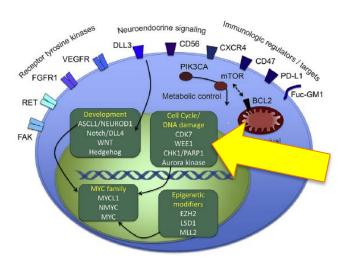
Carl Gay, IASLC Targeted Therapy Mtg 2018


Cancer Therapy: Preclinical


Targeting AXL and mTOR Pathway Overcomes Primary and Acquired Resistance to WEE1 Inhibition in Small-Cell Lung Cancer


Triparna Sen¹, Pan Tong², Lixia Diao², Lerong Li², Youhong Fan¹, Jennifer Hoff¹, John V. Heymach^{1,3}, Jing Wang², and Lauren Averett Byers¹





Wee1 + AXL inhibition combination (Wee1i resistant model)

Growing number of PARP, ATR, Chk1, Wee1 and other DDR inhibitors in clinical trials

Table 1 DDR-targeted therapy clinical trials in SCLC (list includes ongoing trials as of 12/2017)

Bunn, J Thorac Oncol 2016

Table 1 DDR-targeted therapy clinical trials in SCLC (list includes ongoing trials as of 12/2017)		
Trial	Treatment	Indication
PARP inhibitor trials in SCLC		
NCT03227016	Phase 1: veliparib alone; phase 2: veliparib + topotecan	Relapsed/refractory ES-SCLC
NCT02734004	Phase 1/2: MEDI4736 (anti-PD-L1) in combination with olaparib	Advanced solid tumors including ES-SCLC cohort
NCT02289690	Phase 2: carboplatin/etoposide +/- veliparib	Treatment-naïve ES-SCLC
NCT02769962	Phase 1/2: CRLX101 (camptothecin nanoparticle) + olaparib	Relapsed/refractory ES-SCLC
NCT01642251	Phase 1/2: cisplatin/etoposide +/- veliparib	Treatment-naïve ES-SCLC
NCT02498613	Phase 2: olaparib + cediranib (anti-VEGFR TKI)	Advanced solid tumors including ES-SCLC cohort
NCT02446704	Phase 1/2: olaparib + TMZ	Relapsed/refractory ES-SCLC
NCT03009682	Phase 2: olaparib monotherapy	Relapsed/refractory ES-SCLC harboring HR mutations
NCT02511795	Phase 1b: olaparib + AZD1775 (WEE1 inhibitor)	Advanced solid tumors including ES-SCLC cohort
ATR inhibitor trials including SCLC		
NCT02487095	Phase 1/2: topotecan + VX970	Advanced small cell cancers
NCT02589522	Phase 1: VX-970 + WBRT	Brain metastases from tumors
NCT02223923	Phase 1: AZD6738 +/- RT	Advanced solid tumors
NCT02723864	Phase 1: veliparib + VX-970 + cisplatin	Advanced solid tumors
NCT02595931	Phase 1: VX-970 + irinotecan	Advanced solid tumors
NCT02157792	Phase 1: VX-970 + chemotherapy	Advanced solid tumors
NCT03188965	Phase 1: BAY1895344 monotherapy	Advanced solid tumors
CHK inhibitor trials including SCLC		
NCT02735980	Phase 2: prexasertib monotherapy	Relapsed/refractory ES-SCLC
NCT02797964	Phase 1: SRA737 monotherapy	Advanced solid tumors
NCT02797977	Phase 1: SRA737 + gemcitabine +/- cisplatin	Advanced solid tumors
NCT02873975	Phase 2: prexasertib monotherapy	Advanced solid tumors with HR deficiency or replicative stress
NCT03057145	Phase 1: prexasertib + olaparib	Advanced solid tumors
Wee1 inhibitor trials including SCLC		
NCT02482311	Phase 1: AZD1775 monotherapy	Advanced solid tumors including ES-SCLC cohort
NCT02511795	Phase 1b: AZD1775 + olaparib	Advanced solid tumors including ES-SCLC cohort
NCT02593019	Phase 2: AZD1775 monotherapy	Relapsed/refractory ES-SCLC
NCT02688907	Phase 2: AZD1775 monotherapy	Relapsed/refractory ES-SCLC with MYC amplifications or CDKN2A + TP53 mutations

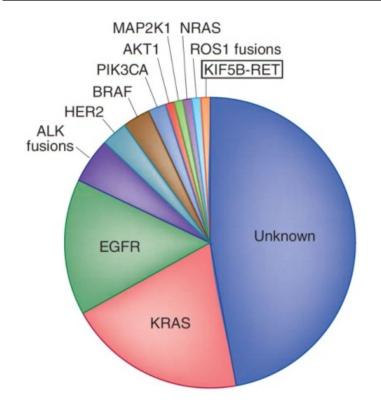
Sen, Gay, and Byers. TLCR 2018

Combination of Temozolomide with the PARP inhibitor Veliparib improves outcomes in relapsed SCLC

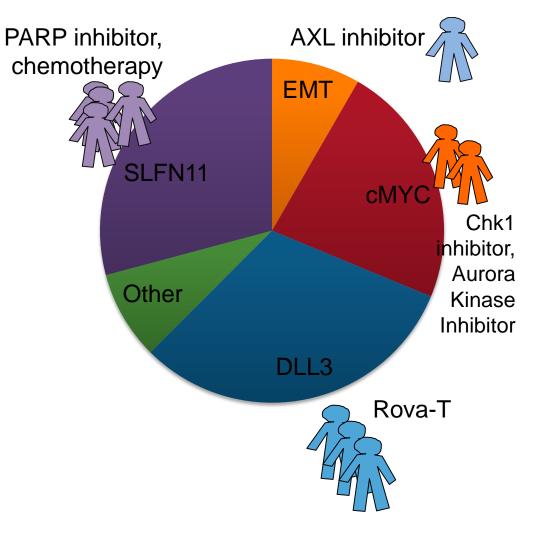
Recurrent SCLC patients

- 1-2 prior regimens
- 104 pts treated

Clinical Outcomes

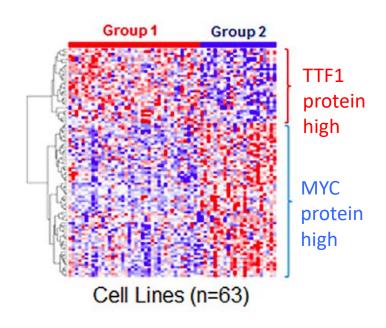

- Higher Response Rate in Veliparib/TMZ arm (39% vs. 14%)
- Higher Overall Survival with combination in patients with biomarkerpositive (SLFN11 ≥ 1%) tumors

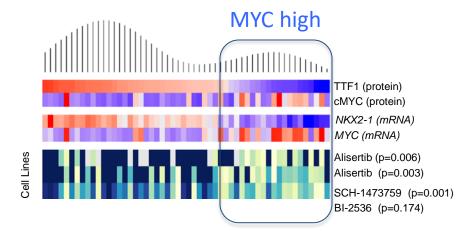
Pietanza and Byers, et al, ASCO 2016; World Lung Cancer Conference 2017



NSCLC – Genomic Pie Slices

SCLC – Evolving Proteomic Landscape

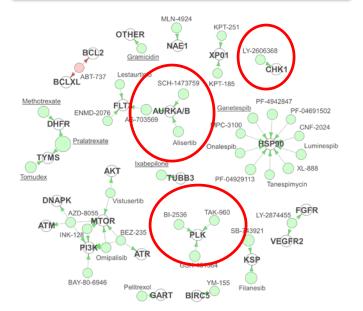

Pao, Hutchinson; Nat Med 2012



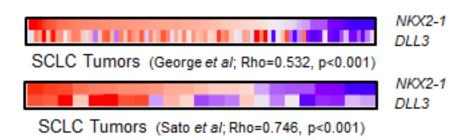
Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies

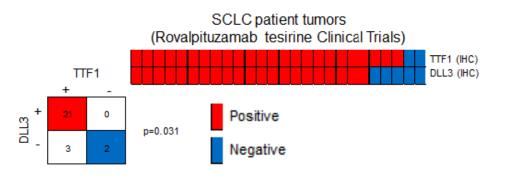
Robert J. Cardnell¹, Lerong Li², Triparna Sen¹, Rasha Bara¹, Pan Tong², Junya Fujimoto³, Abbie S. Ireland⁴, Matthew R. Guthrie⁴, Sheila Bheddah⁵, Upasana Banerjee¹, Nene N. Kalu¹, You-Hong Fan¹, Scott J. Dylla⁵, Faye M. Johnson^{1,6}, Ignacio I. Wistuba³, Trudy G. Oliver⁴, John V. Heymach¹, Bonnie S. Glisson¹, Jing Wang^{2,4,*} and Lauren A. Byers^{1,6,*}

MYC-high SCLC sensitive to Aurora Kinase inhibition

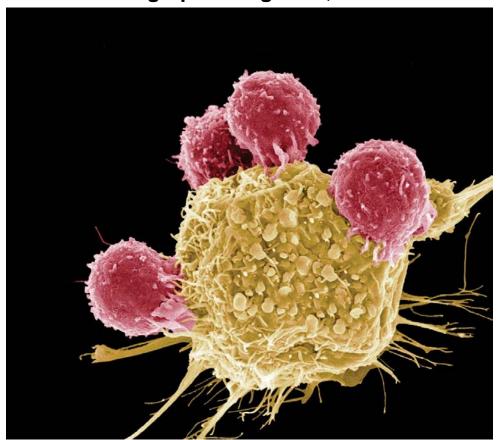


Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies


Robert J. Cardnell¹, Lerong Li², Triparna Sen¹, Rasha Bara¹, Pan Tong², Junya Fujimoto³, Abbie S. Ireland⁴, Matthew R. Guthrie⁴, Sheila Bheddah⁵, Upasana Banerjee¹, Nene N. Kalu¹, You-Hong Fan¹, Scott J. Dylla⁵, Faye M. Johnson^{1,6}, Ignacio I. Wistuba³, Trudy G. Oliver⁴, John V. Heymach¹, Bonnie S. Glisson¹, Jing Wang^{2,4,*} and Lauren A. Byers^{1,6,*}


Targets for **non-NE** SCLC (TTF1-low/MYC-high)

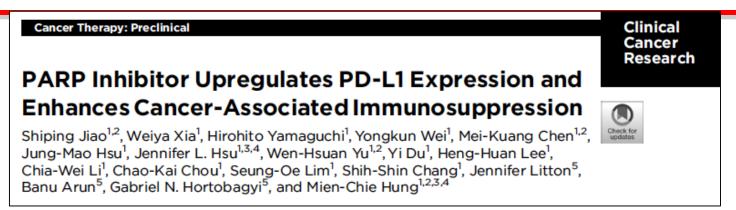
e.g., Aurora, PLK, Chk1


Low DLL3 expression in TTF1-low SCLC

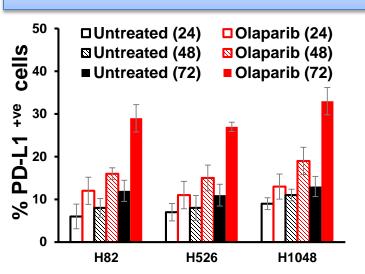
Immunotherapy = Bacon?

National Geographic Magazine, March 2018

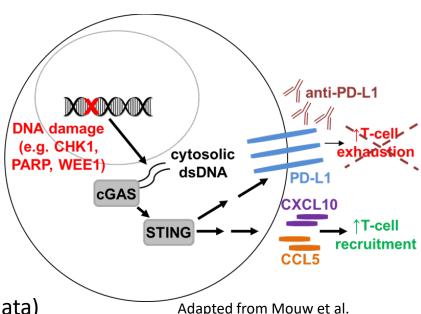
New kinds of cancer treatments help the immune system's T cells (pink) find and attack cancer cells (yellow).


Eventually, ...doctors will be able to target more types of cancer with combination treatments, including antibodies that remove immunological barriers.

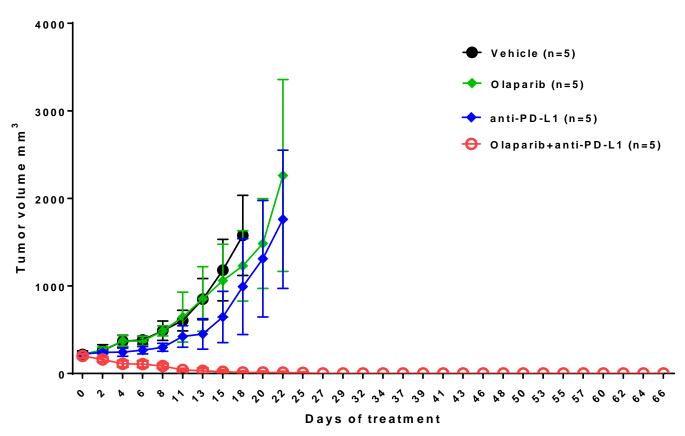
"I think they will be like bacon...Bacon is good on everything."


-Elfriede Noessner, German Cancer Research Center for Environmental Health

PHOTOGRAPH BY STEVE GSCHMEISSNER, SCIENCE SOURCE (COLORIZED SEM)


PARP inhibition increases PDL1 expression and may activate innate immune response

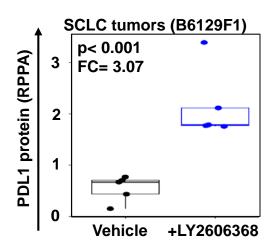
Olaparib increases PDL1 (SCLC)

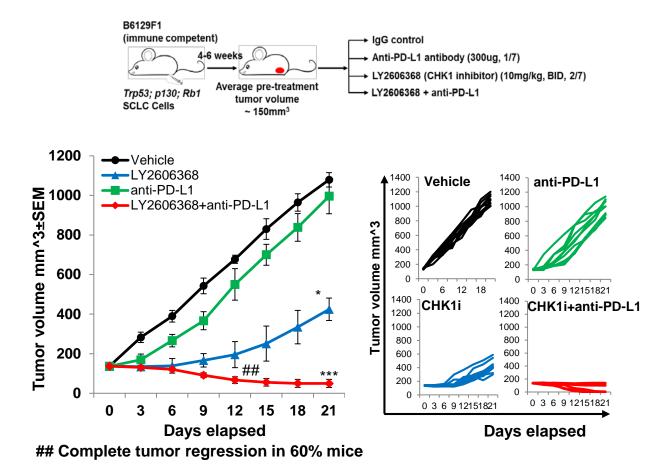


Jiao et al, CCR 2017

Byers, IASLC Santa Monica 2018 (unpublished data)

Co-targeting PARP1 (olaparib) and PD-L1 causes significant tumor regression in SCLC model

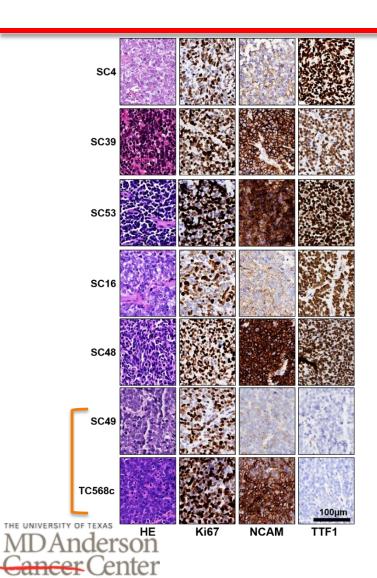




Making Cancer History'

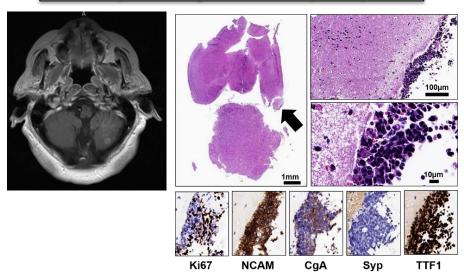
Co-targeting CHK1 and PD-L1 causes significant tumor regression in SCLC model

Chk1i increases PDL1

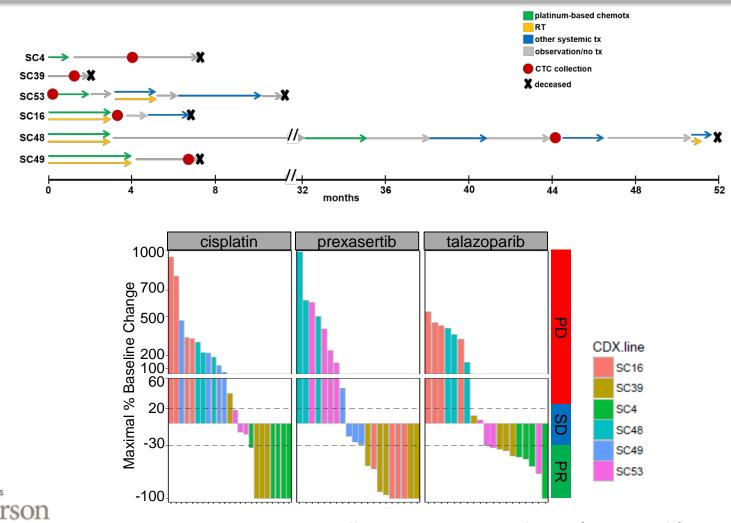


Sen et al, WCLC 2017

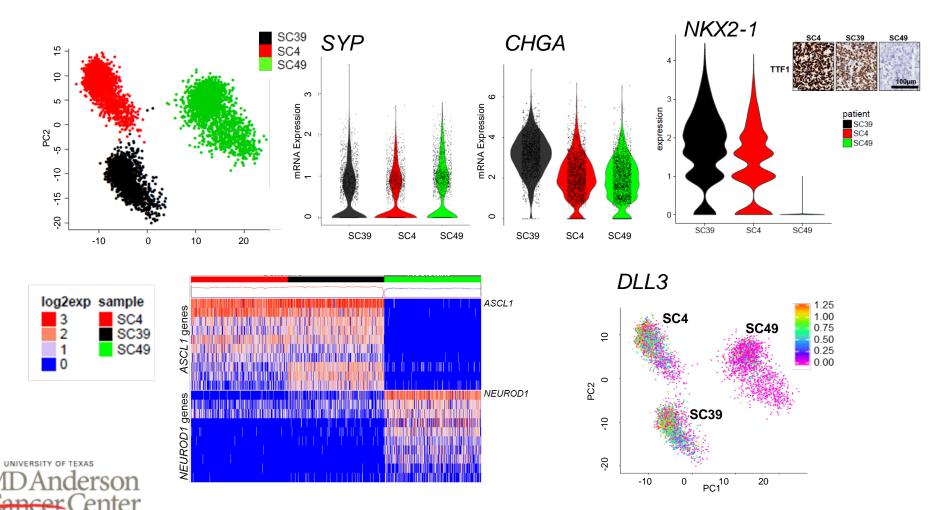
CTC-derived xenograft models (CDXs)



Allison Stewart

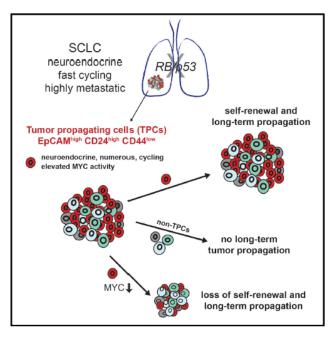

Carl Gay

Leptomeningeal Disease (SC39)

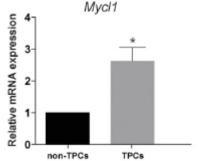


Junya Fujimoto, John Heymach, Hai Tran, Ignacio Wistuba MDACC Lung Moon Shot Program (unpublished)

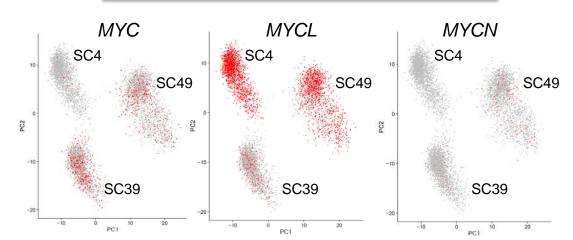
CDX in vivo response matches clinical response of patient to chemotherapy



Single cell RNAseq analysis of CDX models to explore tumor heterogeneity



Allison Stewart, Carl Gay, Yuanxin Xi, Jing Wang, unpublished; Funded by SWOG/JAX Pilot


L-MYC is associated with tumor propagation in SCLC

Jahchan et al., 2016

CDX tumors - Single cell RNAseq

Allison Stewart, Carl Gay, Yuanxin Xi, Jing Wang, unpublished

Conclusion

- Activity of DNA damage response (DDR) and cell cycle inhibitors observed in SCLC models (e.g., PARP1, Chk1, Wee1, ATR inhibitors), many now in the clinic
- Candidate biomarkers for specific DDR inhibitors identified, with initial validation of SLFN11 in TMZ-veliparib treated patients (CTEP/NCI trial)
- DDR-IO combinations enhance anti-tumor effect in syngeneic and spontaneous GEMM models, warrant further investigation in the clinic
- CTC-derived xenograft models (CDXs) provide an opportunity for increasing the number of drug resistant models for translational research
- Single cell RNAseq data reveals intra-tumoral heterogeneity. Contribution of tumor heterogeneity to resistance is being further investigated.

Acknowledgements

Byers Lab:

Triparna Sen

Carl Gay

Allison Stewart

Robert Cardnell

Kavya Ramkumar

Carminia Della Corte

Bioinformatics:

Jing Wang

Yuanxin Xi

Pan Tong

Lixia Diao

Lerong Li

Other MD Anderson:

John Heymach

Don Gibbons

Bonnie Glisson

Junya Fujimoto

Ignacio Wistuba

John De Groot

Bingliang Fang

Other Collaborators

Julien Sage

Trudy Oliver

John Minna

Adi Gazdar

Paul Robson Lab

--Siva Vijayakumar

--Mohan Bolisetty

Funding:

NIH/NCI 1-U01-CA213273

NIH/NCI 1-R01-CA207295

MDACC CCSG (P30-CA016672)

UTSW/MDACC SPORE (5-P50-CA070907)

SWOG ITSC Grant (single cell analysis)

Lung Cancer Research Foundation

LUNGevity Foundation

The University of Texas MD Anderson Lung Cancer Moon

Shot Program

The Rexanna Foundation

MD Anderson Small Cell Lung Cancer Working Group

