Announcements/Updates

- Getting exon sequencing on Small Cells in portal as IMPACT samples in the next few months
- If anyone has any new sets of models to add to portal, data gets richer with more samples
- New U54 grant from Vanderbilt in Small Cell Lung Cancer

Title: RB1 Loss Drives Prostate Cancer Lineage Plasticity and Therapeutic Resistance
Leigh Ellis Ph.D-Dana Farber Cancer Institute

- Prostate Cancer Initiation and Progression
 - Good News:
 - Highly curable if detected early-surgery/radiation
 - Bad News:
 - Approx 15% patients are diagnosed with mets at initial diagnosis
 - Approx 20-30% patients will metastasize post definitive treatment (surgery etc.)
 - Prostate cancer metastasis is not curable
 - Sustainable regression of disease is difficult

- Modeling Prostate Cancer Initiation and Progression

- Lab uses genetically modified mouse models
 1. Study disease initiation/progress
 2. Discover drivers of metastatic disease
 3. Discover drivers of therapeutic resistance
 4. Conduct informative pre-clinical trials

- Typical Responses to Antiandrogen Therapy
 - Prostate cancer is driven by androgen receptor reactivation
 - Charles Huggins discovered antiandrogen attacks on prostate was therapeutically beneficial which lead to surgical and estrogen chemical direction in the 1940’s
 - 20-30% of patients do become resistant
3 Basic Classifications

- Next generation ARPI’s increases patient population of AR indifferent tumors
 - Combined loss of tumor suppressor genes drives prostate cancer lineage plasticity
 - 2004 to now—clinical data and modeling data has come out that compliments each other
- Epigenetic (polycomb) re-wiring as a key molecular feature of neuroendocrine prostate cancer
 - 2 clinical papers in Vancouver compared adenocarcinoma and neuroendocrine cancer cohort that showed vast enrichment of polycomb EZH2 associated complex
 - Research at Cornell highlighted enrichment of EZH2, both expression and function
- EZH2 in Prostate Cancer Initiation and Progression

Table

<table>
<thead>
<tr>
<th>Clinical relapse profile</th>
<th>Restored AR signalling</th>
<th>AR bypass signalling</th>
<th>Complete AR independence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical relapse profile</td>
<td>AR^+</td>
<td>Rising PSA</td>
<td>AR^{Low} or AR^-</td>
</tr>
<tr>
<td>Histological features</td>
<td>Adenocarcinoma</td>
<td>Adenocarcinoma</td>
<td>SCC/NEPC</td>
</tr>
<tr>
<td>Molecular features</td>
<td>AR^+ activating mutations</td>
<td>AR^+ active splice variants</td>
<td>$RB1$ deletion</td>
</tr>
<tr>
<td></td>
<td>AR^+ synthesis from adrenal precursors</td>
<td>Intra-tumoural DHT synthesis from adrenal precursors</td>
<td>$TP53$ deletion or mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR upregulation</td>
<td>MYC gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AURKA gain</td>
</tr>
</tbody>
</table>

References:
- Efthymiou S. (2017) Pharmacogenomics

EZH2 Function and Role

1. **Lineage Plasticity**
2. **Immunity**

- **EZH2 Function and Role**
 - Polycomb Repressive Complex 2 (PRC2)
 - Cell Proliferation
 - Invasion
 - Mets
 - Tumor Formation
 - Cell Differentiation
 - Senescence
 - Lineage
 - Immune Regulation
• EZH2 in PCa Initiation and Progression
 o Prostate cancer is a downstream transcriptional target of 2 biggest oncogenes
 o EZH2 is up-regulated along with catalytic activity
 o 50% of prostate cancers house tempers through ERG fusion through ERG DNA binding as the transcription factor
 o Altered AR cistrome due to chromatin remodeling considered a histone methyltransferase dependent mechanism because of catalytic activity
 o PTEN loss models with activated AKT1-resulted in phosphorylation of EZH2 at a p-ser21
• RB1 Regulates Cell Cycle and Pluripotency
 o RB2 is a molecular adaptor
 o Function is defined by gene and protein interactions
 o Interactions are regulated by post-translational modification
 o RB1 inactivation promotes reprogramming of differentiated cells to a pluripotent cell cycle
 o RB1 acts as a global repressor of pluripotency networks
• Cancer Genetics and Epigenetics
 o How important is the rewiring of the epigenome?
• Loss of Rb1 induces metastatic progression in Pten deficient prostate cancer
• Loss of Rb1 induces lineage plasticity in Pten deficient prostate cancer
 o Used brainbow trans-genetic alleles in the mouse models to color the tumors by 4 different colors
• DKO murine PCa resembles human neuroendocrine prostate cancer
 o P53 deletion did not separate tumors from DKO
• Inhibition of Ezh2 reverses therapy resistance and lineage plasticity

Lab Work:
 1) How does Rb1 deletion influence chromatin remodeling?
 a) Gain deeper knowledge of Ezh2 dependence in chromatin remodeling downstream of Rb1 loss
 2) Validate Rb1 as a suppressor of PCa lineage plasticity
 3) Identifying synthetic lethal targets in prostate cancer with Rb1 loss-of-function
 4) Targeting RET Kinase in AVPC Patients
 5) Identifying novel master regulators of lineage plasticity in prostate cancer
• Testing MYBL2 as a driver of AVPC
• Tumor Evolution-Targeted Therapy Resistance Not just a Prostate Cancer Problem
• Treatment resistance after primary and secondary hormonal therapies involves re-activation of androgen receptor
• Clinical trial selection based on RB1 status—is positive protein expression enough?
 ▪ From clinicaltrials.gov
 • NCT02905318: mCRPC-CDK4/6 inhibitor (RB1 status required)
 • NCT02494921: mCRPC-CDK4/6 inhibitor (RB1 status NOT required)
Moving Forward

- Better models and additional clinical studies needed (selection versus adaptation)
 - Scenario 1: Pre-existing resistant clines exist in CRPC-Adeno. Elimination of drug sensitive clones paves way for expansion of drug resistant subpopulations
 - Scenario 2: Luminal prostate cancer cells adapt/de-differentiate/acquire characteristics that make them more "stem-like" and adopt NE features
- Understanding driving mechanisms of lineage plasticity-actionable targets
- Deeper understanding of RB1 deficiency (genetic versus epigenetic)
- Better identification of patients undergoing AVPC (CTCs, cfDNA, cfRNA)
- Using this information to better design clinical trials
- Measuring tumor heterogeneity (epigenetic plasticity)
 - John Dick stemness signature
 - NEPC score, AR score

Reminders:
- Next Call: 6/7/18-Vanderbilt Group