September 6, 2018 @ 1:00pm ET

Announcements/Updates

- Three new grants funded in the UO1 network!
 - Nick Dyson and Ana Farago (MGH)-pt derived model and understanding drug resistance
 - Luigi Marchionni, Christine Hann and Phuoc Tran (Hopkins)-bioinformatic and chemical approach to credentialing molecular targets
 - Ramaswamy Govindan, Obi Griffith and Trudy Oliver (Washington University and University of Utah)-genomic and functional identifications chemo therapy resistant mechanisms

Title: Understanding Different Subsets of Small Cell Lung Cancer

Dr. David MacPherson - Fred Hutchinson Cancer Research Center

- Key regulators of transcriptional enhancers mutated in SCLC
 - KMT2D/MLL2 truncating mutations frequent in SCLC
 - Global reduction of H3K4me1 in cell lines with KMT2D mutation

- LSD1 Inhibition in SCLC
 - LSD1 demethylates histone H3K4
 - LDS1 inhibitors are being investigated clinically for SCLC
 - We hypothesize that SCLC tumor genotype, especially mutations in chromatin regulating genes, may influence response to LSD1 inhibition
 - ORY1001: a novel, highly potent and specific LSD1 inhibitor being developed by Oryzon for AML and SCLC (Maes et al, Cancer Cell 2018)

- Heterogeneity in Response to ORY1001 in SCLC PDX Models

- An Exceptional Response to ORY1001 in PDX Model in FHSC04
Meeting minutes: SCLC Consortium WebEx

What underlies the strong response to LSD1 inhibition?
Understanding basis for this difference may help us to design SCLC clinical trials to direct therapies to right patient

- Upregulation of NOTCH pathway genes in ASCL1 Suppression in Response to ORY1001

Analyses at day 10 of treatment

- Treatment of PDX tumors grown ex vivo recapitulates in vivo responses

- Ex vivo analyses of response to ORY1001 in PDX models
• Genetic suppression of LSD1 and ASCL1
 o LSD1 knockdown → activation of NOTCH and targets and suppression of ASCL1, cell death in sensitive models
 o ASCL1 knockdown → loss of viability in sensitive models
• Gamma secretase inhibitors suppress NOTCH activation and effects of ORY1001
• LSD1 Inhibition in SCLC
 o Activation of NOTCH and suppression of ASCL1 occurs with ORY1001 but magnitude of these effects differ greatly—strong NOTCH activation and ASCL1 suppression associated with robust response to ORY1001
 o Need to understand underlying reasons for exceptional responses
 o Strongly responding FHSC04 model harbors inactivating mutations in CREBBP
 ▪ Do mutations in this and/or other epigenetic regulators contribute to strong responses?
• Model Systems for SCLC
 o **PDX Models**-excellent model system for SCLC therapeutic studies, captures heterogeneity in mutations and therapeutic responses seen in patients
 o Ability to study these models *ex vivo* can facilitate studies of drug responses and help dissect mechanisms underlying response
 o High mutational burden/genetic heterogeneity may increase noise when trying to link a driver mutation to therapeutic vulnerability or uncover biology underlying driver function
 o **GEM Models**-genetically simplified system, ideal for uncovering how driver gene perturbation influences the biology of SCLC
 o Can also be used to link mutation to therapeutic susceptibility/resistance
 o Immunocompetent
• Sensitized mouse SCLC model to understand potential driver genes
 o Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model

![mSCLC model: ~1 year latency](image)

• Interrogating CREBBP tumor suppressor activity in SCLC
 o Is CREBBP a tumor suppressor in SCLC, and if so, how is this mediated?
 ▪ Acetylation of histones can lead to
 • increased accessibility for transcription factors
 • binding sites for bromodomain containing proteins that include transcriptions co activators
- Inactivation of Crebbp accelerates SCLC in mouse model
- Inactivation of Crebbp promotes transformation in model of early stage SCLC tumorigenesis
- Ascl-Cre-ERT2 mediated deletion of Crebbp cooperates with Rb/p53 deletion to promote pituitary and thyroid neuroendocrine tumors
- Crebbp inactivation in SCLC, pituitary carcinoma and thyroid c-cell tumors leads to changes in cell cycle related gene sets
- Cross tumor analyses to identify transcripts that are consistently CREBBP regulated across neuroendocrine tumor types
 - 66 genes commonly CREBBP regulated with strong enrichment in adhesion related genes
 - CDH1-a tumor suppressor gene that regulates EMT transitions
 - CDH1 encodes E-Cadherin, a tumor suppressor mutated in gastric, breast and other cancer types
 - CDH1 expression correlated with sensitivity to cisplatin in SCLC (Stewart et al, 2017, Oncotarget)
 - In normal development of lung neuroendocrine cell bodies, PNECs transiently suppress CDH1 and increase EMT markers while undergoing cell migration
- CREBBP inactivation associated with partial suppression of CDH1 and upregulation of EMT markers, while maintaining ASCL1 expression
 - Tissues in the mouse models → decreasing in E-CADHERIN, increasing in N-CADHERIN and SLUG and no changes in ASCL1
 - Knocked down CREBBP in preSC system → decrease in E-CADHERIN, upregulation of EMT type transcription factors (ZEB1 and SLUG)
 - Deleted with CRISPR → CREBBP in DMS53 → drops in E-CADHERIN and upregulation of ZEB1
- Restoration of CREBBP in null human SCLC cells
 - Increased E-CADHERIN, decrease ZEB1, ASCL1 does not change → decreased proliferation and decreased anchorage independent growth and decreased colonies at low density
LU505 cells derived for SCLC PDX model (homozygous CREBBP deletion) → upregulation of CHD1, downregulation of ZEB1 and SLUG → decreased proliferation, decreased migration

- Inactivation of Cdh1 promotes transformation in preSC model of early stage SCLC tumorigenesis
 - Lead to increased colonies at low density and increased anchorage in independent growth

- Reduced H3K27Ac with CREBBP loss at CDH1 and other cellular adhesion genes
 - PreSC cells with 2 CREBBP knockdowns-no difference globally
 - PreSC cells with 57 Crebbp regulated genes → decrease in acetylation

Reduction H3K27Ac with CREBBP loss at CDH1 and other cellular adhesion genes

- If key targets of CREBBP are positively regulated by histone acetylation, could HDAC inhibition reverse effects of CREBBP loss?
 - If treat LU505 with Pracinostat → increased acetylation, upregulation of E-CADHERIN and downregulation of ZEB1
 - HDAC inhibitor Pracinostat activity correlates with CREBBP expression in SCLC cells

- Pracinostat treatment leads to strong regressions in a subset of Rb/p53/Crebbp mutant animals and exhibits efficacy in Rb/p53 model

Questions:

- Tried LSD inhibitions in context of triple mutant gem?
 - Grant being reviewed in a few weeks to test!

Reminders:

- Next Call: October 4th
 - Dr. Thomas O’Dorisio and Dr. Bryan Allen-University of Iowa

- November 1st call will be from 1:30-2:30pm EST (calendar invites will be updated)

- Annual Spring Meeting will be evening of April 3rd–April 5th 2019
 - Planning committee: Charles Rudin, JT Poirier, Trudy Oliver, Julie George and Taofeek Owonikok