Anish Thomas, MD

National Cancer Institute
Bethesda, MD

Targeting ATR and other DNA repair proteins

Replicative stress is a SCLC hallmark

- 1. Loss of growth suppressors (TP53 and RB1 ~100%)
- 2. Sustained proliferation (e.g. MYC amplification)
- 3. Genomic instability (个个 mutations, 个PARP)

Thomas and Pommier. Sci Transl Med 2016

DNA damage response

DNA damage sensors

Apical kinases

DNA damage mediators

Downstream kinases

Effectors

Outcomes

ATR Inhibitors VE-821 and VX-970 Sensitize Cancer Cells to Topoisomerase I Inhibitors by Disabling DNA Replication Initiation and Fork Elongation Responses

Rozenn Jossé¹, Scott E. Martin², Rajarshi Guha², Pinar Ormanoglu², Thomas D. Pfister³, Philip M. Reaper⁴, Christopher S. Barnes⁴, Julie Jones⁴, Peter Charlton⁴, John R. Pollard⁴, Joel Morris⁵, James H. Doroshow^{1,5}, and Yves Pommier¹

Synthetic lethal siRNA screen→Depletion of ATR was a top candidate gene for camptothecin synthetic lethality

ATR inhibition abrogated the S-phase replication elongation checkpoint and the replication origin-firing checkpoint induced by camptothecin

ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells

Stephanie A. Yazinski,¹ Valentine Comaills,^{1,6} Rémi Buisson,^{1,6} Marie-Michelle Genois,^{1,6} Hai Dang Nguyen,¹ Chu Kwen Ho,¹ Tanya Todorova Kwan,^{1,2} Robert Morris,¹ Sam Lauffer,^{1,3} André Nussenzweig,⁴ Sridhar Ramaswamy,¹ Cyril H. Benes,¹ Daniel A. Haber,^{1,2} Shyamala Maheswaran,¹ Michael J. Birrer,^{1,3} and Lee Zou^{1,5}

PARPi-resistant BRCA1-deficient cells

Gene profiling and inhibitor screening → ATR promotes RAD51 loading to DSBs and stalled forks → controls BRCA1-independent HR and fork protection

ATR inhibition disrupted the rewired HR and replication fork protection pathwaysresensitizing resistant cells to PARPi

ATR inhibitors in clinical trials

- Berzosertib (VX-970; M6620; VE-822)- Phase II
- AZD6738- Phase II
- BAY1895344- Phase I

ATR inhibitors- phase I trials

VX-970 (M6620; VE-822)- Phase I/II

AZD6738- Phase I

BAY1895344- Phase I

Well tolerated in patients

No dose-limiting toxicities

Limited anti-tumor activity as monotherapy

Phase I trial of VX-970 (M6620) and topotecan

Patients with advanced cancers and progressive disease after ≥ 1 chemotherapy

γH2AX, a sensitive marker for DNA double-strand breaks

Increasing number and intensity of yH2AX foci in hair follicles

Reduced ATR-dependent phosphorylation of H2AX

Cytotoxicity related to replication

Toxicities were predictable and manageable

Most Common (≥ 10%) Treatment-Related Adverse Events (maximum grade, all cycles)

Dose Level and Adverse Event Grade, No. (%)

Adverse Event										
	All (N = 21)		1* (n = 6)		2† (n = 6)		3‡ (n = 3)		4§ (n =6)	
	All	≥ Grade 3	All	≥ Grade 3	All	≥ Grade 3	All	≥ Grade 3	All	≥ Grade 3
Anemia	21	8 (38)	6	0	6	2 (10)	3	2 (10)	5	4 (19)
Lymphopenia	21	9 (43)	4	3 (14)	8	2 (10)	3	1 (5)	6	3 (14)
Leukopenia	19	11 (52)	6	2 (10)	6	4 (19)	2	1 (5)	5	4 (19)
Neutropenia	17	11 (52)	5	2 (10)	6	4 (19)	1	1 (5)	5	4 (19)
Thrombocytopenia	16	5 (24)	4	1 (5)	5	1 (5)	2	1 (5)	5	2 (10)
Febrile neutropenia	2	1 (5)			1	1 (5)				
Hyponatremia	3	1 (5)	1	1 (5)	1					
ALT increase	3	1 (5)	2	1 (5)					1	
AST increase	4	1 (5)	2	1 (5)	1				1	
Nausea	13	1 (5)	4		4		2		3	1 (5)
Vomiting	8		1		3		1		3	
Anorexia	6		1		3				2	
Fatigue	5	1 (5)	1		2				2	1 (5)
Fever	2		1		1					
Mucositis oral	2		1						1	
Alopecia	2		1						1	
Diarrhea	2		2							
Infusion-related reaction	2		2							

^{*}Topotecan 1 mg/m² days 1 to 5; M6620 140 mg/m² day 5. †Topotecan 1 mg/m² days 1 to 5; M6620 140 mg/m² days 2 and 5. ‡Topotecan 1.25 mg/m² days 1 to 5; M6620 140 mg/m² days 2 and 5. §Topotecan 1.25 mg/m² days 1 to 5; M6620 210 mg/m² days 2 and 5.

Efficacy: VX-970 and topotecan

Efficacy in SCLC: VX-970 and topotecan

Response to VX-970 and topotecan in refractory SCLC

Before treatment

5 months after treatment

Patient remains on treatment at 13 months

Prolonged stable disease

Seven of the eight patients with SD had prolonged SD (≥3 months); Median, 9 months(3-12)

JOURNAL OF CLINICAL ONCOLOGY

······ Official Journal of the American Society of Clinical Oncology

Phase I Study of ATR Inhibitor M6620 in Combination With Topotecan in Patients With Advanced Solid Tumors

Anish Thomas, Christophe E. Redon, Linda Sciuto, Emerson Padiernos, Jiuping Ji, Min-Jung Lee, Akira Yuno, Sunmin Lee, Yiping Zhang, Lan Tran, William Yutzy, Arun Rajan, Udayan Guha, Haobin Chen, Raffit Hassan, Christine C. Alewine, Eva Szabo, Susan E. Bates, Robert J. Kinders, Seth M. Steinberg, James H. Doroshow, Mirit I. Aladjem, Jane B. Trepel, and Yves Pommier

Phase II is enrolling SCLC patients

Updated responses- Phase I/II

Responses in 1/3 sensitive and 6/8 refractory SCLC

Predictive biomarkers of response- MYC?

In vivo, MYC-driven SCLC rapidly relapse following chemotherapy

Mollaoglu. Cancer Cell 2017

Reduced levels of ATR completely prevented the development of MYC-induced lymphomas and pancreatic tumors

Murga. Nat Struct Mol Biol 2011

Are resistant SCLCs responding to ATRi/topotecan MYC amplified?

Predictive biomarkers of response- SLFN11- tumors?

Are resistant SCLCs responding to ATRi/topotecan SLFN11 negative?

Summary

- Chemotherapy resistance in SCLC may arise from multiple mechanismsrewiring of HR, suppression of SLFN11, others...
- ATR inhibition may disrupt the rewired HR in platinum-refractory SCLC cellcould render them sensitive to topotecan
- ATR inhibition was tolerable in patients- no additive toxicities with topotecan
- Preliminary data indicates efficacy of the combination in refractory SCLC- are these tumors MYC driven/ SLFN11 negative ?

WEE1

- AZD1775 monotherapy (NCT02593019)
- AZD1775 in MYC Amplified or CDKN2A Mutated plus TP53 Mutated SCLC (NCT02688907)
- AZD1775 plus olaparib in MYC or CCNE1 amplified SCLC (NCT02511795)

ATR

- VX970 plus topotecan (NCT02487095)
- AZD6738 plus olaparib (NCT03428607)

CHK1

Prexasertib monotherapy (NCT02735980)

DNA-PK

M3814 plus cisplatin/ etoposide (NCT03116971)

Acknowledgements

Patients and Families

Rasa Vilimas; Linda Sciuto Research nurses

Christophe Redon

Yves Pommier

Jane Trepel