This image, from the lab of Michel Sadelain, shows human T cells that have been stimulated to grow. Using the genome-editing tool CRISPR, scientists insert a specific gene into a very precise location within the cells that makes them more effective at killing leukemia cells.
OUR SINGULAR FOCUS ON CANCER DRIVES ALL OF OUR EFFORTS.
ONE FOCUS

CAR T CELL THERAPY
A GROUNDBREAKING TREATMENT PIONEERED BY MSK RESEARCHERS PASSED A SIGNIFICANT MILESTONE. SEE PAGE 8.
OUR SINGULAR FOCUS ON CANCER DRIVES ALL OF OUR EFFORTS.

THE CANCER GENOME
MSK RESEARCHERS MINED CANCER’S DNA TO FIND OUT WHAT MAKES THE DISEASE TICK — AND TO DESIGN STRATEGIES TO DEFEAT IT. SEE PAGE 18.
This image, from the lab of Michel Sadelain, shows human T cells that have been stimulated to grow. Using the genome-editing tool CRISPR, scientists insert a specific gene into a very precise location within the cells that makes them more effective at killing leukemia cells.

MSK-IMPACT

GENETIC SEQUENCING TOLD PEOPLE THE STORY OF THEIR CANCER AND GAVE SCIENTISTS DETAILS TO PERSONALIZE TREATMENT. SEE PAGE 26.
OUR SINGULAR FOCUS ON CANCER DRIVES ALL OF OUR EFFORTS.

CLINICAL TRIALS

DRUGS DEVELOPED AND TESTED AT MSK LED TO A NUMBER OF FIRSTS, INCLUDING THE FIRST TREATMENT TO REHABILITATE CANCER CELLS AND THE FIRST TREATMENT FOR A RARE BLOOD DISORDER. SEE PAGE 34.
This image, from the lab of Michel Sadelain, shows human T cells that have been stimulated to grow. Using the genome-editing tool CRISPR, scientists insert a specific gene into a very precise location within the cells that makes them more effective at killing leukemia cells.

ONE FOCUS

BASIC SCIENCE

Scientists in the Sloan Kettering Institute made fundamental discoveries about the structure of proteins, a mutation causing a rare cancer, and the triggers driving cancer’s spread. See page 44.
OUR SINGULAR FOCUS ON CANCER DRIVES ALL OF OUR EFFORTS.

PATIENT CARE
A HOMELIKE NEW RESIDENCE, ADVANCED TREATMENTS, AND NOVEL TECHNOLOGIES GAVE PATIENTS COMFORT AND EASED THEIR HEALING. SEE PAGE 54.
This image, from the lab of Michel Sadelain, shows human T cells that have been stimulated to grow. Using the genome-editing tool CRISPR, scientists insert a specific gene into a very precise location within the cells that makes them more effective at killing leukemia cells.

SEE WHAT A TEAM OF REMARKABLE PEOPLE WITH AN UNMATCHED DEDICATION TO CHANGING CANCER CAN DO IN JUST ONE YEAR.
OUR SINGULAR FOCUS ON CANCER DRIVES ALL OF OUR EFFORTS.
THE CLINIMACS SYSTEM IS USED TO PURIFY T CELLS FROM PATIENTS. ONCE PURIFIED, THE CELLS CAN BE MODIFIED WITH THE CHIMERIC ANTIGEN RECEPTOR GENE TO BECOME CAR T CELLS.
<table>
<thead>
<tr>
<th>04</th>
<th>MESSAGE FROM THE CHAIRMAN AND THE PRESIDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>FOCUS ON CAR T CELL THERAPY</td>
</tr>
<tr>
<td>18</td>
<td>FOCUS ON THE CANCER GENOME</td>
</tr>
<tr>
<td>26</td>
<td>FOCUS ON MSK-IMPACT</td>
</tr>
<tr>
<td>34</td>
<td>FOCUS ON CLINICAL TRIALS</td>
</tr>
<tr>
<td>44</td>
<td>FOCUS ON BASIC SCIENCE</td>
</tr>
<tr>
<td>54</td>
<td>FOCUS ON PATIENT CARE</td>
</tr>
<tr>
<td>72</td>
<td>STATISTICAL PROFILE</td>
</tr>
<tr>
<td>74</td>
<td>FINANCIAL SUMMARY</td>
</tr>
<tr>
<td>76</td>
<td>BOARDS OF OVERSEERS AND MANAGERS</td>
</tr>
<tr>
<td>77</td>
<td>LEADERSHIP</td>
</tr>
<tr>
<td>79</td>
<td>DONORS TO MEMORIAL SLOAN KETTERING</td>
</tr>
<tr>
<td>96</td>
<td>THE SOCIETY OF MEMORIAL SLOAN KETTERING</td>
</tr>
</tbody>
</table>
MESSAGE FROM THE CHAIRMAN
AND THE PRESIDENT

Memorial Sloan Kettering’s singular focus on cancer — as true today as it was more than 130 years ago — sets our organization apart in New York City, the nation, and the world. The impact of our collective efforts can be seen in the dedicated workforce of more than 17,000 people, in scientific research that fundamentally changes the understanding of biology, and in clinical innovation that delivers new treatments and better care to thousands of people every year. Woven together, these threads form “One MSK.”
Our commitment to basic research is both substantial and sustained, and resulted in discoveries that once again yielded accolades in 2017. The Nature Index ranked the work of our research faculty, and specifically the scientists at the Sloan Kettering Institute, as number one among cancer research organizations. In just two examples, Nikola Pavletich and Haijuan Yang mapped the structure of mTOR, a crucial growth regulator in cancer, in work enabled by a new cryo-electron microscope installed in 2017. And Scott Lowe, elected to the National Academy of Sciences in 2017, and colleagues used the gene-editing tool CRISPR to demonstrate how a specific genetic mutation causes a rare liver cancer in children and young adults. More about the work of the Pavletich and Lowe labs — as well as of other basic scientists — can be found later in this report.

Our researchers and clinicians have pioneered and continue to advance one of the most significant therapeutic developments in recent years: the engineered immune cells called CAR T cells. The therapy became commercially available in 2017 when the US Food and Drug Administration approved it for certain types of leukemia and lymphoma. Physician-scientist Michel Sadelain, along with researchers Renier Brentjens and Isabelle Rivière, were the first to devise this type of “living drug,” which employs a patient’s own immune cells to find and fight cancer. MSK is one of a handful of cancer centers to provide this therapy to patients, thanks to the unparalleled expertise of our doctors and nurses. You can learn more starting on page 8.

In 2017, the FDA reaffirmed MSK’s leadership in targeting molecular defects in cancer by authorizing MSK-IMPACT™, the first genetic-sequencing test of its kind to receive the designation. This test scans tumors for mutations in more than 460 genes linked to cancer. Developed by physician-scientist Michael Berger and others in the Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSK-IMPACT has analyzed the tumors of more than 20,000 MSK patients with advanced cancer. Its use has generated actionable information that has allowed many of those people to receive more targeted treatment. (For more on MSK-IMPACT, see page 26.)

MSK’s clinical trials program continues to transform research breakthroughs into lifesaving treatments that often become the new standard of care. In 2017, nearly a third of MSK patients were enrolled in more than 800 clinical trials. As you’ll read on page 34, MSK faculty distinguished themselves with FDA approvals of several therapies that are the first of their kind, including a drug that rehabilitates cancer cells rather than killing them and a targeted therapy developed simultaneously in children and adults.
MSK further strengthened its expertise in clinical innovations in 2017 by recruiting Luis Diaz as Head of the Division of Solid Tumor Oncology in the Department of Medicine. While at Johns Hopkins Medicine, Dr. Diaz was the principal investigator of a key clinical trial of pembrolizumab (Keytruda®), the first drug approved by the FDA to target a specific genetic mutation in tumors. This work built on groundbreaking research by MSK’s Jedd Wolchok and Timothy Chan. (See page 21 for more.)

Of course, our leadership in developing targeted therapies comes with the responsibility of addressing the challenges of these treatments. In 2017, MSK researchers strove to improve these new approaches on several fronts, from reducing toxicities to testing whether they can be made more precise.

A major challenge for some of the most promising cancer treatments is that currently only a small percentage of people have access to genetic testing and clinical trials. Diversity in participation is also crucial to the success of clinical trials and has been a continued goal. To address this, MSK has sought to extend availability by establishing relationships with medical facilities that share our dedication to high-quality research and patient care.

In 2017, our partnership with Hackensack Meridian Health in New Jersey made important progress, completing shared guidelines for patient care in several of the most common cancers as well as shaping a mutual research agenda to advance the next generation of cellular treatments, including CAR T cell therapy. The Miami Cancer Institute at Baptist Health South Florida became the latest member of the MSK Cancer Alliance, which continues to flourish. And we created a unique relationship with Norwalk Hospital in Connecticut: MSK Physicians at Norwalk Hospital, which has MSK doctors providing on-site care to patients at a non-MSK facility outside of New York State for the first time.

Our commitment to new models of patient care was also shown in bold relief against the skyline of Manhattan, with the David H. Koch Center for Cancer Care hitting its “topping-off” point on 74th Street. When it opens in 2019, this 23-floor, state-of-the-art facility will define the future of cancer care, focusing on outpatient procedures, innovative treatments such as immunotherapy, and early-stage clinical trials.

This same forward-thinking vision is found in the recently opened Center for Laboratory Medicine building in Manhattan, an environmentally friendly lab that has brought important efficiencies to the processing of 5,000 patient samples and 24,000 clinical lab tests every day. Within ten years, projections are that nearly 80 percent of MSK’s patients will never spend a day in the hospital. This fact drove the remarkable growth and success of our outpatient centers in the regional care network. In its first
year of operation, MSK Monmouth saw patient volumes that were years ahead of schedule, with positive reviews from patients about both the facility and its exceptional team. MSK Bergen is on track to open in 2018, and MSK Nassau in 2019.

This increased demand for MSK’s superior clinical care across the region combined with sustained philanthropic support resulted in exceptional financial performance. Prudent management of MSK resources played a significant role because 2017 marked the end of royalty payments for a major clinical discovery made in the laboratory of Malcolm Moore. This loss required careful planning throughout the past several years to ensure the continued vitality of our research program.

Charitable gifts to MSK reached new levels in 2017, thanks to the leadership of Anne McSweeney, Special Advisor to the President, and Richard Naum, Senior Vice President for Development. During the past 15 years, they have helped ensure MSK’s ability to invest in promising areas of research and patient care. The Campaign for MSK, which they directed and which recently ended, surpassed its lifetime goal of $3.5 billion by $700 million. We wish them well in retirement. And Cycle for Survival continues to generate millions for research into rare cancers.

This past year also saw MSK faculty receive numerous individual awards and honors. Of particular note is Viviane Tabar’s election to the National Academy of Medicine and her appointment as Chair of MSK’s Department of Neurosurgery, after the retirement of Philip Gutin. Other highlights include the election of Maria Jasin, Scott Keeney, and Christopher Lima to the American Academy of Arts and Sciences, along with Marie-Josée Kravis, a member of MSK’s Board. Sasha Rudensky won the Crafoord Prize; Lorenz Studer was given the Ogawa-Yamanaka Stem Cell Prize; and Andrea Schietinger received a New Innovator Award from the National Institutes of Health.

Ultimately, though, these individual honors are a testament to the fact that we all share the same passion, conviction, and drive to conquer cancer. The profound energy and seriousness of purpose that all of our staff pour into improving the understanding, prevention, and treatment of cancer make us truly One MSK.

Craig B. Thompson
President and Chief Executive Officer

Douglas A. Warner III
Chair, Boards of Overseers and Managers

"Of course, our leadership in developing targeted therapies comes with the responsibility of addressing the challenges of these treatments. In 2017, MSK researchers strove to improve these new approaches on several fronts, from reducing toxicities to testing whether they can be made more precise."
In 2017, the US Food and Drug Administration approved the first-ever cancer therapy using genetically modified versions of a person’s own immune cells. MSK scientists pioneered this approach, called chimeric antigen receptor (CAR) T cell therapy, and continue to lead the way in making it safer and more effective.
It takes many people to bring CAR T cells, like the one shown in the photo at left, to life. Xiuyan Wang manufactures these cells for use in patients on MSK clinical trials.
CAR AND DRIVERS
I remember one of the patients very vividly. He was an ALL patient. The primary investigator from the clinical trial came to us and said, ‘The family wants to meet the people who are making the magic cells.’ So we met with them. The son was very happy to see us. He said it helped his father to feel like we would treat his cells with the utmost care.”

-XIUYAN WANG

CREATING “LIVING DRUGS”
Against one wall of Xiuyan Wang’s office is a floor-to-ceiling bookcase stuffed with thick colored folders. Each one represents a patient treated at MSK with an experimental immune treatment called CAR T cell therapy.

The folders are color coded: orange for chronic lymphocytic leukemia, black for non-Hodgkin lymphoma, blue for acute lymphoblastic leukemia (ALL), red for ovarian cancer. There are about 300 binders in total.

“You see the shelf is kind of bulging already,” Dr. Wang says, pointing.

As Assistant Director of the Cell Therapy and Cell Engineering Facility, Dr. Wang is responsible for manufacturing CAR T cells, a type of “living drug,” for infusion into patients on clinical trials. A CAR is a designer protein that scientists genetically engineer into a person’s own immune cells, turning them into souped-up cancer fighters.

Dr. Wang is part of a large orchestra of players who collaborate to bring these living therapies to life. But you might say she’s the maestro, since she’s the one making these sensitive, powerful cells.

The process is delicate. Immune cells called T cells are removed from a patient’s blood, the CAR gene is delivered to the cells, and then they’re grown in incubators until they multiply into the billions. The cells are then infused back into the patient, in the hope that these genetically modified versions will find and destroy the cancer.

“I remember one of the patients very vividly,” Dr. Wang says. “He was an ALL patient. The primary investigator from the clinical trial came to us and said, ‘The family wants to meet the people who are making the magic cells.’ So we met with them. The son was very happy to see us. He said it helped his father to feel like we would treat every patient’s cells with the utmost care.”

Dr. Wang is well aware that the cells that pass through her hands can represent someone’s best and last treatment option. For many people, the best that CAR therapy offers is a significantly longer life, and sometimes, an outright cure.

continued
A TRANSFORMATIVE THERAPY

MSK investigators have played a pioneering role both in developing the technology of CAR T cells and in showing that it is an effective treatment for people with different types of cancer. They built the first effective CAR T cells in 2002 and began treating patients with them in 2007. A trial of CAR T cells in adults with ALL opened at MSK in 2010. MSK investigators published the results of that trial in early 2018 in the *New England Journal of Medicine* (*NEJM*).

These findings showed conclusively what anecdotal reports had already documented: Some people with terminal cancer could be cured with genetically engineered T cells made to detect and kill their cancer cells. The study also helped to identify the factors influencing who had the best results from the treatment, including that people with less disease benefited the most. Compared with patients who had a greater amount of disease, those in the low-disease category lived significantly longer and experienced fewer life-threatening side effects.

“This is the longest follow-up study of people with ALL treated with CAR therapy,” says Jae Park, a medical oncologist and principal investigator of the adult ALL clinical trial. “It confirms the power of CAR T cells as an effective cancer therapy in adults with ALL.”

Ultimately, he says, these findings show that it may make sense for people to receive CAR T cell therapy as a first treatment, rather than after other options have failed.

“This study represents the culmination of 20 years of research at MSK,” says Michel Sadelain, Director of the Center for Cell Engineering and a pioneer of CAR therapy. “These data strongly support the use of this CAR therapy for adults with relapsed ALL and predict better outcomes when used earlier in the course of the disease.”

Michel Sadelain and colleagues were the first to show that CAR T cells could kill cancer cells. The roots of CAR T therapy stretch back nearly to the beginning of Dr. Sadelain’s career as an immunologist.

GLEN’S STORY

The scientists also sought the answer to another conundrum. Many patients on CAR T therapy receive bone marrow transplants (BMTs) afterward as a preventive measure to keep the cancer from returning. But if people received CAR T cell therapy earlier, before a relapse, and had better outcomes, might they be able to forgo a BMT altogether?

Like many people who come to MSK, Glen Blum had already been treated at another hospital for a cancer that was proving stubbornly hard to beat. His journey began several years ago, when lingering back pain led to a blood test, a biopsy, and eventually a diagnosis of ALL. This aggressive cancer, which grows in the bone marrow, had already damaged several of his vertebrae. Mr. Blum received conventional treatment with both chemotherapy and radiation, which helped for a while. But as is often the case with ALL, the cancer came roaring back. And when it did, it was resistant to further treatment with the usual drugs.

THE CAR T PIT CREW

Center for Cell Engineering (CCE)

DIRECTOR: Michel Sadelain

This multidisciplinary center is composed of basic scientists, translational researchers, and clinicians with an interest in developing cell therapies. CCE scientists help design and test new cell therapies, including better and safer CARs.

Cell Therapy and Cell Engineering Facility

DIRECTOR: Isabelle Rivière

This clinically certified, state-of-the-art manufacturing facility is where CAR T cells are made for use in MSK clinical trials.

Cellular Therapeutics Center

DIRECTOR: Renier Brentjens

This group of clinician-scientists takes the lead in caring for the patients treated with CAR T cells as part of clinical trials at MSK. The clinical data obtained from these trials are an important part of improving CAR T treatments.

Bone Marrow Transplant Service

DIRECTOR: Sergio Giralt

Members of this service are responsible for caring for patients treated with FDA-approved CAR T therapies. The doctors and nurses on this team are skilled at dealing with immune-related complications.
That’s when Mr. Blum’s doctor recommended that he enroll in a clinical trial of CAR T cell therapy at MSK. The goal of this treatment would be to shrink his cancer to a point where he would be eligible for a potentially lifesaving bone marrow transplant.

“The way they explained it to me is that the treatment would get my own immune cells to see the cancer cells as foreign and eliminate them,” says Mr. Blum, who is now 32 and lives in East Harlem in New York City. “Then the bone marrow transplant was a secondary step so that I wouldn’t grow more cancer cells.”

Historically, a BMT is often the last, best hope for a cure for a person with leukemia once initial therapy has failed. But the procedure is not without significant risks. To receive new bone marrow, people must first have their existing bone marrow destroyed with high-dose chemotherapy or radiation. Because the bone marrow is what produces blood cells, including the white blood cells that make up the immune system, people are vulnerable to infections while the new bone marrow grows. There is also the risk that immune cells from the donor marrow will start to attack the body’s healthy cells.

The *NEJM* study suggests that getting a BMT after CAR therapy does not make an important difference in how well people do in the long term. This result is preliminary, however, and needs to be confirmed with further research.

According to Dr. Park, at this time the decision to recommend a BMT or not becomes a question of weighing different factors, including the number of previous treatments, the characteristics of the disease, the risks of the transplant, the risk of relapse, and the age of the patient.

“These are the practical conversations we’re having with patients every day,” he says. “And while we have not answered the question definitively, this study raises the possibility that — at least for some patients — CAR therapy could be an end point.”

Glen Blum, a CAR T cell therapy patient who visits MSK regularly for follow-up appointments, plays pool in MSK’s Charles Hallac Patient Recreation Center. The center was redone in 2017 and now includes tables for arts and crafts, a coffee and beverage bar, shelves of board games, and ample lounge space.
HOW TO ENGINEER A CAR

The process of building a safe genetically engineered T cell was neither easy nor straightforward. It took the expertise of numerous investigators working over a period of decades. Leading the manufacturing effort at MSK was Isabelle Rivière, an immunologist who trained in France and the United States and is now Director of the Cell Therapy and Cell Engineering Facility. Dr. Rivière, who has been at MSK since 1998, was the first to design a standard operating procedure for the manufacturing of CAR T cells. Or rather, procedures — there are currently 250.

“I can honestly say I don’t think we knew what we were getting into,” she says. “We were really establishing the field as we went.”

After many years of effort, exploring many different variables, she succeeded in developing a protocol that works. It involves a precise series of steps that include capturing T cells with magnetized beads and growing them in baglike incubators rolling on an oscillating tray.

The engineered T cells target a marker on B cell leukemias called CD19. When the therapy was used in people with B cell ALL, the researchers knew they were onto something special.

“The most dramatic result was when we took the bone marrow of these patients a couple of weeks postinfusion, and the disease had completely vanished,” she says. “That was really the eureka moment. We had to convince ourselves that this was real.”

These are the practical conversations we’re having with patients every day. And while we have not answered the question definitively, this study raises the possibility that — at least for some patients — CAR therapy could be an end point.”

–JAE PARK

Top: Jae Park (right) is a principal investigator of CAR T clinical trials at MSK. Above: Isabelle Rivière (left), with Jinrong Qu, senior research assistant, leads CAR T manufacturing at MSK.

“The most dramatic result was when we took the bone marrow of these patients a couple of weeks postinfusion, and the disease had completely vanished. That was really the eureka moment. We had to convince ourselves that this was real.”

–ISABELLE RIVIÈRE
FIRST CARS HIT THE ROAD
Two CAR T cell therapies were approved by the FDA in 2017. One, made by the company Novartis, is for children and young adults with ALL. Another, made by Kite Pharma (now owned by Gilead Sciences), is for adults with non-Hodgkin lymphoma.

Pediatric oncologist Kevin Curran, a member of the Pediatric Bone Marrow Transplant Service who leads MSK’s CAR T cell efforts in children and young adults, calls the treatment “revolutionary” and says it opens a whole new avenue of options for patients. “It gives them hope,” he adds.

These approvals are “only the beginning,” Dr. Curran says. “Just like a new model of an automobile comes out each year, there are going to be new models of CAR T cells that come out too. We think some of the ones we’ve built and are testing at MSK have the potential to be even better.”

MSK is one of only a handful of cancer centers that have the experience and expertise necessary to administer CAR T cell therapies safely to patients.

“Our primary job is making sure that each person gets the very best care — whether that’s CAR T cell therapy or another approach,” says Sergio Giralt, Chief of the Adult Bone Marrow Transplant Service. “It’s a great privilege to be among such an incredible group of professionals, who all do their utmost each day to return our patients to a life free of cancer.”

Our primary job is making sure that each person gets the very best care — whether that’s CAR T cell therapy or another approach. It’s a great privilege to be among such an incredible group of professionals, who all do their utmost each day to return our patients to a life free of cancer.”

—SERGIO GIRALT
GROUP EFFORT
Senior clinical research supervisor Yvette Bernal has been a crucial player in MSK’s CAR T program from the beginning. In fact, her career path has closely mirrored the development of the therapy itself. She joined MSK as a physician office assistant in the Division of Hematologic Oncology in 2004. Then, about a decade ago, she became among the first on the CAR T crew when she began working with physician-scientist Renier Brentjens as he established the Cellular Therapeutics Center, the group that treats people receiving investigational CAR T therapies at MSK. She started as a research study assistant (RSA) and is now a supervisor for the RSAs on the team.

Ms. Bernal stresses the collaborative nature of the work, as well as the entire team’s dedication to their common goal. The RSAs serve as liaisons between the different clinical, academic, and regulatory groups involved. They are certified in human subjects protection, which is an important part of every clinical trial. They work alongside doctors, nurses, and lab monitors to collect data. They also liaise with MSK’s Institutional Review Board, which oversees all clinical trials, and the FDA, to ensure the highest level of adherence to the study protocol and to keep things running smoothly.

The RSAs “really are the backbone of the service,” Ms. Bernal says. “They monitor the patients from the moment they walk through the door of MSK to the moment they are deemed cancer free.”

Nurse practitioner Elizabeth Halton is also an integral longtime member of the group, and of MSK. She spent more than a decade working with the Leukemia Service before coming to the CAR T program. Like Ms. Bernal, she joined Dr. Brentjens when the first CAR T trials began at MSK in 2007, and she was instrumental in getting the CAR T program up and running. She and the other advanced practice nurses from the Leukemia Service on the 12th floor of Memorial Hospital first cared for people who received this powerful experimental therapy.

“It was an exciting but also an intimidating time,” Ms. Halton says. “We did not know what to expect after infusing the CAR T cells.”

She credits Dr. Park, in particular, for developing effective clinical measures to deal with the sometimes severe side effects of CAR therapy. “We called him in the middle of the night. Together, we learned what worked, what didn’t — and then we tweaked it for the next patient,” Ms. Halton says.

Looking back over the decade-plus it took to get where the treatment is today, Ms. Halton is quietly optimistic. “Originally, most of these patients had run out of treatment options. Now, with CAR T cells, we have something to offer them. And while it doesn’t work for everyone, I’m hopeful that, with improvements in the technology, more people will eventually benefit and experience longer disease-free periods and hopefully cures.”
“Originally, most of these patients had run out of treatment options. Now, with CAR T cells, we have something to offer them. ... I’m hopeful that, with improvements in the technology, more people will eventually benefit and experience longer disease-free periods and hopefully cures.”

–ELIZABETH HALTON

GOING THE LAST MILE

As for Mr. Blum, though his results have been good, his experience with bone marrow transplantation after CAR T cell therapy demonstrates why doctors are eager to get to a point at which they can safely avoid it. About a month after the transplant, he got an infection that led to a severe case of pneumonia.

“I was in the ICU, and honestly, it was a really scary time,” Mr. Blum says. “The doctors told my mother not to leave the hospital. They were worried I might not make it.”

But thanks to CAR T cell therapy, he’s just beginning a new life. It’s been nearly two years since Mr. Blum had his BMT. He’s since gotten married, and he and his wife, Ashley, took a trip to Jamaica to celebrate.

He says he always felt very well cared for at MSK. “That hospital is a piece of heaven,” Mr. Blum says. “Everyone there has a heart three times the size of normal.”

Top: Elizabeth Halton has been part of the CAR T program from the very beginning.
Above: Renier Brentjens, who helped pioneer CAR T therapy, is Director of the Cellular Therapeutics Center, the group of doctors, nurses, and staff who care for patients treated with CAR T cells as part of clinical trials at MSK.
FOCUS ON
THE CANCER GENOME

Thanks to the unwavering focus of Memorial Sloan Kettering researchers, the human genome continues to disclose vital secrets about the origins of cancer. These details are changing how cancer is treated, for patients both today and in the future.
One main focus of precision oncology is to quickly translate discoveries made in the lab into treatment approaches that can benefit people with cancer.
In 2017, MSK investigators made major discoveries about the kinds of mutations that lead to runaway cell growth, including important insights into DNA repair, and the genetic factors that determine the effectiveness of treatments.

For some people with cancer, checkpoint inhibitors have been a game changer. These immunotherapy drugs work by taking the brakes off the immune system, enabling it to attack cancer. They have been shown to shrink even very advanced cancers to undetectable levels. For most people, though, these drugs have been disappointing. Researchers are trying to figure out why.

One of those studying this issue is MSK physician-scientist Timothy Chan. In December 2017, Dr. Chan and colleagues published in Science the largest-ever genetic analysis of people being treated with checkpoint inhibitors. They found that certain genes people are born with may play a critical role.

Q: How was this study different from others that have looked at responses to immunotherapy?
A: It was large, including more than 1,500 people with many different types of cancer. This suggests that what we found applies broadly. And we looked not only at genetic changes inside the tumor tissue but also at certain genes that make up people’s normal DNA. Specifically, we looked at human leukocyte antigen (HLA) genes, which are critical for regulating the immune system.

The HLA system is used to match recipients and donors for stem cell and bone marrow transplants. HLA genes guide immune cells called T cells to recognize what is the body’s own and what is not. For transplants, we want the donor’s HLA system to be similar enough to the recipient’s that donated T cells will not attack the recipient’s tissues. In the case of cancer, we want to boost the T cells’ ability to destroy tumor cells. HLA proteins determine what T cells can see.

Q: What gave you the idea to look at HLA genes and immunotherapy response?
A: We have known for a while that HLA genes play a role in response to infections. Certain HLA profiles are associated with better outcomes in people with HIV, hepatitis B, and malaria. The human body is constantly under assault from pathogens, and HLAs are how we recognize and eliminate them.

We found that people who had more variation in their HLA genes responded much better to immunotherapy compared with those who had less. No one had ever looked at HLA genes in people undergoing immunotherapy, so this was a new finding.

We found that people who had more variation in their HLA genes responded much better to immunotherapy compared with those who had less. No one had ever looked at HLA genes in people undergoing immunotherapy, so this was a new finding.”

—TImothy Chan
Q: Did this result surprise you?

A: Not completely. Several years ago our group at MSK and investigators elsewhere began looking at the effects of the tumor genome on immunotherapy response. We found that tumors with a greater number of mutations were more recognizable to the immune system.

Our latest findings represent the other side of the same coin: Just as tumors with a greater number of genetic changes are more recognizable to immune cells, having more-diverse HLA genes means that the immune system has a greater ability to recognize what doesn’t belong inside the body. Both are important for maximizing the ability of the immune system to see and destroy cancer cells.

Q: Will this finding change how people with cancer are treated?

A: I think it will have a strong effect very soon. There is a rush to develop genetic tests to measure how many mutations are present in tumors as a way to predict response to immunotherapy. Our group was responsible for starting this revolution. Now we have shown that the other side of the equation — a patient’s normal inherited DNA — is critical as well.

We now know that people with less diversity in their HLA genes as well as a low number of mutations in their tumors are much less likely to respond to checkpoint inhibitor drugs, especially when those drugs are given alone. So we may want to treat them with a combination of different immunotherapy drugs, or try other treatments instead.

Q: What are the next steps for this research?

A: Our findings will need to be validated in prospective studies, although because we included such a large and diverse number of people, we think we’ve set the bar pretty high.

We can’t do anything about the HLA genes that people are born with. But we think that learning more about immune system recognition can help with the development of new cancer treatments.

Luis Diaz is looking for better ways to diagnose cancer at its very earliest stage, while it is still relatively easy to treat.

Luis Diaz led the pivotal clinical trial that resulted in this approval while he was at Johns Hopkins University School of Medicine. He joined MSK as Head of the Division of Solid Tumor Oncology in the Department of Medicine in April 2017, prior to the approval.
MMR mutations are relatively rare, though that small proportion translates to tens of thousands of people with cancer in the United States every year and half a million worldwide. Our findings suggest that all people with advanced cancer should have their tumors screened for MMR deficiencies.”

–LUIS DIAZ

Q: We normally think of mutations in cancer as a bad thing. In this case, why is it better to have more of them?

A: Gene mutations can lead to the production of foreign substances called neoantigens. Neoantigens are an alien presence in the body that flags the tumor as something that doesn’t belong. This draws an immune response. The more mutations you have, the more your chances increase that the immune system spots the tumor because there is a much greater possibility that it manufactures a neoantigen.

Q: Why do some tumors have more mutations than others?

A: Melanoma and lung cancer often have a lot of mutations because they are caused by exposure to environmental hazards — specifically UV light and tobacco smoke. The person whose colon cancer had so many mutations had a genetic defect called DNA mismatch repair [MMR] deficiency. MMR-deficient cells have lots of mutations — 1,700 on average compared with 70 in a typical cancer cell. That’s because the mismatch repair pathway is a major way that cells fix DNA mistakes that happen during replication, which cells do each time they divide.

Q: How did the pembrolizumab study come about?

A: Based on the discovery with nivolumab, we began a study looking at whether pembrolizumab, which is similar, would work in people whose tumors had MMR deficiencies. We included people with a dozen different types of cancer. In 2015, we reported that MMR-deficient tumors were more likely to respond to pembrolizumab than those without the deficiency, regardless of where the tumor was located. The FDA approval was based on the data from that study.

Q: How could this new approval change the way cancer is treated?

A: MMR mutations are relatively rare, though that small proportion translates to tens of thousands of people with cancer in the United States every year and half a million worldwide. Our findings suggest that all people with advanced cancer should have their tumors screened for MMR deficiencies.

Q: What are your plans in your new role at MSK?

A: I’m involved in leading MSK’s new Precision Interception and Prevention initiative. It’s focused not only on catching cancer very early but also on eventually preventing it from developing in the first place. MSK is bringing together experts in many different areas to build this program. What we are doing is so far ahead of what any other cancer center is doing.

INTERVIEW WITH

ALEX KENTSIS
Cancer biologist and pediatric oncologist

In May 2017, a study led by MSK cancer biologist and pediatric oncologist Alex Kentsis found that many childhood cancers have a surprising cause. A gene called PGBD5 becomes abnormally activated and snips out DNA segments, flipping them or moving them to a different location in the genome. The shuffling can drastically alter normal gene function and trigger cancer.

This discovery helps solve a baffling puzzle: why some children with no inherited gene defects develop tumors at a young age — especially ones with complicated genomic rearrangements. The finding also provides insight into what causes many cancers that affect children and young adults. Further research led by Dr. Kentsis suggests a strategy for turning this genomic havoc against itself.
Q: What about children’s cancers made you look into this potential cause?

A: Cancer is primarily a disease of aging. Over time, genetic mutations pile up, due to either copying mistakes as cells replace themselves or ongoing exposure to environmental factors. We were puzzled by why tumors develop in younger people, who presumably haven’t had enough time for large numbers of random mutations to accumulate. We looked at human rhabdoid tumors, which are aggressive solid tumors that can affect children and young adults, and found evidence of DNA rearrangements associated with high activity of a gene called PGBD5. That really piqued our interest.

Q: What is unusual about overactive PGBD5 compared with most genetic mutations?

A: It’s a case where the overactive gene itself is causing mutations in other genes. Recently, my colleagues and I found that the protein made by PGBD5 can act as a transposase, meaning that it can rearrange DNA segments known as transposons — so-called jumping genes. This phenomenon was first uncovered in the 1940s and ’50s by Barbara McClintock in Nobel Prize–winning work using corn. These types of DNA rearrangements explain how corn can produce many colors of kernels on a single ear — the transposons alter the expression of pigment-controlling genes. But we didn’t suspect that transposons can also function in human diseases like cancer.

Q: What are the implications of the finding?

A: This is a major advance in understanding pediatric cancers in particular and human cancers in general. It’s an unexpected mechanism that raises the possibility that genome rearrangements can operate in human tissues. It also explains a longstanding conundrum about how pediatric tumors develop and provides a new understanding of human cancers that result from this process. And it underscores yet again that the human genome has unexpected features that have major functions in biology that we’re just starting to appreciate.

Q: How could this insight lead to better therapies?

A: When PGBD5 scrambles other genes, it creates breaks in the DNA that must continuously be fixed in order for the cell to survive. The cells become especially dependent on DNA repair and signaling pathways that sustain it. In November 2017, we published results showing that blocking DNA damage signaling causes tumor cells to become so overwhelmed by DNA damage that they self-destruct.

There are many drugs that interfere with DNA damage signaling already in clinical trials. One of them — olaparib (Lynparza®), a PARP inhibitor — was recently approved by the US Food and Drug Administration to treat specific subtypes of breast cancer with error-prone DNA repair. [See page 24 for more.] Understanding how PGBD5 works has immediate therapeutic implications for a wide range of cancers. We hope to start testing these treatments soon.

We looked at human rhabdoid tumors, which are aggressive solid tumors that can affect children and young adults, and found evidence of DNA rearrangements associated with high activity of a gene called PGBD5. That really piqued our interest.”

—ALEX KENTSIS
Cancers that respond to PARP inhibitors are associated with mutations in the genes BRCA1 and BRCA2. BRCA mutations prevent cells from repairing the damage caused by these drugs. Besides their association with breast and ovarian cancers, BRCA mutations have been linked to many cases of advanced prostate cancer, as well as pancreatic cancer, in recent studies. Clinical trials currently under way at MSK and other centers are looking at expanding PARP drugs to these other cancers associated with BRCA.

Q: Based on your findings, who should get BRCA testing?

A: Now that olaparib is an approved therapy, I would recommend that anyone with advanced breast cancer who might benefit from this treatment get the BRCA test. It can help guide their treatment and may allow them to avoid getting chemotherapy for longer.
It’s an incredibly exciting and interesting time to be involved in this field. The ways that we are using genetic information now are how we always dreamed we would be able to.”

—Mark Robson
FOCUS ON

MSK-IMPACT

Knowing more about the changes that drive tumors helps open the door for precision oncology, in which a person is matched with a treatment that targets the specific weaknesses in the cancer. MSK’s genetic-sequencing test, which provides those details, marked two major advances in 2017.
Genetic counselors like Meg Sheehan meet with patients and families to explain the inherited risks for cancer that are passed down through generations.
A SWEEPING IMPACT
GUIDING TREATMENT WITH DATA

Not all genetic mutations cause cancer. But some do, and thanks to rapid advances in technology, scientists have amassed a wealth of information about which genetic mistakes are most likely to lead to the disease. The most pressing challenge has been testing people for cancer-causing mutations — and handling the data produced as a result.

MSK-IMPACT™, a genetic-sequencing test, is MSK’s answer to this issue. Doctors can use it to probe a tumor for mutations and other genetic changes in 468 genes that are seen in both common and rare cancers.

Currently, all MSK patients with advanced solid tumors have their cancer tested by MSK-IMPACT, which has been in use as a clinical test approved by the New York State Department of Health since 2014. The test hit two major milestones in 2017: authorization from the US Food and Drug Administration as a tumor-profiling test, the first test of its kind to receive this designation; and the publication of data from the first 10,000 people whose tumors were sequenced.

These landmark achievements are the result of a major collaborative effort. In addition to guiding treatment choices, this test is producing valuable insights about how cancer grows and resists treatment.”

—MICHAEL BERGER

Far left: Marc Ladanyi (right), with molecular geneticist Liying Zhang (left) and pathologist Diana Mandelker, played a key role in the authorization of MSK-IMPACT. Left, top: The Biomek FXp machine uses unique bar-code sequences to tag patients’ DNA, which will be sequenced using molecular testing like MSK-IMPACT. Left, bottom: Michael Berger, with computational biologist Helen Won, helped lead the development of MSK-IMPACT.
“These landmark achievements are the result of a major collaborative effort,” says geneticist Michael Berger, who led the development of the test and is an Associate Director of the Marie-Josée and Henry R. Kravis Center for Molecular Oncology (CMO). “In addition to guiding treatment choices, this test is producing valuable insights about how cancer grows and resists treatment.”

“MSK-IMPACT has allowed us to establish an entirely new paradigm for cancer care,” says Marc Ladanyi, Chief of the Molecular Diagnostics Service. Dr. Ladanyi’s team, including molecular pathologist Maria Arcila, was responsible for the clinical validation of the test and now oversees its performance as well as the analysis and interpretation of the test results. “In this new paradigm, it is critical not only to identify the exact type of cancer someone has and how far it has spread but also to determine the mutations that drive cancer cells to divide,” Dr. Ladanyi adds.

MSK-IMPACT makes it possible for precision oncology to take place. Also called personalized medicine, this approach is based on the idea that the genetic alterations that drive cancer cells to grow can be targeted with specific drugs. The test has also allowed investigators to undertake basket studies. While traditional clinical trials focus on a particular cancer type, basket studies concentrate on a specific mutation found in the tumor, regardless of where the cancer originated in the body.

This type of testing is already changing how people are treated. In May 2017, MSK investigators published the aforementioned study in *Nature Medicine*, showing that nearly 37 percent of the first 10,000 people who had their tumors sequenced using the MSK-IMPACT test had at least one actionable mutation, which means drugs were available that precisely targeted the mutation. According to the study, about 11 percent of the people with actionable mutations participated in clinical trials involving molecularly targeted therapies as a direct result of MSK-IMPACT. Still others received immunotherapy based on their results.

“The breadth and depth of MSK-IMPACT has allowed us to detect important genomic alterations that would have been missed by other approaches,” says David Solit, Director of the CMO, which financially supports the bulk of MSK-IMPACT testing.

LOOKING FOR CANCER DRIVERS

Although MSK-IMPACT was developed largely to aid in diagnosis and to guide treatment, investigators knew from the beginning that the information they were collecting could be instrumental for research. Everyone who has had a tumor sequenced by MSK-IMPACT — more than 24,000 people to date — has had their genetic data linked to clinical records showing how they fared after treatment.

“This is a huge data set,” Dr. Berger says. “It’s extremely valuable to labs that are studying specific genes and biological pathways that are important in cancer. They can focus their research on the most frequently observed mutations, rather than having to guess which mutations may be the most important.”

Beyond using those priceless data in MSK’s own labs, it’s equally important to share them with other organizations to move cancer research forward as quickly as possible. One of these efforts is AACR Project GENIE, initiated by the American Association for Cancer Research and spearheaded by Charles Sawyers, Chair of MSK’s Human Oncology and Pathogenesis Program. This multicenter effort strips patient-identifying information from the records, then pools the information for analysis, allowing researchers across the nation to study the data. The resource enables them to discover new links between cancer-related genetic mutations and patient outcomes.

In January 2017, Project GENIE announced the release of its first batch of data: genomic-sequencing information on tumors from nearly 19,000 people with cancer, linked to information about their clinical care. These data, now up to 38,000 people, will help researchers figure out which mutations are drivers (changes that actually induce cells to grow out of control) and which are passengers. Knowing the difference is crucial to developing effective cancer drugs.

“Many of the mutations linked to cancer are rare, making it difficult for one institution to collect enough data to make statistically significant connections between a particular mutation and its role in causing cancer,” Dr. Sawyers says. “There is a great value in joining together and pooling the insights that we’re gaining from sequencing patient tumors.”
It was a tremendous effort to develop MSK-IMPACT, orchestrated by many people with diverse backgrounds.”

–AHMET ZEHIR

Ahmet Zehir has participated in a number of studies relating to MSK-IMPACT and how it’s being used.

“I was a tremendous effort to develop MSK-IMPACT, orchestrated by many people with diverse backgrounds.”

–AHMET ZEHIR

FAR-REACHING VALIDATION

Before MSK-IMPACT, next-generation sequencing technology had been used mainly in the context of research studies. The pathologists, technologists, and bioinformaticians on the development team worked painstakingly to create and enhance methods for collecting and analyzing clinical samples, which present a much greater challenge. Moving such a complex research test into the diagnostic laboratory setting was a major advance.

“It was a tremendous effort to develop MSK-IMPACT, orchestrated by many people with diverse backgrounds,” says Ahmet Zehir, Director of Clinical Bioinformatics.

The FDA recognized this innovation when it authorized MSK-IMPACT as a tumor-profiling test in November 2017. A benefit of this designation, which is given to some medical devices and laboratory-developed tests, is to set up the test as a model and establish standards for the development and validation of similar tests in the future.

This validation could lead to broader insurance coverage for genomic-sequencing panels in cancer — a huge issue if these tests are to be widely accessible.

“People making reimbursement decisions for Medicare and private insurance companies are realizing that this kind of sequencing is a bargain because patients can receive all the information they need to get the right treatment from a single test,” says David Klimstra, Chair of the Department of Pathology. “We’re optimistic that as the positive impact of genetic sequencing becomes more apparent, we’ll be able to use the test to benefit more people.”

“There is a great value in joining together and pooling the insights that we’re gaining from sequencing patient tumors.”

–CHARLES SAWYERS
BRANCING OUT TO THE FAMILY TREE

While the MSK-IMPACT test was established primarily to screen for mutations in tumor cells, it also offers the opportunity to better understand the contribution of inherited cancer-related genes among people with cancer and their families. For Mitchell Katz, 64, findings from MSK-IMPACT helped researchers understand why he responded so well to a new immunotherapy drug and, more importantly, may have saved the lives of several of his close family members.

Mr. Katz was first diagnosed with urothelial cancer in one of his kidneys in 2011 and had MSK-IMPACT testing in 2015. Although his family history did not suggest it, his test results showed he had a condition called Lynch syndrome. Also known as hereditary nonpolyposis colorectal cancer, Lynch syndrome is associated with a genetic predisposition to a number of different cancer types. It’s most commonly linked to colon and rectal cancers, but it’s also known to increase the risk of developing uterine, urothelial, and ovarian cancers, as well as other gastrointestinal cancers, such as tumors in the stomach, small intestine, and pancreas.

His doctors made this diagnosis because, in addition to flagging cancer-causing mutations in tumors, MSK-IMPACT provides extensive information about a patient’s normal DNA. Clinical geneticists use this information to uncover which genetic changes were inherited by a person at birth and increase the risk of developing cancer and which developed over time within the cancer cell. Cancer-causing genes that are inherited are likely to be shared by brothers, sisters, and children, as well as parents.

MSK’s specialists are uniquely experienced in interpreting these clues. People who harbor these genetic alterations can undergo genetic counseling and learn about what these findings mean. Their family members are also offered the opportunity to undergo genetic testing and counseling.

After Mr. Katz learned he had Lynch syndrome in 2015, he met with MSK genetic counselor Meg Sheehan, who explained the risks to him and recommended that other family members get tested. “I was very surprised to find out I had this mutation because I didn’t have a strong family history of cancer,” he says. “Once I knew, it was important to me that my family have testing too, just in case they had the same condition.”

Ultimately, his daughters, Stacy, 34, and Shana, 29, were found to carry the same mutation, as well as his older brother, Elliot, 66. All four of them, including Mr. Katz, who is still at risk of developing additional cancers, began undergoing regular colonoscopy screenings to check for the presence of colorectal cancer, an action they never would have known to take otherwise.

In February 2018, Elliot Katz was found to have an early-stage colorectal cancer, thanks to a colonoscopy. In April 2018, MSK surgeon José Guillem performed surgery to remove the tumor and a portion of his colon.

Mitchell Katz was already enrolled in a clinical trial for the immunotherapy drug atezolizumab (Tecentriq®) when he found out that his urothelial cancer had an excess number of mutations due to his underlying Lynch syndrome. It turned out that people with mutations in Lynch syndrome–associated genes were among those in the trial whose cancers responded best to the immunotherapy.

Mr. Katz continues to see MSK medical oncologist Gopa Iyer for his treatment and has had no evidence of disease in the nearly four years since he started receiving the drug.

“Once I knew, it was important to me that my family have testing too, just in case they had the same condition.”

—MITCHELL KATZ
FAMILY MATTERS
For a long time, experts thought that only 5 to 10 percent of cancers were triggered in part by a hereditary component. But as a result of MSK-IMPACT, they’re realizing that the inherited risk may be substantially higher for some people, particularly those with advanced cancer. They’re also finding that inherited factors may play a role in a much greater variety of cancer types.

“At the time a person is diagnosed with advanced cancer, we have a vital opportunity to conduct comprehensive genetic testing,” says Kenneth Offit, Chief of the Clinical Genetics Service and head of the Robert and Kate Niehaus Center for Inherited Cancer Genomics. The Niehaus Center, working closely with molecular pathologists Diana Mandelker and Liying Zhang, aims to use hereditary genomic data to develop new approaches for cancer prevention, early detection, and treatment for families with these inherited risks.

“By learning about the presence of inherited mutations, we can set the stage for providing genetic counseling to families. That in turn can lead to better screening and prevention,” says Dr. Offit. “No other institution is doing tests that compare tumor and normal tissues and family notification to the same degree as MSK.”

A study published in September 2017 in the *Journal of the American Medical Association (JAMA)* and led by Dr. Offit’s team found that 17.5 percent of those with advanced cancer had inherited cancer-causing mutations, and half of those people would not have been screened for those mutations based on their personal or family history alone.

Like Mr. Katz, the other people in the *JAMA* study who were found to have inherited mutations in cancer-causing genes were invited to participate in counseling, along with their families. Family members then had the opportunity to undergo genetic testing as well.

Going forward, MSK hopes to expand tumor sequencing to even more people. “This new technology has enabled our doctors to extend the promise of precision medicine to many people, including those with common or rare tumor types,” Dr. Klimstra says. ■

Top: Meg Sheehan works with the families of children who have cancer. *Above:* Kenneth Offit (left) and genetic counselor Yelena Kemel have found that inherited cancer mutations are more common than expected in people who have advanced cancer.
Clinical trials are the engine of new cancer treatments. Without them — and without all the people who participate in them, despite having no guarantee of success — progress in understanding and treating cancer would grind to a halt. Memorial Sloan Kettering’s clinical trials program is among the largest in the world, with investigators from all disciplines and departments studying potential cures for hundreds of cancer types.
At any given time, MSK offers hundreds of clinical trials for a variety of cancers, from the most common to the most rare.
THE CURE CONVERSATION
In 2017, clinical trials at MSK resulted in a number of firsts: the first cancer therapy developed simultaneously in children and adults; the first drug to rehabilitate cancer cells rather than kill them; the first treatment for a rare and deadly blood disorder. The year also saw progress for a treatment that helps children survive a nerve tissue cancer that spreads to the brain, a disease that used to be a death sentence.

“When it comes to advancing cancer care, clinical research is the rocket fuel for better treatments, more accurate diagnoses, and ultimately cures.”

-JOSÉ BASELGA

Clockwise from left: David Hyman, Lauren Kaplanis, Alexander Drilon, Kim Kramer, Nai-Kong Cheung, and Eytan Stein.
DRUG: omburtamab
TARGET: neuroblastoma, a rare nerve-tissue cancer that often spreads to the brain and is most common in young children. Dr. Cheung created and tested omburtamab in clinical trials. When linked to a radioactive element and injected into the spinal fluid, it delivers precision liquid radiation to strike cancer cells dead. In 2017, the US Food and Drug Administration granted the drug a Breakthrough Therapy Designation for neuroblastoma that has spread to the brain. The designation is given when early clinical data indicate a drug demonstrates substantial improvement over existing therapies.

NAI-KONG CHEUNG
Pediatric oncologist; Head, Neuroblastoma Program

DRUG: vemurafenib (Zelboraf®)
TARGET: malignant histiocytosis, a rare blood disorder also known as Erdheim-Chester disease. Vemurafenib is the first targeted therapy that was approved based on a basket trial, a type of clinical trial pioneered at MSK by Dr. Hyman, MSK Physician-in-Chief José Baselga, and others that focuses on the genetic mutations fueling disease instead of where in the body tumors develop. The FDA approved it for treating melanoma in 2011. In 2017, vemurafenib became the first drug approved by the FDA to treat malignant histiocytosis.

DAVID HYMAN
Medical oncologist; Chief, Early Drug Development Service

DRUG: larotrectinib
TARGET: TRK fusions. Larotrectinib is a targeted cancer therapy that inhibits a protein called TRK fusion that fuels growth in multiple cancer types. This drug was developed simultaneously in children and adults and resulted in dramatic cancer shrinkage for some patients, regardless of age or cancer type. Dr. Drilon led MSK’s phase II adult/adolescent clinical trial of larotrectinib as part of a multicenter study. In 2017, the drug’s manufacturer, Loxo Oncology, submitted a new drug application to the FDA.

ALEXANDER DRILON
Medical oncologist; Clinical Director, Early Drug Development Service

DRUG: enasidenib (Idhifa®)
TARGET: acute myeloid leukemia (AML). Enasidenib is the first drug to be approved that rehabilitates cancer cells rather than killing them. The drug reverses a stalled state of development for the cells, allowing them to mature normally. Dr. Stein led MSK’s phase I/II clinical trials of the drug. MSK President and CEO Craig Thompson and physician-scientists Ross Levine and Omar Abdel-Wahab conducted much of the preclinical research upon which the therapy is based. In 2017, the FDA approved the drug for treating AML that has stopped responding to other therapies.

EYTAN STEIN
Hematologic oncologist

DRUG: omburtamab
TARGET: neuroblastoma, a rare nerve-tissue cancer that often spreads to the brain and is most common in young children. Dr. Kramer headed the clinical trial involving 105 children that led the FDA to give omburtamab a Breakthrough Therapy Designation in 2017. MSK treats more people with neuroblastoma than any other institution in the world. Dr. Kramer is also researching new treatments to eliminate microscopic tumor cells in the central nervous system.

KIM KRAMER
Pediatric oncologist

SERVICE: Early Drug Development
Ms. Kaplanis has been a nurse at MSK for more than seven years. She has participated in multiple clinical trials, including the study of larotrectinib with Drs. Drilon and Hyman. She specializes in caring for MSK’s child and young adult patients.

LAUREN KAPLANIS
Clinical research nurse

DRUG: larotrectinib
TARGET: TRK fusions. Larotrectinib is a targeted cancer therapy that inhibits a protein called TRK fusion that fuels growth in multiple cancer types. This drug was developed simultaneously in children and adults and resulted in dramatic cancer shrinkage for some patients, regardless of age or cancer type. Dr. Drilon led MSK’s phase II adult/adolescent clinical trial of larotrectinib as part of a multicenter study. In 2017, the drug’s manufacturer, Loxo Oncology, submitted a new drug application to the FDA.

EYTAN STEIN
Hematologic oncologist

DRUG: enasidenib (Idhifa®)
TARGET: acute myeloid leukemia (AML). Enasidenib is the first drug to be approved that rehabilitates cancer cells rather than killing them. The drug reverses a stalled state of development for the cells, allowing them to mature normally. Dr. Stein led MSK’s phase I/II clinical trials of the drug. MSK President and CEO Craig Thompson and physician-scientists Ross Levine and Omar Abdel-Wahab conducted much of the preclinical research upon which the therapy is based. In 2017, the FDA approved the drug for treating AML that has stopped responding to other therapies.

EYTAN STEIN
Hematologic oncologist
The researchers who spearheaded these advances sat down to talk about their efforts, what keeps them going when treatments don’t go as planned, and what they appreciate about doing this work at MSK.

NAI-KONG CHEUNG

I bet you often get asked, “Why did you go into oncology?” But I have a different question: What keeps you in oncology? How do you sustain yourself in a field that we know is sometimes depressing?

ALEXANDER DRILON

Well, to me, things actually seem less depressing than they were before. We’re finding new targets for treatment and developing new medicines. We’re seeing palpable differences in how much longer people survive and an increase in their quality of life. That keeps me going. We’ve seen Lazarus responses where patients whose tumors have a specific mutation come in horribly sick and turn around very quickly if you give them the right targeted therapy for their cancer. You can really make a huge difference in how they feel.

EYTAN STEIN

My experience is a little bit like Alex’s. I worked as a research fellow with enasidenib. The first patient I gave the drug to went into a complete remission and the cancer disappeared. The depressing part came afterward, when many of the patients we gave the drug to started relapsing. What kept me going was figuring out how to prevent that relapse and to understand what combinations we needed to use to get those people in remission.

DAVID HYMAN

We were running a study of vemurafenib that targeted a specific cancer mutation, but I had no way to identify the people with that mutation. Then MSK’s Information Systems group set up a way that once a person was identified through genetic testing, I would get a message.

So I got an email the first day that system went live, and I opened up the email really excited. But the pathology report said the patient had this condition called Erdheim-Chester disease. I was immediately disappointed because I didn’t even know what that was. I Googled it, and even after that I wasn’t sure it was a cancer.

It turned out that the company funding the trial was willing to treat the patient, so we went on to treat her and 30 others with the same disease. The drug is now approved in these patients — the first drug approved for people with this condition, ever. I’m a medical oncologist for gynecologic cancers. But all of a sudden my entire clinic was full of these patients with Erdheim-Chester disease and not ovarian cancer. There were days I would go from one room to another to another to treat people with this incredibly rare disease, which most doctors probably never see a single case of. That was the embodiment of “something is definitely working here.” It was such an exciting experience.

KIM KRAMER

I’m really moved by the strides we’ve made in treating neuroblastoma. It used to be a death sentence. But now we have kids who have survived for decades, grown into adults, and gone on to have their own kids. And the FDA giving a Breakthrough Therapy Designation to omburtamab gives us even more cause for hope. This fall will be the 20th anniversary of our first celebration for survivors of neuroblastoma. It’s been a real privilege to see these kids who had previously been given fatal diagnoses grow up and visit us to celebrate.

continued
THE CHALLENGES OF FAILURE

NAI-KONG CHEUNG
But what about when we don’t get results for patients? What if we hit a roadblock? I always admire the nurses who are at the bedside taking care of the sickest patients. It’s really hard for me to imagine how nurses can keep going.

LAUREN KAPLANIS
Thank you. I appreciate the acknowledgement. As an oncology certified nurse, I’m at MSK because the work is as rewarding as it is challenging. When you’re involved in a clinical trial, you become such a part of each patient’s life, from the day you first screen them to seeing them weekly to the time when they are clinically responding and getting back to their normal everyday lives — traveling, family, hobbies. The weight of the sadness that you see is overcome by the good that you see, and by how patients are really grateful for the time that you spend with them and the relationships that you form over time. It’s really incredible.

ALEXANDER DRILON
With these therapies we’re developing, sometimes it’s actually more heartbreaking when you have something that can work really well and you know a person has done so great for a prolonged period of time. But then suddenly the cancer learns how to outsmart the pill. And you realize that you don’t have anything left for that person. It’s back to square one.

EYTAN STEIN
I’m really moved by the altruism of some patients when clinical trials don’t turn out as we hope. I’ve had patients say to me, “Can’t I just stay on the drug — even though it’s not working — a little bit longer because maybe you’ll learn something more from me being on this drug?” That kind of trust, that they’re willing not only to help research but also to help other human beings, is really dramatic and very impactful.

ALEXANDER DRILON
I think that’s an important point. I’ve also had patients have a really good response to therapy who tell me, “Doc, thank you so much. I wouldn’t be here today if you didn’t have this therapy on this trial.” But we make it a point to tell them, “No. Thank you, because without your experience and without your contribution, we wouldn’t have been able to establish this data and get this drug approved for other patients.” I think it’s important to feed that back to them, that they’re part of this process.
NEW TREATMENTS FOR CHILDREN AND YOUNG PEOPLE

NAI-KONG CHEUNG

I think pediatric oncology faces a lot of challenges. First, in young patients it’s often difficult to give anything that is really toxic. They may have to live with the consequences for a long time.

The second thing is that there are very few pediatric patients. So that means the pharmaceutical industry doesn’t pay as much attention. They’re not going to make as much money developing drugs for pediatric patients. That’s the way it is. Numbers count. This is the problem those of us in pediatric oncology have faced for decades. How do you get anything done, make a drug, prove that it works, and after all that have someone make it? Because a therapy can be great and help children on clinical trials at MSK, but it cannot be used anywhere else. That’s why it’s so important when treatments like omburtamab reach important milestones in approval from the Food and Drug Administration, so they can hopefully help more kids.

KIM KRAMER

There are some organizations that are trying to make drug accessibility equal for adults, young adults, and children. There’s the RACE for Children Act [Research to Accelerate Cures and Equity] that was just passed earlier in 2018, which will mandate that drugs in development are accessible for pediatric patients as well. So hopefully the increased awareness at that level will improve things.

ALEXANDER DRILON

We’re trying to address that issue in the development of therapies that target cancer-fueling gene mutations regardless of where tumors occur in the body. That’s the idea with this new drug that David, Lauren, and I have worked on called larotrectinib, a TRK inhibitor. It’s for cancers that have a particular gene change called a TRK fusion. It was recognized that a really important group of people with this gene change was adolescents. So we ran a phase II trial. Early in the development of the program, the cutoff was lowered for the adult trial to age 12 to make it an adult and adolescent trial. We’re doing this with more clinical trials now.

continued ▶
DAVID HYMAN

What it really comes down to is not protecting kids from research but protecting them through research. That’s not a line I invented, but I think it’s true.

I think what is a unique opportunity at MSK is that you have this enormous program that’s treating as many kids, if not more, than anybody else. And it’s embedded within this hospital that has a lot of adult research. A big opportunity, like Alex said, is bringing down the age limit on our studies. There’s really no scientific reason that we’ve chosen 18. That gives the kids that are treated here access to studies that are just not available in pediatric hospitals.

EYTAN STEIN

With the CAR T cell program everyone’s been very excited about, that program was pioneered in children and then moved to adults. That was primarily because the tumor that was being targeted is something that’s very common in kids with acute lymphoblastic leukemia. I think there’s a recognition that including kids doesn’t hamper your trial; it helps your trial.

LAUREN KAPLANIS

Right. You always look at the patient as a whole, whether they’re 18 or 81. Of course there is a uniqueness with the pediatric population because in general their understanding and expectation is different. And then there is the family too, so you have an additional aspect of care that you’re providing to the family along with the patient. One of the great things about younger patients is their resilience, which is really cool.

NAI-KONG CHEUNG

I agree. They may be hurting one day with all the treatment, then the next day they act like they forgot what just happened. It’s amazing how kids can bounce back like that.

WHAT SETS MSK APART

DAVID HYMAN

When I started working here, I realized that everyone at MSK, no matter what role they play, knows they’re at an institution dedicated to treating people with cancer. They could work at any other hospital. But from answering the telephone to pushing a stretcher or infusing a medicine, they know they’re going to be working exclusively with people suffering from cancer. The doctors, nurses, and pharmacists show a dedication to patients I’ve never seen anywhere else.

KIM KRAMER

When it comes to developing great new therapies, there really is a multidisciplinary team effort. My department, pediatric oncology, is just one part of this. It’s the nuclear medicine team, the medical physics team, the pharmacology team, the radiation safety officers, and all the other departments that buy into putting forth the time and effort to make something succeed. The dedication and loyalty and effort and diligence and experience are phenomenal here.

ALEXANDER DRILON

I agree. Another layer is that there’s so much openness to new ways of thinking at MSK, even beyond having the best scientists. It’s really a culture. This includes some of the innovations we’ve talked about, like dropping the age limit on some clinical trials and focusing on rare cancers. It’s also partnering with pharmaceutical companies to pay for travel and lodging for people with rare cancers to come here from places like Brazil and China. That openness to new ways of doing research is a beautiful thing.

LAUREN KAPLANIS

I feel incredibly fortunate to work with talented doctors from around the world. But I can bounce off my opinions or my suggestions, and they’re open to hear that too. Everyone has that caring and compassion, which is unique. You can’t find that everywhere. I know from working on clinical trials with pediatric patients that it’s important to the family that what they tell a nurse carries weight with everyone on the team, including the doctors.

“When I started working here, I realized that everyone at MSK, no matter what role they play, knows they’re at an institution dedicated to treating people with cancer. ... The doctors, nurses, and pharmacists show a dedication to patients I’ve never seen anywhere else.”

—DAVID HYMAN
PHASES OF CLINICAL TRIALS
Clinical trials are grouped into phases depending on the purpose of the research. Each phase builds on the last.

PHASE I TRIALS
Phase I trials focus on the safety of the treatment and finding the appropriate dose.

PHASE II TRIALS
Phase II trials determine if the treatment is effective.

PHASE III TRIALS
Phase III trials compare the treatment to the standard of care and are often the final stage before a drug is submitted to the FDA for approval, though sometimes trials enter phase IV if questions remain about their best use.

This framework has become more flexible in recent years. With the advent of targeted therapies, the individual characteristics of a tumor can help determine if a person is likely to benefit from a particular treatment, even before enrolling in a clinical trial. Research has shown that tumor profiling leads to significantly better outcomes for people in clinical trials, even as early as phase I. Another departure from the past is that treatments are being approved by the FDA without going through all of the stages.

EYTAN STEIN
Building on what you’re saying, I think that in phase I drug development, everyone has a voice. If it’s the nurse or the research study assistant, all ideas are taken seriously to contribute to the benefit of that specific patient and the benefit of the study as a whole.

DAVID HYMAN
That same commitment to improving cancer care goes to the very top of the institution. It’s not just about wait times and how many patients you see in a clinic. It’s not just a business. It’s about creating an environment that allows us to advance the field. When I go to other incredible institutions — great, wonderful institutions — they cannot believe the environment and the systems MSK has put in place to enable the type of work that we just take for granted here.

ALEXANDER DRILON
I agree with that. I think there’s sort of an “if you build it, they will come” kind of theme here.

NAI-KONG CHEUNG
This brings us full circle to the question we began with, about why we stay in oncology. For me, I know that I need to meet a standard. It’s almost as if you’re trying to improve on your own self. In fact, you try to surpass yourself. You want to be a better doctor. And as you get better, the institution gets better. And that is the goal.
FOCUS ON BASIC SCIENCE

If there’s one thing that unites the scientists in the Sloan Kettering Institute, it’s the drive to understand the roots of biological processes — the orderly expression of genes in a developing embryo, the constellation of atoms in a protein, a chain of metabolic reactions in a cell. Increasingly, with the tools of modern biology, scientists can home in on these molecular events with laserlike focus. Their discoveries are bringing clarity to some of the murkiest problems in cancer.
Scientists are finding new ways to model disease in the lab, with the goal of determining the most effective treatments.
SEARCHING WIDE, DIVING DEEP
The genome-editing tool CRISPR has had a sizable effect on science and medicine in recent years. With these powerful molecular scissors, scientists can snip out specific pieces of DNA or make changes at precise genetic addresses. MSK researchers used CRISPR in several inventive ways this year to push cancer science forward.

Left: Ted Kastenhuber, a member of Scott Lowe’s lab in the Sloan Kettering Institute, removes frozen cancer cells from liquid nitrogen. Above: Mr. Kastenhuber grows cancer cells in vitro. The cells are from mouse tumors that the team generated in the lab. Growing cancer cells outside the body could make it easier to test drug sensitivity more quickly and efficiently compared with studying the results in patients.
UNRAVELING THE CAUSE OF A DEADLY CANCER

The rare liver cancer fibrolamellar hepatocellular carcinoma (FL-HCC) strikes fewer than 1,000 individuals a year worldwide, mostly children and young adults. There are few effective treatments besides surgery. FL-HCC is usually diagnosed late, so it is often fatal.

Because FL-HCC is so uncommon, it’s hard for researchers to learn more about it, or even to conduct clinical trials of potential medicines. And without knowing more about the disease’s underlying biology, they can’t come up with solutions to stop it.

But what if the disease could be recreated in the lab? Could scientists use a synthetic model to test new FL-HCC drugs?

A team led by cancer biologist Scott Lowe, Chair of the Cancer Biology and Genetics Program in the Sloan Kettering Institute, decided to try just that. They used CRISPR to engineer mice with the same mutation that affects people with the disease.

It worked beautifully. “We showed that if you can reproduce that genetic event in mice, they will develop a cancer that looks very much like human FL-HCC,” Dr. Lowe says. “This demonstrates that the mutant gene causes FL-HCC.”

The research came about through a collaboration between Dr. Lowe’s lab at MSK and Sanford Simon’s lab at The Rockefeller University. Several years ago, Dr. Simon and colleagues discovered that nearly all people with FL-HCC share the same mutation in their tumors.

It was a big advance — one made even more remarkable by the fact that Dr. Simon’s own daughter, Elana, suffered from FL-HCC and was centrally involved in the research effort. But still, it was only a correlation.

To find out for sure whether this mutation was responsible for driving the disease, Dr. Lowe’s team, including Edward Kastenhuber, a student at the Gerstner Sloan Kettering Graduate School of Biomedical Sciences, used CRISPR to snip out the portion of the chromosome that is lost in people with FL-HCC. The remaining bits of chromosome then combined, fusing the two genes that are normally separated.

“Models give us the freedom to fail and to explore a wide variety of approaches. This way, we can accelerate the discovery of treatments that are more likely to be effective before exposing people to experimental medicines.”

—EDWARD KASTENHUBER

CRISPR: A BACTERIAL CUT-AND-PASTE SYSTEM

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These short sequences of repetitive DNA are found in bacteria and other microorganisms. Microbes use these sequences as a type of immune system against viruses.

Key to the whole operation are stretches of DNA in the CRISPR sequences that match the genetic sequence of viral DNA. When these sequences are transcribed into RNA, they bind to viral DNA and direct an enzyme — for example, one called Cas9 — to snip the DNA at the match site. This disarms the invader. Bacteria retain a record of past viral infections, much like our own immune system does, stitched into their DNA.

In 2012, scientists at the University of California, Berkeley, and elsewhere realized they could turn this bacterial cut-and-paste system into a powerful tool for genetic engineering. Researchers can give the Cas9 enzyme a synthetic RNA as a guide, one that matches a gene or DNA sequence of interest. They can then use the CRISPR-Cas9 system to make very precise cuts and other alterations in the DNA of cells.
The team plans to use the model to test a variety of drugs to see if they can slow or stop the cancer’s growth. FL-HCC could be a good target for drugs called kinase inhibitors, but scientists won’t know for sure until they test them.

“Models give us the freedom to fail and to explore a wide variety of approaches,” Mr. Kastenhuber says. “This way, we can accelerate the discovery of treatments that are more likely to be effective before exposing people to experimental medicines.” The findings were published in the *Proceedings of the National Academy of Sciences* in November 2017.

BUILDING A BETTER CAR

Chimeric antigen receptor (CAR) T cells are a powerful tool to treat certain blood cancers. (Read more about CAR T therapy on page 8.) But the way they are made is somewhat inefficient. The current process involves removing immune cells from patients and using modified viruses to deliver the CAR gene into those cells. But this method inserts the gene randomly at multiple spots in the genome. This scattershot approach isn’t as efficient as it could be, and could actually cause problems by disrupting the function of important genes.

This past year, researchers in SKI used CRISPR to build a better CAR T model.

continued →
Postdoctoral fellows Justin Eyquem and Jorge Mansilla-Soto, working in the lab of Michel Sadelain, showed that if they used CRISPR to place the CAR at a very specific genome location called the TRAC locus, the cells were not only more homogeneous, they were also more effective. The approach paves the way for more reliable CAR therapies and even off-the-shelf versions that would not need to be made from a person’s own cells. They published their findings in the journal Nature in February 2017.

“The method we developed will likely transform a costly and variable T cell–manufacturing process into a more uniform, universal, and safer one,” Dr. Eyquem says.

Also remarkable is the speed at which they were able to accomplish this feat. “We started to work on this project less than three years ago, and we expect to bring it to the clinic by early 2019,” Dr. Eyquem says.

KNOW THY GENOME

As precise and powerful as CRISPR can be, it’s only as good as one’s knowledge of the genome being cut. CRISPR can aim for multiple targets. But if it does, then instead of making precise snips in the exact spot in the genome you’re aiming for, you might slice it too much.

In May 2017, researchers at SKI presented a way to solve this problem. The team — which included postdoctoral fellows Joana Vidigal and Yuri Pritikin, graduate student Alexandar Perez, and SKI faculty members Christina Leslie and Andrea Ventura — built computer software to help scientists design more-effective guide RNAs.

CRISPR uses guide RNAs to find specific regions of the genome, where it then makes a cut. The new software, called GuideScan, allows researchers to identify guide RNAs that have one or only a few possible matches in the genome, reducing the potential for too many cuts. GuideScan is freely accessible to researchers everywhere, to help enable even more skillful use of the CRISPR technology.

“Pretty much anything you can imagine, you can do,” Dr. Vidigal says. “And now you can do it precisely.”

Joan Massagué (center), with medical oncologist Karuna Ganesh (right) and research associate Harihar Basnet, has made groundbreaking discoveries about the genes that influence how tumors interact with their environment.

“ ”

It’s difficult for cancer cells to seed new tumors in other parts of the body. To get through all the barriers that are waiting for them when they leave the mother ship, the ones that survive have to be tougher than the average cancer cell.”

—JOAN MASSAGÜE
“It’s difficult for cancer cells to seed new tumors in other parts of the body,” he says. “To get through all the barriers that are waiting for them when they leave the mother ship, the ones that survive have to be tougher than the average cancer cell. This explains why these cells tend to be more aggressive and harder to treat.”

In March 2017, Dr. Massagué and physician-scientist Adrienne Boire published a paper in the journal Cell on LM. To figure out how certain cancer cells grow in spinal fluid, the researchers implanted several cell lines of breast and lung cancer in mice and monitored them to see which ones resulted in LM.

To their surprise, they discovered that all of the cell lines that colonized the spinal fluid had the same well-known protein in common. After they understood how that protein worked, Drs. Massagué and Boire looked for a way to block its function. The solution was just as surprising as the initial discovery: a compound targeting the protein — originally developed to treat asthma but ultimately ineffective against that disease — suppressed LM and slowed its progression in mice. Now the researchers are investigating the possibility of using the compound to treat people with LM.

“In the past, LM was part of the fatal end stage of cancer,” Dr. Boire says. By that point, people had so many other complications that not many efforts were focused on LM. But “now that patients are living longer and we’re able to treat other sites of metastasis, this is becoming a clinical problem that we need to learn how to address.”

Adrienne Boire (right), with senior research technician Majdi Alghader, was inspired to study leptomeningial metastasis by a patient of hers who had the condition.
BRINGING A KEY PROTEIN INTO FOCUS

Scientists call it the master growth regulator: a protein complex in cells that senses when they have enough nutrients and cues them to grow and divide.

When this complex, called mTOR, is triggered, cells begin making copies of key ingredients, such as membranes, DNA, and organelles. They use these extra materials when they split into daughter cells.

For years, scientists have sought to target abnormally active mTOR with drugs as a way to treat cancer. Two such drugs are approved by the US Food and Drug Administration for the treatment of some types of kidney and breast cancer.

But overall, mTOR-targeted drugs have been disappointing. That may be because mTOR is a large and complicated piece of cellular equipment. There are many interacting parts, and it may be hard to take down the whole thing with a single shot. Without a clear map of the protein’s structure, it’s impossible to know how it works — or how to stop it.

In December 2017, a team of scientists led by Nikola Pavletich, Chair of the Structural Biology Program, and Haijuan Yang, a senior research scientist in his lab, assembled an impressively detailed view of mTOR — the first ever — including what it looks like in action.

To do so, they used an innovative technology called cryo-electron microscopy (cryo-EM), a kind of satellite imagery for the cell.

With this technique, scientists shoot beams of electrons at a purified sample of molecules that is flash frozen in chilled liquid ethane. The electrons bounce off the molecules in the sample, creating an image. Thousands of individual pictures are taken, and then a scientist uses sophisticated algorithms and high-powered computers to assemble the

Once you solve a protein’s structure — in essence, creating a three-dimensional map showing where all its atoms are — you gain a much deeper understanding of how the protein works and how its function could be manipulated with drugs.”

—NIKOLA PAVLETICH

Nikola Pavletich (left), with lab member Buren Li, a student at the Gerstner Sloan Kettering Graduate School of Biomedical Sciences, studies biological molecules at an atomic level, including the proteins that control cell growth and proliferation.
pictures into a crisp, three-dimensional image. MSK installed a cryo-electron microscope, the Titan Krios, in 2017. One of its first uses was to help scientists tackle the structure of mTOR.

“Once you solve a protein’s structure — in essence, creating a three-dimensional map showing where all its atoms are — you gain a much deeper understanding of how the protein works and how its function could be manipulated with drugs,” Dr. Pavletich says.

Previously, such detailed atom-by-atom pictures could only be produced with X-ray crystallography, a painstaking and time-consuming method that involves first making a crystal out of a protein and then X-raying it. But not all proteins will form crystals. That’s especially true of large proteins and protein complexes with multiple moving parts, like mTOR. Cryo-EM eliminates the crystallization step, which makes determining structures much easier and faster.

The mTOR protein is actually part of a larger assembly of several interlocking protein pieces that operate together. The whole complex is called mTORC1.

The structure newly obtained by cryo-EM shows how all the pieces fit together, including how mTOR is turned on. What once would have taken years to complete took just a few months.

“Before cryo-EM, people could model bits of this protein and bits of that protein,” Dr. Yang says. “Now we can put it all together.”

“Before cryo-EM, people could model bits of this protein and bits of that protein. Now we can put it all together.”

— HAIJUAN YANG
FOCUS ON PATIENT CARE

Every advance at MSK is intended to achieve a singular goal: improving our patients’ well-being. In 2017, teams across the organization optimized surgeries, minimized unnecessary treatment, built new spaces for recovery, and made facilities feel a little bit more like home.
Lyndell Kegerise (right) was among the first to stay in MSK’s 75th Street Patient Residence, an apartment-style facility for people recovering from bone marrow transplants.
JUST LIKE HOME
In January 2017, Dr. Hamlin said that we were running out of options. That hit me hard. He said that I would be a great candidate for a stem cell transplant and he'd like me to meet Dr. Sauter, who would perform it.

Lyndell had high-risk disease, so that dictated the transplant. When patients approach 70, we have a little more pause, but she didn't have any major medical problems.

Our MSK team found a donor through the Be the Match program — this 25-year-old fellow who was a wonderful match. We're extremely grateful to him.

I was afraid he was going to back out after I initially didn't achieve remission. I hope I get to meet this man one day because he stuck in there with me. He was ready when I was ready.

Mr. and Mrs. Kegerise had looked into staying at a New York City hotel while she recovered from her transplant, until a nurse at MSK Basking Ridge gave them another idea: MSK’s brand-new 75th Street Patient Residence, an apartment-style facility for bone marrow transplant patients and their caregivers that opened in 2017. The studio, one-, and two-bedroom units are outfitted with full kitchens, bathrooms, laundry, cable TV, and Wi-Fi. For some patients, their stay may be covered by insurance.

Life at the Jersey Shore was good for Lyndell Kegerise. The former real estate professional was diagnosed with non-Hodgkin lymphoma in 2005, but under the care of MSK oncologist Paul Hamlin, her disease went into remission and stayed there for eight years. But in 2014, when she was 66, her disease relapsed, and then relapsed again in 2015. When chemotherapy and immunotherapy couldn’t keep her in remission for longer than a year, Mrs. Kegerise and her husband, Wesley, learned that her best option was a stem cell transplant with hematologic oncologist Craig Sauter.
The people at MSK work so well integrating with all the departments that the patient doesn’t have to worry about anything except getting better.”

—WESLEY KEGERISE

They thought of things we didn’t even think about. Our air was filtered. Our water was filtered.

This is the remarkable thing about MSK. The 75th Street Patient Residence team was so easy and wonderful to work with. I had to move our reservation about six times because we didn’t exactly know when Lyndell would be OK for the transplant, and nothing was a problem for them. Your room is ready when you’re ready. The people at MSK work so well integrating with all the departments that the patient doesn’t have to worry about anything except getting better.

Everything was coordinated for us. We just had to show up. And it was wonderful being on the east side near the hospital, so we didn’t have to go across town.

Mrs. Kegerise had her transplant and stayed in Memorial Hospital to recover for 30 days. Mr. Kegerise stayed at the residence. Then Mrs. Kegerise joined him at the residence a few blocks away, where they stayed for 40 more days.

Even when you get out of the hospital, you’re still going to see the transplant team every other day. The whole coordinating team at the 75th Street Patient Residence made it easy for us. They would call in the evening and say, “Your van will be here at 8 AM” to go to the hospital. If for some reason it was late, they would call a driver.

At the residence, you have your own little apartment. If Lyndell wanted to take a nap, she could go in the bedroom and I could be in the living room watching TV. That’s a real benefit. And the staff couldn’t be more accommodating. Lyndell loves Bigelow mint tea, and they even got it for her. The session assistant, Ritsuko, and door attendant, Terry, would call us and say, “Do you need a ride in tomorrow at a certain time?” Noel, the superintendent who changed the filters, was so nice.

He became like our family.

I know the people who stay with us, like the Kegerises, need support from our entire staff. Doing everything I can to create a warm, friendly environment for patients and their families to come home to is very important to me. I am proud to have been at MSK for more than 23 years, and I hope that we can continue to make a difference in our guests’ experiences by treating them like family.
A COMMON BOND

LYNDELL KEGERISE

At the residence, you are with people who are going through the same thing as you. We met a gentleman who worked on 9/11 and got blood cancer. We befriended a family from Saudi Arabia, and the son took Wesley under his wing. He cooked for him. The night before we left, they said, “Come down to our apartment and spend some time with us.” At the end of the evening, the father, who was also a transplant patient, gave me his prayer beads.

WESLEY KEGERISE

Most days I would go with her to her appointments and have lunch with her. Some days I would go to the art museum or the Museum of Natural History. A couple days I would hit golf balls at Chelsea Piers. I could go back for lunch, see her in the afternoon, and walk home in the evening. It was so convenient.

LYNDELL KEGERISE

I encouraged him to get out. I said, “I’m taken care of — it’s you I’m worried about! Go do something fun.”

WESLEY KEGERISE

Our daughters came in from Delaware and Atlanta. They could stay with me at the residence while Lyndell was in the hospital. That was another beautiful thing: People could visit.

LYNDELL KEGERISE

That was very nice. Our Saudi Arabian family was able to join us for pizza in the common area.

In October 2017, Mrs. Kegerise was cleared to return home.

LYNDELL KEGERISE

I was nervous leaving, but it was very coordinated. I had a little setback at Christmas — I got an infection so I was back in the hospital — but I’m doing great. I feel great. I have energy, and I’m getting stronger. Every December, I would have scans done, and the cancer was always back. This was the first time in three years I didn’t hear the word “cancer” at Christmas. It was unbelievable.

The couple will celebrate their 50th wedding anniversary in September.

LYNDELL KEGERISE

We want all the special people in our lives over the past 50 years to come celebrate with us. We are so blessed. Every day is a gift.
SEEING PROSTATE CANCER IN A NEW LIGHT
DOCTOR BECOMES PATIENT

As a dentist, Gregory Page knew the importance of staying on top of his health. He had prostate-specific antigen (PSA) tests, which measure for a protein in the blood that is elevated in men with prostate cancer, as part of his regular routine. When his PSA came back abnormally high in 2007, he made sure to see his doctor each year to more closely monitor his level.

In April 2017, his doctor saw that Dr. Page’s PSA had risen high enough to warrant a biopsy. The test came back positive for cancer. The news was understandably difficult for Dr. Page to take in — even more so because it came on top of what had been a challenging year so far. His godmother, best friend, and brother had all recently died.

“It was not a good year for me,” recalls the 68-year-old from New York City. “I said, ‘God, you’re giving me a lot to handle here.’ ”

Dr. Page was already under the care of a urologist, but hearing he had cancer made him reconsider where he wanted to go for treatment. He remembered the times he had escorted one of his good friends, a lung cancer survivor, to MSK’s Rockefeller Outpatient Pavilion.

New York City dentist Gregory Page came to MSK for a less-invasive approach to prostate cancer treatment. After undergoing light-activated therapy with Jonathan Coleman, Dr. Page was able to resume his normal activities within days, including lunch at the Renaissance Harlem, near his office.

The whole ambience they created was just outstanding. I always felt that if I ever had a diagnosis of cancer, I would not walk but run to MSK. And that’s exactly what I did.”

—GREGORY PAGE

continued →
“The whole ambience they created was just outstanding,” he says. “I always felt that if I ever had a diagnosis of cancer, I would not walk but run to MSK. And that’s exactly what I did.”

Before calling MSK’s Patient Access Service, which schedules first appointments for people coming to MSK, Dr. Page researched urologists online. When he saw a YouTube video of MSK urologic surgeon Jonathan Coleman, he knew he had found the doctor he wanted to see.

Dr. Page recalls, “Dr. Coleman discussed the various treatments for prostate cancer, and he also used the word ‘cure,’ which is possible for many men with prostate cancer. ‘That’s a good word to hear when you have cancer,” he adds.

Another point in the video that really resonated with Dr. Page was when Dr. Coleman said that the procedures he does have minimal side effects.

“I had friends who had their prostates taken out, and it took them years to recover,” Dr. Page says. “One of my friends had incontinence problems for a year. I have another friend who had to have a pump put in. I didn’t want all of that.”

FINDING A LESS-INVASIVE OPTION

In June, Dr. Page and his fiancée, Cynthia, met Dr. Coleman and his nurse, Connie Estes. Dr. Coleman remembers how impressed he was with Dr. Page’s knowledge of his circumstance. “He had definitely done his homework,” Dr. Coleman says. “He was extremely intelligent and well informed. He was thoughtful, inquisitive, and concerned about his cancer while also being concerned about treating it too aggressively.”

Ms. Estes was equally taken by the couple. “They are both the nicest people, and every interaction we had was a delight,” she says. “It was obvious that they had researched prostate cancer and treatment.”

She told the duo that Dr. Coleman was doing promising research with vascular-targeted photodynamic therapy, a form of prostate cancer treatment that uses a light-activated drug to zap prostate tumors with minimal side effects.

Dr. Coleman has been offering vascular-targeted photodynamic therapy since 2010. The procedure requires only light sedation — the same type used for a colonoscopy. Once sedated, the patient receives a medicine called padeliporfin (Tookad®) through an IV. Then the doctor places a thin laser fiber into the prostate gland, which activates the drug so it can kill the cancer. Patients can go home the same day.

“There’s a need for new technology to better destroy cancerous tissue without harming the surrounding tissue, and that’s where this type of therapy comes into play,” Dr. Coleman says.

Right now, vascular-targeted photodynamic therapy is performed only through clinical trials, and it’s not an option for every man with prostate cancer. However, efforts are under way to make it more widely available.

At their next meeting, Dr. Coleman told Dr. Page that he was recruiting men for a trial that would bring vascular-targeted photodynamic therapy closer to US Food and Drug Administration approval. He had 30 out of the 50 men he would need. Dr. Page knew this was his opportunity.

“I looked at my fiancée, I looked at Dr. Coleman, and I said, ‘Could I be number 31?’” he recalls. “He said yes, and I hugged him like he was my long-lost brother. I knew I was getting world-class treatment.”

Above: Jonathan Coleman is hoping the drug becomes a mainstream option for men with this type of cancer. Right: Narrow optical fibers activate Tookad to destroy prostate cancer.
Connie Estes helped prepare Gregory Page for his treatment with Jonathan Coleman.

"I remember I was so excited to make that call. As an office practice nurse, you really get to know patients and their families. When the biopsy came back benign, it was great news. It makes my day when I am able to call a patient with news like this."

-CONNIE ESTES

THE BIG DAY — AND A QUICK RECOVERY
Dr. Page had his procedure in October 2017 at Memorial Hospital. He went home the same day. He had to stay in shaded light conditions for the first two days he was home because Tookad is activated by light, but his fiancée helped him pass the time.

“When the 48 hours were up, I got up, put on my clothes, and went to a baseball game. And I felt fine,” he remembers.

After the procedure, the only side effect Dr. Page experienced was some minor soreness. And unlike other major forms of prostate cancer treatment, he hasn’t had any serious issues with incontinence or erectile dysfunction.

At his three-month postsurgery checkup in January, Dr. Coleman didn’t find any cancer. Ms. Estes relayed the good news to Dr. Page.

“I remember I was so excited to make that call,” she recalls. “As an office practice nurse, you really get to know patients and their families. When the biopsy came back benign, it was great news. It makes my day when I am able to call a patient with news like this.”

Now, nearly a year postsurgery, Dr. Page is doing great. He’s busy at work and helping plan Cynthia and his wedding. He says this year is shaping up to be much better than the last.

“As a healthcare provider, it’s important for me to spread the word about positive things that can enhance and prolong people’s lives,” he says.

“I feel very fortunate that I was at the right place, at the right time, with the right doctor and staff. How many people can say they had a complete turnaround in nine months?”
There are few diseases as feared — or as challenging to treat — as cancers of the brain. But there are very few doctors in the field of neuro-oncology with the expertise, experience, and compassion of Lisa DeAngelis and Viviane Tabar. Both have spent nearly all of their distinguished careers at MSK. Dr. DeAngelis has been Chair of the Department of Neurology since 1997; Dr. Tabar was named Chair of the Department of Neurosurgery in 2017.

In addition to treating patients, both doctors also conduct groundbreaking research. They sat down to talk about their approach to treating people with neurologic cancers, what makes MSK special, and much more.

THE UNIQUE CHALLENGES OF BRAIN CANCERS

LISA DEANGELIS

People have very different ideas about what makes life meaningful. It’s important that we know what that means to all of our patients, so we can not only treat their disease but also help guide them through difficult decisions and honor their wishes and their values, especially if they reach a point at which they may not be able to articulate that. So you need to know that early on.

VIVIANE TABAR

I agree. I think it’s absolutely crucial to understand what patients really want and to tailor our treatment to their expectations. I remember early in my career someone who had a large, benign tumor, and we were very proud to have removed it completely. But the patient was not really satisfied because she turned out to be a wine connoisseur and she lost her ability to smell. That impacted her quality of life far more than we had anticipated.

Obviously, some people deal with much more challenging neurological and psychological problems related to a brain tumor diagnosis than that. That kind of experience is why I often tell my trainees that your first ten years as a surgeon are focused on developing your skills and becoming a good surgeon. But what’s more challenging afterward is developing good judgment.
It’s also really important to understand that treating the family is an integral part of treating the patient. It’s the family who bears the consequences if the person’s personality and identity are changed dramatically by their illness. In some ways, the family struggles more than the patient. I’ve often said to people, “This is going to be harder on you than it’s going to be on your spouse,” or father, or whoever the patient is. I think that’s something that we in the neurology world confront much more frequently than other doctors.

VIVIANE TABAR

Yes, that’s very insightful. The families do take on a large burden that sometimes leaves me in awe of their generosity. Brain cancers are probably some of the most challenging diseases to deal with.

LISA DEANGELIS

You sometimes ask yourself, “How do these people even get out of bed in the morning and face the day?”

“
I think it’s absolutely critical to understand what patients really want and to tailor our treatment to their expectations.”

–VIVIANE TABAR

NEW DEVELOPMENTS IN THE FIELD

LISA DEANGELIS

Having taken care of people with glioblastoma and malignant brain tumors for more than 30 years, I really have seen a noticeable improvement in the quality of life for people who live with these diseases. One reason is newer drugs, such as temozolomide [Temodar®], which is much less toxic than prior chemotherapies and better tolerated. Also, the addition of bevacizumab [Avastin®] has helped patients avoid corticosteroids for brain edema or swelling and the attendant side effects. That’s been very gratifying and enabled patients and families to make the best use of whatever time they have left.

The other thing that’s changed is that there are people who are living many years with this illness. That’s something that we sometimes saw — or saw very rarely — in the ’80s and ’90s. It’s important to understand that the proportion of these people is very small. And the fact that we haven’t substantially prolonged life for more patients is the most important problem that we struggle with. But those people who live for six or seven years after treatment often do extraordinarily well. They are able to work and enjoy life. That’s a dramatic change.

continued ▶
In the neurosurgery department, we’ve evolved over the last ten years to put a greater focus on offering surgery while maximizing function. That’s in part because of technologies that I expect will continue to evolve and allow us to offer people more options. Take, for example, patients who suffer from brain metastases, when cancer spreads from another part of the body. Traditionally they were told that their life expectancy was a year or less, and I would admit that they perhaps received less attention from surgeons in the past. But today, we often focus our discussion on what surgery can do to improve quality of life. If a patient suffers from a weak leg or a weak arm, we are more likely to offer them surgery if we think that it can help them overcome that deficit, even if we cannot impact life expectancy.

The Importance of Treatment

Lisa DeAngelis

We’ve seen in both of our disciplines, whether with primary or metastatic tumors, that there can be recovery of function. Particularly with primary tumors, I think there was a lot of therapeutic nihilism associated not only with the fact that these are difficult cancers to treat but also with the long-held belief that people could not recover neurologically. If they were left severely compromised from a functional point of view, what was the point?

But in fact we have learned that with multiple means of treatment — surgery, radiation, chemotherapy — patients with very considerable deficits can make substantial recoveries and have a very meaningful return of function. That’s been a paradigm shift and is very encouraging therapeutically.

Viviane Tabar

Improving function also allows some people to be eligible for more-aggressive treatments, for clinical trials or new drugs. I think that’s where strides are going to be made. Gains at the individual level and for a subset of patients are going to move the field forward.

Viviane Tabar

In the neurosurgery department, we’ve evolved over the last ten years to put a greater focus on offering surgery while maximizing function.”

— Viviane Tabar
WHAT SETS MSK APART

LISA DEANGELIS
MSK is about the people. It’s about the team. We have a fantastic multidisciplinary, collaborative team — people with deep expertise in their respective fields, such as neurosurgery, radiation oncology, neural pathology and neural imaging, and so on.

We work incredibly well together, which doesn’t mean that we always agree with each other. In fact, some of the most valuable exchanges are when we don’t agree. Somebody will bring another consideration to the table that makes you think about a problem or see a patient from a different perspective, and you realize that perhaps you haven’t considered every aspect of things.

I’m absolutely convinced that this is all to the benefit of the patient. There is no question in my mind that what we bring to the table collectively far exceeds the sum of the individual parts.

VIVIANE TABAR
I agree. The depth of expertise and dedication of my colleagues at MSK is really what keeps me and my patients afloat. There’s great comfort in being able to discuss a challenging case with the group. To listen to the input of people with deep experience as well as younger people who have a different perspective — people who have one foot in the lab and one foot in the clinic, or those who are willing to challenge the norm.

It’s also very inspiring to be surrounded by not only clinical and scientific excellence but also people with genuine dedication to the patient. It’s no secret to all of us that this is a challenging job, particularly caring for people with brain tumors. We lose a lot of patients. It would be terrifying if you didn’t have your colleagues next door.

When we are facing a difficult surgery or a difficult outcome from surgery, it’s very reassuring to us and to the patient to be able to reach out to our neuro-oncologists, who sort of pick up the person where he or she landed and move them to the next phase. That provides not only support to each other but also support to the patient, giving a different perspective and usually a positive outlook on what’s to come.

LISA DEANGELIS
Our nurses and nurse practitioners are a critical component of this. They’re very much a part of our team. We are so fortunate to have an incredible nursing workforce here, including the floor nurses and the advanced practice nurses. Nurses are our front line to patients — we jointly share that focus on addressing patient and family needs.

VIVIANE TABAR
Yes. It’s the norm for me if I get a thank-you note from a patient that also refers to my nurse.

LISA DEANGELIS
Absolutely.

VIVIANE TABAR
They are an invaluable component of what we do. And I think the patients definitely appreciate it. Our nurses contribute to patients’ well-being throughout their hospital stay and afterward.

The patients definitely appreciate the team effort among doctors too. It’s not uncommon for us to say to patients, “Well, let me discuss this with my colleagues and we’ll get back to you.” I enjoy when the patient is a little incredulous that you get back to them the following day with an opinion from several experts that would have taken maybe a few months to get individual appointments with. That model works extremely well between our two departments.

LISA DEANGELIS
Our global team approach is so different from other institutions that it does sometimes take patients and families a little bit of time to acclimate to it. But I think they rapidly come to appreciate the benefit of it.

“There is no question in my mind that what we bring to the table collectively far exceeds the sum of the individual parts.”

—LISA DEANGELIS
Telemedicine uses electronic communications such as video conferencing and secure email to provide care without an in-person visit. Here, Lee Erickson, Deputy Physician-in-Chief for Clinical Operations, speaks with Christian Otto, Director of Teleoncology, about this burgeoning field at MSK. They both joined MSK in early 2017.

INTERVIEW WITH

LEE ERICKSON
Deputy Physician-in-Chief for Clinical Operations

CHRISTIAN OTTO
Director of Teleoncology

A BOLD NEW TAKE ON CARE

LEE ERICKSON
Implementing telemedicine is about a bigger paradigm shift. We want to move the majority of cancer care out of the healthcare setting entirely. Instead of making you come to us, we’ll come to you. If we can turn this whole model inside out, it’d be amazing.

CHRISTIAN OTTO
Telemedicine can have a significant impact on quality of life. When patients feel unwell and we’re asking them to travel, that can be challenging. We’re also seeing data showing survival benefits. For example, take a study done by [MSK epidemiologist] Ethan Basch that was presented at the American Society of Clinical Oncology annual meeting in June 2017.

LEE ERICKSON
It showed five months of additional survival just from having patients report their symptoms to their physician.

Lee Erickson (right) and Christian Otto are bringing new and existing technologies to MSK to allow patients to receive care virtually.
CHRISTIAN OTTO

We’ve been able to begin pilots in Manhattan, the regional care network, and patients’ homes. I think there’s so much momentum because of the can-do attitude here.

LEE ERICKSON

The can-do attitude around this place is pretty amazing.

CHRISTIAN OTTO

"We’ve been able to begin pilots in Manhattan, the regional care network, and patients’ homes. I think there’s so much momentum because of the can-do attitude here.”

–CHRISTIAN OTTO
DRIVING CANCER CARE
Going the extra mile for people affected by cancer is what Ansar Mohammed and Luther Nickelson do best. They are part of a team of 36 shuttle drivers who, on any given day, transport 750 patients, caregivers, and staff to MSK’s facilities throughout Manhattan. They also deliver critical medicines, supplies, and patient samples.

Driving patients and families between appointments means they often share personal moments with their passengers. Some of those experiences, like enduring a challenging treatment session or receiving a life-changing diagnosis, are understandably tough. “I can’t shy away from this part of my job,” Mr. Mohammed says. “I make sure my passengers know I will take care of them. Their doctors and nurses will take care of them. We are all in this together.”

But there are many positive moments too. “When I first started three years ago, I was driving a woman who started singing a song that came on the radio,” Mr. Nickelson recalls. “She was singing with such passion, and when I looked in the mirror, I saw tears streaming down her face. She was happy. She had just gotten good news, and it was a healing song. That’s what MSK is about — it’s a healing place.”

Both men are proud to be part of the more than 17,000 scientists, doctors, nurses, and support staff who make up the MSK community. Whether it’s offering words of encouragement during a ride between appointments, making groundbreaking scientific discoveries, or providing unmatched patient care, the focus is clear, Mr. Mohammed says: “We all come to work each day to help.”

“I make sure my passengers know I will take care of them. Their doctors and nurses will take care of them. We are all in this together.”

—ANSAR MOHAMMED

Left: Ansar Mohammed (left) and Luther Nickelson in front of MSK’s 53rd Street patient shuttle. Above left: Mr. Mohammed, Mr. Nickelson, and manager Paul Adamec. Above right: Mr. Mohammed in the driver’s seat.
PATIENT CARE

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Admissions: Adults</td>
<td>20,773</td>
<td>20,640</td>
<td>21,064</td>
<td>21,708</td>
<td>21,953</td>
</tr>
<tr>
<td>Patient Admissions: Children</td>
<td>1,553</td>
<td>1,504</td>
<td>1,403</td>
<td>1,370</td>
<td>1,553</td>
</tr>
<tr>
<td>Total Admissions</td>
<td>22,326</td>
<td>22,144</td>
<td>22,467</td>
<td>23,078</td>
<td>23,506</td>
</tr>
<tr>
<td>Total Patient Days</td>
<td>144,345</td>
<td>146,855</td>
<td>151,827</td>
<td>160,072</td>
<td>161,661</td>
</tr>
<tr>
<td>Average Patient Stay (days)</td>
<td>6.5</td>
<td>6.6</td>
<td>6.8</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Bed Occupancy Rate (1)</td>
<td>83.0%</td>
<td>84.3%</td>
<td>90.9%</td>
<td>92.5%</td>
<td>94.3%</td>
</tr>
<tr>
<td>Outpatient MD Visits: Manhattan</td>
<td>463,724</td>
<td>480,260</td>
<td>489,897</td>
<td>512,142</td>
<td>526,006</td>
</tr>
<tr>
<td>Total Outpatient Visits</td>
<td>571,922</td>
<td>593,959</td>
<td>626,403</td>
<td>665,593</td>
<td>722,238</td>
</tr>
<tr>
<td>Screening Visits</td>
<td>12,826</td>
<td>10,282</td>
<td>22,403</td>
<td>23,497</td>
<td>31,683</td>
</tr>
<tr>
<td>Surgical Cases</td>
<td>20,465</td>
<td>20,420</td>
<td>21,368</td>
<td>23,066</td>
<td>25,330</td>
</tr>
<tr>
<td>New Radiation Oncology Patients</td>
<td>4,031</td>
<td>4,268</td>
<td>4,408</td>
<td>4,831</td>
<td>5,283</td>
</tr>
<tr>
<td>New Radiation Oncology Patients Starting Treatment: Manhattan</td>
<td>2,653</td>
<td>2,714</td>
<td>3,017</td>
<td>3,399</td>
<td>4,510</td>
</tr>
<tr>
<td>Diagnostic and Interventional Radiology Procedures</td>
<td>416,360</td>
<td>435,501</td>
<td>466,848</td>
<td>498,372</td>
<td>543,322</td>
</tr>
<tr>
<td>Clinical Investigation Protocols (2)</td>
<td>735</td>
<td>776</td>
<td>879</td>
<td>1,072</td>
<td>1,133</td>
</tr>
</tbody>
</table>

(1) Based on adjusted bed count
(2) Excludes studies closed to accrual
STAFF

<table>
<thead>
<tr>
<th>Category</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sloan Kettering Institute Members</td>
<td>143</td>
<td>140</td>
<td>140</td>
<td>131</td>
<td>133</td>
</tr>
<tr>
<td>Hospital Attending Staff</td>
<td>935</td>
<td>995</td>
<td>1,033</td>
<td>1,091</td>
<td>1,148</td>
</tr>
<tr>
<td>Registered Nurses</td>
<td>2,221</td>
<td>2,373</td>
<td>2,605</td>
<td>2,864</td>
<td>3,721</td>
</tr>
<tr>
<td>Administrative and Support Staff</td>
<td>9,707</td>
<td>10,223</td>
<td>10,965</td>
<td>11,638</td>
<td>12,325</td>
</tr>
<tr>
<td>Total Staff (1)</td>
<td>12,975</td>
<td>13,699</td>
<td>14,711</td>
<td>15,697</td>
<td>17,301</td>
</tr>
<tr>
<td>Volunteers</td>
<td>1,004</td>
<td>902</td>
<td>967</td>
<td>943</td>
<td>1,019</td>
</tr>
</tbody>
</table>

EDUCATION

<table>
<thead>
<tr>
<th>Category</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents and Clinical Fellows: Positions</td>
<td>464</td>
<td>465</td>
<td>464</td>
<td>468</td>
<td>468</td>
</tr>
<tr>
<td>Residents and Clinical Fellows: Annual Total</td>
<td>1,691</td>
<td>1,674</td>
<td>1,723</td>
<td>1,734</td>
<td>1,749</td>
</tr>
<tr>
<td>Research Fellows</td>
<td>323</td>
<td>351</td>
<td>355</td>
<td>344</td>
<td>346</td>
</tr>
<tr>
<td>Research Scholars</td>
<td>133</td>
<td>110</td>
<td>98</td>
<td>92</td>
<td>120</td>
</tr>
<tr>
<td>Research Associates</td>
<td>91</td>
<td>95</td>
<td>110</td>
<td>112</td>
<td>115</td>
</tr>
<tr>
<td>Graduate Research Assistants</td>
<td>41</td>
<td>47</td>
<td>47</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>PhD Candidates</td>
<td>227</td>
<td>239</td>
<td>265</td>
<td>292</td>
<td>278</td>
</tr>
<tr>
<td>MD/PhD Candidates</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Registrants in CME Programs</td>
<td>3,681</td>
<td>5,614</td>
<td>3,581</td>
<td>4,724</td>
<td>6,098</td>
</tr>
<tr>
<td>Medical Observers</td>
<td>630</td>
<td>579</td>
<td>574</td>
<td>563</td>
<td>511</td>
</tr>
<tr>
<td>Medical Students</td>
<td>392</td>
<td>505</td>
<td>548</td>
<td>569</td>
<td>577</td>
</tr>
<tr>
<td>Nursing Students</td>
<td>179</td>
<td>257</td>
<td>312</td>
<td>351</td>
<td>355</td>
</tr>
<tr>
<td>Social Work Students</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Radiation Oncology Technology Students</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Physical Therapy Students</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Occupational Therapy Students</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Medicine Students</td>
<td>9</td>
<td>9</td>
<td>18</td>
<td>20</td>
<td>13</td>
</tr>
</tbody>
</table>

(1) In 2017, 26 staff members held appointments in both the institute and the hospital.
FINANCIAL SUMMARY

2017 TOTAL OPERATING REVENUE (in thousands)

$4,452,793

Patient Care Revenue $3,580,449

Grants and Contracts $296,493

Contributions and Pledge Payments $278,643

Royalty and Other Income $297,208

2017 TOTAL OPERATING EXPENSES (in thousands)

$4,213,028

Compensation and Fringe Benefits $2,335,132

Purchased Supplies and Services $1,491,154

Depreciation and Amortizations $287,145

Other Expenses $99,597
Operating Revenue (in thousands)

<table>
<thead>
<tr>
<th>Description</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care Revenue</td>
<td>$2,367,731</td>
<td>$2,560,457</td>
<td>$2,809,813</td>
<td>$3,094,461</td>
<td>$3,580,449</td>
</tr>
<tr>
<td>Grants and Contracts</td>
<td>202,061</td>
<td>229,562</td>
<td>234,402</td>
<td>257,893</td>
<td>296,493</td>
</tr>
<tr>
<td>Contributions</td>
<td>138,343</td>
<td>168,797</td>
<td>137,538</td>
<td>161,245</td>
<td>191,843</td>
</tr>
<tr>
<td>Net Assets Released from Restrictions — Pledge Payments</td>
<td>79,199</td>
<td>103,112</td>
<td>129,528</td>
<td>86,850</td>
<td>86,800</td>
</tr>
<tr>
<td>Royalty and Other Income</td>
<td>208,703</td>
<td>241,238</td>
<td>273,556</td>
<td>242,934</td>
<td>159,458</td>
</tr>
<tr>
<td>Unrestricted Investment Return Allocated to Operations</td>
<td>82,028</td>
<td>87,917</td>
<td>90,648</td>
<td>136,979</td>
<td>137,750</td>
</tr>
<tr>
<td>Total Operating Revenue</td>
<td>$3,078,065</td>
<td>$3,391,083</td>
<td>$3,675,485</td>
<td>$3,980,362</td>
<td>$4,452,793</td>
</tr>
</tbody>
</table>

Operating Expenses

<table>
<thead>
<tr>
<th>Description</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensation and Fringe Benefits</td>
<td>$1,689,501</td>
<td>$1,782,477</td>
<td>$1,987,388</td>
<td>$2,131,070</td>
<td>$2,335,132</td>
</tr>
<tr>
<td>Purchased Supplies and Services</td>
<td>924,691</td>
<td>1,062,603</td>
<td>1,172,467</td>
<td>1,311,764</td>
<td>1,491,154</td>
</tr>
<tr>
<td>Provision for Bad Debts and Assessments</td>
<td>19,969</td>
<td>35,859</td>
<td>64,194</td>
<td>35,003</td>
<td>54,254</td>
</tr>
<tr>
<td>Depreciation and Amortizations</td>
<td>210,373</td>
<td>217,342</td>
<td>232,866</td>
<td>263,964</td>
<td>287,145</td>
</tr>
<tr>
<td>Interest Expense</td>
<td>55,039</td>
<td>50,147</td>
<td>49,401</td>
<td>48,724</td>
<td>45,343</td>
</tr>
<tr>
<td>Total Operating Expenses</td>
<td>$2,899,573</td>
<td>$3,148,428</td>
<td>$3,506,316</td>
<td>$3,790,525</td>
<td>$4,213,028</td>
</tr>
</tbody>
</table>

Income from Operations

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income from Operations</td>
<td>$178,492</td>
<td>$242,655</td>
<td>$169,169</td>
<td>$189,837</td>
<td>$239,765</td>
</tr>
</tbody>
</table>

Philanthropic Revenue

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philanthropic Revenue</td>
<td>$380,500</td>
<td>$376,533</td>
<td>$276,747</td>
<td>$317,270</td>
<td>$318,386</td>
</tr>
</tbody>
</table>

Capital Spending

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Spending</td>
<td>$315,282</td>
<td>$473,859</td>
<td>$710,873</td>
<td>$634,134</td>
<td>$737,965</td>
</tr>
</tbody>
</table>

Balance Sheet Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>$8,481,418</td>
<td>$8,963,268</td>
<td>$9,592,021</td>
<td>$9,891,492</td>
<td>$10,636,012</td>
</tr>
<tr>
<td>Liabilities</td>
<td>$3,337,444</td>
<td>$3,596,860</td>
<td>$4,058,058</td>
<td>$4,160,515</td>
<td>$4,530,909</td>
</tr>
<tr>
<td>Net Assets</td>
<td>$5,143,974</td>
<td>$5,366,408</td>
<td>$5,533,963</td>
<td>$5,730,977</td>
<td>$6,105,103</td>
</tr>
</tbody>
</table>
BOARDS OF OVERSEERS AND MANAGERS

As of March 31, 2018

<table>
<thead>
<tr>
<th>Douglas A. Warner III</th>
<th>James D. Robinson III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Honorary Chair</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marie-Josée Kravis</th>
<th>Louis V. Gerstner, Jr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice Chair of Boards and Chair, Board of Managers, Sloan Kettering Institute</td>
<td>Honorary Chair of the Board, Sloan Kettering Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scott M. Stuart</th>
<th>Richard I. Beattie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice Chair of Boards and Chair, Board of Managers, Memorial Hospital</td>
<td>Honorary Chair of the Board, Memorial Hospital</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clifton S. Robbins</th>
<th>Norman C. Selby</th>
<th>Craig B. Thompson, MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treasurer</td>
<td>Secretary</td>
<td>President and Chief Executive Officer</td>
</tr>
</tbody>
</table>

- Dominic Barton
- Richard I. Beattie
- Aneel Bhusri
- Mrs. John J. Byrne
- Ian M. Cook
- Stanley F. Druckenmiller
- Anthony B. Evnin, PhD
- Roger W. Ferguson, Jr.
- Henry A. Fernandez
- Steve Forbes
- William E. Ford
- Richard N. Foster, PhD
- Stephen Friedman
- Ellen V. Futter
- Philip H. Geier, Jr.
- Louis V. Gerstner, Jr.
- Jonathan N. Grayer
- + James Gregory
- Jane D. Hartley
- Benjamin W. Heineman, Jr.
- William Helman
- David H. Koch
- Marie-Josée Kravis
- Donald B. Marron
- Kathryn Martin
- Jamie C. Nicholls
- James G. Niven
- Hutham S. Olayan
- Bruce C. Ratner
- Clifton S. Robbins
- Alexander T. Robertson
- James D. Robinson III
- Virginia M. Rometty
- David M. Rubenstein
- Lewis A. Sanders
- Alan D. Schnitzer
- Norman C. Selby
- Stephen C. Sherrill
- Peter J. Solomon
- John R. Strangfeld
- Scott M. Stuart
- Craig B. Thompson, MD

- Lucy R. Waletzky, MD
- Douglas A. Warner III
- Peter A. Weinberg
- Jon Winkelried
- Deborah C. Wright
- Mortimer B. Zuckerman

* ex officio

Board of Overseers Emeriti

- Peter O. Crisp
- Richard M. Furlaud
- James W. Kinnear
- Paul A. Marks, MD
- Elizabeth J. McCormack, PhD
- Benjamin M. Rosen
- Fayez S. Sarofim
- Mrs. Arnold Schwartz

Board of Scientific Consultants

- Frederick R. Applebaum, MD
- Richard Axel, MD
- Philip A. Cole, MD, PhD
- Nancy E. Davidson, MD
- Titia de Lange, PhD
- James R. Downing, MD
- Levi A. Garraway, MD, PhD
- Maura L. Gillison, MD, PhD
- Joseph L. Goldstein, MD
- Gregory Hannon, PhD
- Caryn Lerman, PhD
- Arthur Levinson, PhD
- Richard Lifton, MD, PhD
- Paul Nurse, PhD
- Stanley R. Riddell, MD
- James E. Rothman, PhD
- William R. Sellers, MD
- Gregory L. Verdine, PhD
- Ralph Weissleder, MD, PhD
- Irving L. Weissman, MD
LEADERSHIP
MEMORIAL SLOAN KETTERING CANCER CENTER
AS OF MARCH 31, 2018

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAIG B. THOMPSON, MD</td>
<td>President and Chief Executive Officer</td>
</tr>
<tr>
<td>KATHRYN MARTIN</td>
<td>Chief Operating Officer</td>
</tr>
<tr>
<td>JOSÉ BASELGA, MD, PhD</td>
<td>Physician-in-Chief and Chief Medical Officer</td>
</tr>
<tr>
<td>JOAN MASSAGUÉ, PhD</td>
<td>Director, Sloan Kettering Institute</td>
</tr>
<tr>
<td>ELIZABETH N. MCCORMICK, MSN, RN, CENP</td>
<td>Senior Vice President and Chief Nursing Officer</td>
</tr>
<tr>
<td>MURRAY F. BRENNAN, MD</td>
<td>Vice President, International Programs and Director, International Center</td>
</tr>
<tr>
<td>PAUL SABBATINI, MD</td>
<td>Deputy Physician-in-Chief, Clinical Research</td>
</tr>
<tr>
<td>PETER STETSON, MD, MA</td>
<td>Deputy Physician-in-Chief and Chief Health Informatics Officer</td>
</tr>
<tr>
<td>LARRY NORTON, MD</td>
<td>Senior Vice President, Office of the President and Medical Director, Evelyn H. Lauder Breast Center</td>
</tr>
<tr>
<td>LEE ERICKSON, MD</td>
<td>Deputy Physician-in-Chief, Clinical Operations</td>
</tr>
<tr>
<td>KENT SEPKOWITZ, MD</td>
<td>Deputy Physician-in-Chief, Quality and Safety</td>
</tr>
<tr>
<td>DEBRA BERNS</td>
<td>Senior Vice President and Chief Risk Officer</td>
</tr>
<tr>
<td>KERRY BESSEY</td>
<td>Senior Vice President and Chief Human Resources Officer</td>
</tr>
<tr>
<td>MARGARET M. BURKE</td>
<td>Senior Vice President, Ambulatory Care and Hospital Operations</td>
</tr>
<tr>
<td>ERIC COTTINGTON, PhD</td>
<td>Senior Vice President, Research and Technology Management</td>
</tr>
<tr>
<td>NED GROVES</td>
<td>Executive Vice President and Hospital Administrator</td>
</tr>
<tr>
<td>MICHAEL P. GUTNICK</td>
<td>Executive Vice President and Chief Financial Officer</td>
</tr>
<tr>
<td>JAMES T. HARDEN</td>
<td>Senior Vice President, Strategic Partnerships</td>
</tr>
<tr>
<td>ELIZABETH A. HERBERT</td>
<td>Senior Vice President, Hospital Administration</td>
</tr>
<tr>
<td>JASON KLEIN</td>
<td>Senior Vice President and Chief Investment Officer</td>
</tr>
<tr>
<td>RUTH LANDE</td>
<td>Senior Vice President, Patient Revenues</td>
</tr>
<tr>
<td>CAROLYN B. LEVINE, ESQ.</td>
<td>Deputy General Counsel and Corporate Secretary</td>
</tr>
<tr>
<td>PAUL A. MARKS, MD</td>
<td>President Emeritus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>JORGE LOPEZ, JR., ESQ.</td>
<td>Executive Vice President and Chief Legal Officer</td>
</tr>
<tr>
<td>EDWARD J. MAHONEY</td>
<td>Senior Vice President, Facilities Management and Construction</td>
</tr>
<tr>
<td>CYNTHIA MCCOLLUM</td>
<td>Senior Vice President, Hospital Administration</td>
</tr>
<tr>
<td>ANNE MCSWEENEY</td>
<td>Special Advisor to the President, Development</td>
</tr>
<tr>
<td>AVICE A. MEEHAN</td>
<td>Senior Vice President and Chief Communications Officer</td>
</tr>
<tr>
<td>RICHARD K. NAUM</td>
<td>Senior Vice President, Development</td>
</tr>
<tr>
<td>WENDY PERCHICK</td>
<td>Senior Vice President, Strategic Planning and Innovation</td>
</tr>
<tr>
<td>PATRICIA C. SKARULIS</td>
<td>Senior Vice President and Chief Information Officer</td>
</tr>
<tr>
<td>CAROL A. SLATTERY</td>
<td>Vice President, Sloan Kettering Institute Administration</td>
</tr>
<tr>
<td>MARK SVENNINGSON</td>
<td>Senior Vice President, Finance and Controller</td>
</tr>
</tbody>
</table>
LOUIS V. GERSTNER, JR. GRADUATE SCHOOL OF BIOMEDICAL SCIENCES
MEMORIAL SLOAN KETTERING CANCER CENTER

AS OF MARCH 31, 2018

<table>
<thead>
<tr>
<th>LOUIS V. GERSTNER, JR.</th>
<th>CRAIG B. THOMPSON, MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman of the Board</td>
<td>President</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JOAN MASSAGUÉ, PhD</th>
<th>KENNETH J. MARIANS, PhD</th>
<th>LINDA D. BURNLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provost</td>
<td>Dean</td>
<td>Associate Dean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KATHRYN MARTIN</th>
<th>MARK SVENNINGSON</th>
<th>CAROLYN B. LEVINE, ESQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treasurer</td>
<td>Assistant Treasurer</td>
<td>Secretary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRUSTEES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard I. Beattie</td>
</tr>
<tr>
<td>Ellen V. Futter</td>
</tr>
<tr>
<td>Louis V. Gerstner, Jr.</td>
</tr>
<tr>
<td>David H. Koch</td>
</tr>
<tr>
<td>Marie-Josée Kravis</td>
</tr>
<tr>
<td>Peter J. Solomon</td>
</tr>
<tr>
<td>Craig B. Thompson, MD</td>
</tr>
<tr>
<td>Douglas A. Warner III</td>
</tr>
</tbody>
</table>

SLOAN KETTERING DIVISION
WEILL CORNELL GRADUATE SCHOOL OF MEDICAL SCIENCES

AS OF MARCH 31, 2018

<table>
<thead>
<tr>
<th>JOAN MASSAGUÉ, PhD</th>
<th>USHMA NEILL, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Vice President, Scientific Education and Training</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRADUATE PROGRAM CO-CHAIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIKOLA P. PAVLETICH, PhD</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology Unit</td>
</tr>
<tr>
<td>ANDREW KOFF, PhD</td>
</tr>
<tr>
<td>Molecular Biology Unit</td>
</tr>
<tr>
<td>MARILYN D. RESH, PhD</td>
</tr>
<tr>
<td>Cell and Developmental Biology Unit</td>
</tr>
<tr>
<td>DAVID A. SCHEINBERG, MD, PhD</td>
</tr>
<tr>
<td>Pharmacology Unit</td>
</tr>
<tr>
<td>ALEXANDER Y. RUDENSKY, PhD</td>
</tr>
<tr>
<td>Immunology and Microbial Pathogenesis Unit</td>
</tr>
</tbody>
</table>
MEMORIAL SLOAN KETTERING DEVELOPMENT: THE MOMENTUM CONTINUES

MSK’s fundraising operation maintained strong forward momentum during the course of 2017, building on the many achievements of the Campaign for Memorial Sloan Kettering. The Campaign, which officially concluded on December 31, 2016, compiled a record of historic success under the leadership of Co-Chairs Douglas A. Warner III and Louis V. Gerstner, Jr., along with MSK President and CEO Craig B. Thompson.

New gifts and pledges to MSK for 2017 totaled $344.5 million, a 12.1 percent increase over the year before. Of that amount, $330.3 million were cash gifts. Dedicated benefactors at all levels contributed to this impressive success. Of the many gifts received, the following stand out for the impact they are having on the institution:

- Alan and Sandra Gerry’s commitment of $15 million to create the Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, which brings their total support for this vital area of research to $25 million
- A pledge of $12.5 million from Board member Stephen Friedman and his wife, Barbara, through their foundation to create the Friedman Family Foundation Functional Genomics Initiative
- The Olayan Group’s commitment of $10 million to establish a precision pediatrics cancer medicine program
- A $10 million pledge from the Warren Alpert Foundation to create the Warren Alpert Center for Digital and Computational Pathology
- $7 million from the estate of Mamdouha S. Bobst, which brings the total received from Mrs. Bobst’s estate to $29 million

As in past years, MSK also benefited significantly from the energy and dedication of thousands of volunteers who took part in athletic fundraisers. Cycle for Survival, which ranks as the fastest growing athletic fundraiser in the country, attracted 31,000 participants in 16 cities across the United States and internationally, in the process raising $35 million for rare cancer research. And in November, 875 runners participated in the TCS New York City Marathon as members of Fred’s Team and raised more than $5.3 million to fund research at MSK.

Continuing at the helm of the MSK development team in 2017 were Anne M. McSweeney, Special Advisor to the President for Development, and Senior Vice President Richard K. Naum, who over a span of years built MSK’s fundraising office into one of the best in the country. The operation is well positioned to support the continued growth in strength and stature of all three aspects of the institution’s mission as MSK leads the way into a new era in cancer medicine.
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

$200,000,000 AND ABOVE
David H. Koch

$100,000,000–$199,999,999
The Estate of Geoffrey Beene
Mr. and Mrs. William H. Goodwin, Jr., and the Commonwealth Foundation for Cancer Research
Henry and Marie-Josée Kravis
The Starr Foundation
Mortimer B. Zuckerman

$10,000,000–$19,999,999
Anonymous
Allan H. Selig
The Society of MSK
The Thompson Family Foundation

$10,000,000–$19,999,999
Anonymous
Trust of Burton Abrams
The Warren Alpert Foundation
Bristol-Myers Squibb Company
The Kristen Ann Carr Fund
Mr. and Mrs. Raymond T. Dali
Shelby Cullom Davis Charitable Fund
The Stephen and Barbara Friedman Foundation
The Arnold and Arlene Goldstein Family Foundation
The Donald B. and Catherine C. Marron Foundation
The Robert and Kate Niehaus Foundation
The Olayan Group
Mr. and Mrs. Milton Petrie
Laurence S. Rockefeller
Laurence S. Rockefeller Fund
Donna and Benjamin Rosen
Robert F. X. Eisemann
The Carolien Goldstein Foundation and Laura Baudo Sillerman through their Tomorrow Foundation
The Simons Foundation
The Society Boutique — MSK Thrift Shop
The Society of MSK Special Projects Committee
Stop & Shop Supermarket Company, Inc.
Mr. and Mrs. Douglas A. Warner III
Estate of Kathryn D. Wriston
Dirk and Natasha Ziff

$2,500,000–$4,999,999
Anonymous
Mr. and Mrs. Bruce Adam
AKTIV Against Cancer
Alex’s Lemonade Stand Foundation
The Allbritton Foundation
Bethany Allen
Stephen and Madeline Anbinder
John M. Angelo and Judy Hart Angelo
The Laura and John Arnold Foundation
The Arthur & Rochelle Belfer Foundation
Estate of Mary Ann Benjamin
Estate of Lillian B. Berkman
Mr. and Mrs. Marvin R. Berlin Family
The James E. and Diane W. Burke Foundation, Inc.
Burroughs Wellcome Fund
Estate of Nizza Burstyn
Mrs. D. Wayne Calloway
Iris and B. Gerald Cantor Foundation
Estate of Marion B. Carstairs

Damon Runyon Cancer Research Foundation
Lewis A. Sanders
Estate of Joseph J. Santry
Nassif Sawiris
Richard Serra and Clara Weiergraf-Serra
The Peter Jay Sharp Foundation
Mr. and Mrs. Richard Siegal
Estate of Margaret McCormack Sokol
The William and Lynda Steere Foundation
Scott M. and Lisa G. Stuart
Swim Across America, Inc.
The Three Little Pigs Foundation
UBS
John L. Vogelstein
Sue and Edgar Wachenheim III
The Weinberg Family Foundations
Michael A. and Zena Wiener

The Atlantic Philanthropies
The Elmer and Mamdouha Bobst Foundation
The Breast Cancer Research Foundation
Jack and Dorothy Byrne Foundation
Alan and Sandra Gerry
The Louis V. Gerstner, Jr. Foundation, Inc.
Steven A. Greenberg Charitable Trust
The Sidney Kimmel Foundation
Parker Institute for Cancer Immunotherapy
Prostate Cancer Foundation
David M. Rubenstein
Stand Up To Cancer
The Tow Foundation

The Estate of Geoffrey Beene
Mr. and Mrs. William H. Goodwin, Jr., and the Commonwealth Foundation for Cancer Research
Henry and Marie-Josée Kravis
The Starr Foundation
Mortimer B. Zuckerman
Stanley F. and Fiona Druckenmiller
The Leonard and Evelyn Lauder Foundation
Virginia and D. K. Ludwig Fund for Cancer Research
The Starr Foundation
Mortimer B. Zuckerman

The Atlantic Philanthropies
The Elmer and Mamdouha Bobst Foundation
The Breast Cancer Research Foundation
Jack and Dorothy Byrne Foundation
Alan and Sandra Gerry
The Louis V. Gerstner, Jr. Foundation, Inc.
Steven A. Greenberg Charitable Trust
The Sidney Kimmel Foundation
Parker Institute for Cancer Immunotherapy
Prostate Cancer Foundation
David M. Rubenstein
Stand Up To Cancer
The Tow Foundation
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

$1,000,000–$2,499,999
Anonymous
Estate of Marguerite Abrams
Mr. and Mrs. Andrew B. Abramson
Mr. and Mrs. Frederick R. Adler
Mr. and Mrs. Fred M. Alger III
Estate of Billie H. Allen
Elisabeth and Philip Allen
The Rita Allen Foundation
Allen & Company
Alliance for Cancer Gene Therapy
Estate of Roone P. Arledge
Arms Wide Open Childhood Cancer Foundation
The Award of Courage Corporation
Roger and Lori Bahnik
Estate of Eileen W. Bamberger
The Batishwa Fellowship
Trust of Edgar D. Baumgartner
Estate of Leola E. Bell
Mr. and Mrs. Daniel C. Benton
Estate of Irma Berg
Allen and Joan Bielder
The Anita and Leonard Boxer Family Foundation
Breast Cancer Alliance, Inc.
Mr. and Mrs. Viatcheslav I. Brecht
Peter and Linda Bren
The Andrea and Charles Bronfman Philanthropies, Inc.
Estate of Helen Brown
Trust of Emil A. Buelens
Tory Burch
Estate of Diane B. Burkhart
The Burnett Foundation
Mr. and Mrs. Donald G. Calder Cancer Research Institute
Robert B. Catell
John and Michael Chandris Cancer Research Institute
The Jerome and Anne C. Fisher Charitable Foundation
Flight Attendant Medical Research Institute
The Stephanie and Lawrence Flinn, Jr. Charitable Trust
The Raymond and Maria Floyd Family Foundation
Estate of Harry N. Forman
Terry Fox Run for Cancer Research (NYC)
Lorraine Friedman

James D. Carter
Estate of Anne M. Cassidy
Estate of Franklin Chenenky
Pei-Yuan Chia and the Chia Family Foundation
Charles Payson Coleman
Estate of Gloria S. Confort
Crimson Lion/Lavine Family Foundation
The Irma L. and Abram S. Croll Charitable Trust
Cure Breast Cancer Foundation, Inc.
The D10
The Doris Duke Charitable Foundation
The Mitzi and Warren Eisenberg Foundation/The Susan and Leonard Feinstein Foundation
Farmer Family Foundation
Trust of Harold Farrington
Estate of Elizabeth M. Freilinghuysen
Trust of Mary Frohsinn
Estate of Jeanette R. Fulham
Estate of Francis Gonzalez
Estate of Jeanette R. Fulham
The Gray Foundation–Basser Initiative
Jonathan N. Grayer
Hazen Polsky Foundation, Inc.
William Randolph Hearst Foundations
Mr. and Mrs. Benjamin W. Heineman, Jr.
The Charles and Marjorie Holloway Foundation, Inc.
Trust of John S. Holmes
Estate of Irma A. Howard
William Lawrence & Blanche Hughes Foundation
Humans of New York
W. M. Keck Foundation
Estate of Martin C. Kessler
Kids Walk for Kids with Cancer
Susan G. Komen Foundation
Trust of Grace Fay Lamb
Myra Nelson Garrison
Livestrong Foundation
The Lymphoma Foundation
Trust of Philip R. Mallory
The Maloris Foundation
The T. J. Martell Foundation for Leukemia, Cancer, and AIDS Research
The G. Harold & Leila Mathers Foundation
Estate of Charles J. Mauro
The Abby R. Mauzé Charitable Trust
Estate of Florence Miner
Gloria Miner
The New York Community Trust
The Samuel I. Newhouse Foundation
Stavros S. Niarchos Foundation
Nonna’s Garden Foundation
Ronald O. Perelman
The Pershing Square Foundation
Myrna and Bernard Posner
Estate of Catherine R. Price
Laura and Christopher A. Pucillo
Mrs. Katharine J. Rayner
Trust of Allan J. Riley
The Jim and Linda Robinson Foundation
Jack Rudin
The Louis & Rachel Rudin Foundation
The May & Samuel Rudin Family Foundation
Estate of Marilyn L. Schafer
Estate of Grace A. Shapero
Dr. David E. and Beth Kobliner Shaw
Mr. and Mrs. H. Virgil Sherrill
The Joachim Silbermann Family Foundation
Paul E. Singer
Joan and Joel Smilow
The Sohn Conference Foundation
Susan and Peter Solomon Family Foundation
The Sontag Foundation
Sportsmen for Charity
Trust of Marie Stephenson
George Strawbridge, Jr.
The Margaret Dorrance Strawbridge Foundation of Pennsylvania I
The Joseph and Arlene Taub Foundation
Margaretta J. Taylor
Estate of Richmond E. Thompson
Trust of Jane Toplitt
TOSA Foundation
The V Foundation for Cancer Research
Trust of Bessie Weintraub
Trust of James J. Corbalis, Jr.
Cordeiro Family Foundation
Sharon Levine Corzine
Trust of Caroline S. Coulton
The Countess Moira Foundation
Creative Bath Products, Inc.
Mr. and Mrs. Peter O. Crisp
CureSearch for Children’s Cancer
Estate of Helen M. Curry
Trust of Margaret E. Dahm
John and Georgia DallePezze
Dennis D. Dammerman
The Dana Foundation
Mr. and Mrs. Marvin H. Davidson
Trust of Myra Davis
Estate of Bernard S. Davison
Christina and Emmanuel Di Donna
Estate of Charles E. Dillman
James and Judith K. Dimon
Gloria DiPietro-Cooper
Trust of James Douglas
Michael Douglas and Catherine Zeta-Jones
Trust of Nancy K. Dunn
Trust of Phyllis K. Dunn
Gail and Richard Elden
The Ellison Medical Foundation
The Emerald Foundation
Mr. and Mrs. Israel Englander Entertainment Industry Foundation
Mr. and Mrs. David Epstein
Equinox Holdings, Inc.
Estate of Selma Ettenberg
The Eunice Foundation
Edward P. Evans Foundation
Estate of Harry Fagen
Fayez Sarofim & Co.
The John K. Figge Family Foundation
Estate of Barbara D. Finberg
First Quality Enterprises, Inc.
The Jerome and Anne C. Fisher Charitable Foundation
Flight Attendant Medical Research Institute
The Stephanie and Lawrence Flinn, Jr. Charitable Trust
The Raymond and Maria Floyd Family Foundation
Estate of Harry N. Forman
Terry Fox Run for Cancer Research (NYC)
Lorraine Friedman
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Trust of Oscar H. Friedman
Friezo Family Foundation
Fund for Ophthalmic Knowledge
Estate of Frank H. Gabriel
Gabrielle’s Angel Foundation
Sara Gadd
Estate of Thomas Gardiner
Trust of Virginia L. Garrison
The Gateway for Cancer Research
Trust of Florence K. Geffen
The Lawrence M. Gelb Foundation, Inc.
Genentech
General Electric Company
Eileen Genet Fund for Ovarian Cancer Research and Prevention
Trust of Josephine A. Gilmore
Estate of Thelma Gish
GIST Cancer Research Fund
Estate of Anna H. Gleason
Miriam and Alan Goldberg
Gary Goldbloom
The Joyce & Irving Goldman Family Foundation
The Horace W. Goldsmith Foundation
Golfers Against Cancer Foundation
The Gordon Fund
Estate of Andrew S. Gordon
Trust of Jane H. Gordon
Grass Family Foundation
The Marion and Louis Grossman Foundation
Mr. and Mrs. Robert Grossman
Trust of Helen Guerin
Kate Medina Guthart and Leo A. Guthart
The Marc Haas Foundation
Hackers for Hope
Mr. and Mrs. James J. Hagan
Estate of Joseph M. Hand
Mr. and Mrs. John J. Hannan
Estate of Margaret H. Hanson
Stephen P. Hanson
Jamie and Jeffrey Harris
Glady’s and Roland Harriman Foundation
Hassenfeld Family
The Heckscher Foundation for Children
Trust of Gilbert Helman
Estate of Marie B. Hilliard
The Y. C. Ho/Helen and Michael Chiang Foundation
Estate of Brian W. Holman
Estate of Harriet Huber
The Howard Hughes Medical Institute
Estate of Dorris J. Hutchison
Leslie Hutchison and Virginia Shaw
Hyundai Hope on Wheels
IBM Corporation
Inspire 2 Live Foundation
Barbara and Tom Israel
Trust of Harry C. Jaecker, Jr.
The Rona Jaffe Foundation
JHSF NY, Inc./GEMA Investments/Instituto Jose Auriemo
Estate of Clarence W. Johnson
Estate of Wilda Johnson
J. P. Morgan Chase
The JPB Foundation
Trust of Marion Kahn
Estate of Pearl M. Kamer-Bloomfield
Katzman Family Foundation
Brian & Joelle Kelly Family Foundation
The Brian Kennedy Trust
Estate of Mary B. Ketcham
Layla and Ed Khalily
Estate of John W. Knox
Mr. and Mrs. Matania Kochavi
Estate of Rosemarie Kruilsh
The Thomas G. Labrecque Foundation
Estate of Emma Landau
Philippe Laub
Lebara Foundation
Gerald Leigh Charitable Trust
Estate of Wilhelmina LeJeune
The Lerner Foundation
Estate of Ada Leverthal
Estate of Harold F. Levinson
Leon Levy Foundation
The LisaBeth Foundation
The Litwin Foundation
Harry J. Lloyd Charitable Trust
Carol and Michael Lowenstein
Robert S. Ludwig and Gwenneth E. Rankin
Lymphoma Research Foundation
Mr. and Mrs. J. Randall MacDonald
Mr. and Mrs. Joel Mallah
The Lois H. Mann Charitable Foundation
Margaux’s Miracle Foundation
Mrs. Joseph L. Martino
Mrs. William L. Matheson
Nancy and Paul McCartney
Mr. and Mrs. Thomas E. McInerney
Estate of Donald G. McKeon
Estate of Myra L. McKolic
Merrill Lynch & Co. Foundation, Inc.
Fred and Marie-Noelle Meyer
Estate of Wilma S. Mills
Jim and Mary Jane Milton
Julie and Edward J. Minskoff
Estate of Robert C. Mitchell
Sam Nymayneh
Trust of Douglas C. Mohl
The Ambrose Monell Foundation
Tom and Janet Montag
Estate of Warren A. Montel
Morgan Stanley
The William T. Morris Foundation
Mr. and Mrs. Charles H. Mott
Trust of Anna V. Muller
Estate of Elaine Muller
Multiple Myeloma Research Foundation
Mushett Family Foundation, Inc.
Trust of Saul Nathansohn
The National Brain Tumor Society
Needles’ Family Charitable Lead Trust
The New York Yankees Foundation
George L. Ohrstrom, Jr. Foundation
William C. and Joyce C. O’Neil Charitable Trust
Estate of Abbey O’Neil
The Ovarian Cancer Research Fund
Pancreatic Cancer Action Network
Estate of Jimmie Christine Parker
Francine Parnes
Party City Corporation
Pediatric Cancer Foundation
Estate of Frederick Pelda
John and Francie Pepper
Trust of Elizabeth L. Perkins
Perry Capital LLC
Pfizer Inc.
Estate of Jean D. Pitcher
Estate of Jeanne Poli
Mrs. Jenice Pulver
Sara and Iser Rabinovitz
RBC Capital Markets
Lyne & Andrew Redleaf Foundation
Revol
Charles H. Revson Foundation
RJR Oncodermatology Fund
Estate of Edith Roberts
Estate of Josephine T. Robertson
Estate of Anne Morales Rodgers
Mary Jo and Brian Rogers
The Felix and Elizabeth Rohatyn Foundation
The Laura Rosenberg Foundation, Inc.
Estate of Lillian E. Rosenmerkel
Juliet Rosenthal Foundation
The Peter M. Sacerdote Foundation
The Raymond & Beverly Sackler Fund for the Arts and Sciences
Wendy and Neil Sandler
Estate of Margaret W. Schafer
The Richard H. Schneider Family — Tami, Brady and Casey Schneider
Estate of Catherine M. Schooley
The Beatrice & Samuel A. Seaver Foundation
Mr. and Mrs. Norman C. Selby
The Shen Family Foundation
Trust of Henry H. Shepard
Trust of William and Isabelle Sherlock
Mr. and Mrs. Stephen C. Sherrill
Alfred J. and Stephanie Shuman through the Windmill Lane Foundation
Mr. and Mrs. Herbert J. Siegel
M. Steven and S. David Silbermann
The Rosanne H. Silbermann Foundation
Mary Ann and Arthur M. Siskind through the Siskind Foundation
Family Sarcoma Fund
The Skirball Foundation
Estate of Ann Smith
Trust of William Kirkland Smith
$500,000–$999,999
Anonymous
Agilent Technologies, Inc.
American Brain Tumor Association
The American Italian Cancer Foundation
American Skin Association
Estate of Hugo Andriesse
Roland Arthur
Aventis Pharmaceuticals, Inc.
Gail L. Baird Foundation
Mr. and Mrs. Robert C. Baker Family Foundation
The Bank of America Charitable Gift Fund
Trust of Barbara G. Bargar
Estate of Doris A. Baumann
Richard J. Beattie
The Arnold and Mabel Beckman Foundation
Trust of William T. Benitt
The Besen Family
The Bie Family Foundation
Estate of Dan Biele
Jane and Bill Bird
Estate of Philip Bisaccio
Trust of Susan E. Black
Mr. and Mrs. John N. Blackman, Jr.
Betty, James, and Thomas Blake (The Thomas Blake, Sr. Memorial Fund)
The Blue Dot Foundation
Antoinette E. & Herman Boehm Foundation
Trust of Ethelviva Boehme
Estate of William Boehme
Mr. and Mrs. David Boies
Estate of Marcel S. Bollag
Trust of Frederick W. Bonacker, Jr.
The Bondi Foundation
Estate of Adele Bozio
Trust of Nancy J. Bradford
Terri Brodeur Breast Cancer Foundation
Trust of Dorothy Fielder Brown
The Honorable Tina Brozman Foundation
Mrs. Edwin M. Burke
Janet Burros Memorial Foundation
Hilary and Joseph A. Califano, Jr.
The Cancer Research Foundation of America
The Richard E. Capri Foundation on behalf of the Wolf Family
Estate of Richard B. Carman
Mr. and Mrs. Kenneth Carmel
Estate of Wesley S. Carnrick
The Tina and Richard V. Carolan Foundation
James & Patricia Cayne Charitable Trust
Trust of Betty R. Claffone
Citigroup
The Julie and Frank Cohen Foundation
Estate of Harry J. Colish
The Julien Collot Foundation, Inc.
Constant Convocation Center
The Elaine Terner Cooper Foundation
Trust of Faye Copeland
Estate of Howard Cortlies
Estate of Leonard Corso
Frederic R. Coudert Foundation
Chandler Cox Foundation
Estate of Helen M. Cramer
Mr. and Mrs. Rafic Dahan
Estate of Thomas R. Daly
Davis Charitable Foundation
Estate of Sandra Newman Dawson
The Thompson Dean Family Foundation
Estate of Carol T. Decker
The DeGroot Family Foundation
Annette and Oscar de la Renta
Frederick A. DeLuca Foundation
Dempster Charitable Trust
Deutsche Bank Securities Inc.
Elizabeth K. Dollard Charitable Trust
Estate of Ruth Drazen
The Walter S. and Lucienne B. Driskill Foundation
Estate of Louis Duenweg
Mr. and Mrs. Barclay Ehrler
Mr. and Mrs. Richard S. Emmet
Esophageal Cancer Education Foundation
Trust of Virginia J. Faber
Arthur Falcone
Estate of Katie Faisal
Estate of Beatrice Feinstein
Paul Felzen
The Fibrolamellar Cancer Foundation
Estate of Alice H. Ficht
Trust of Alice D. Fiedler
Trust of Marie Finch
The Grace J. Fippinger Foundation, Inc.
First Eagle Investment Management
Estate of Susan L. Fischer
The Michael J. Fox Foundation
Trust of Ira S. French
Trust of Dr. Benjamin T. Friedman
Trust of Edith West Friedmann
The Anna Fuller Fund
Estate of Maud Gallagher
Estate of Joseph G. Gaumont
Estate of Selma Geller
Joe Gellert
Estate of Lillian B. George
The Gerber Foundation
The Aaron and Betty Gilman Family Foundation
Estate of William J. Glasgow
Estate of Robert E. Gleason
Mr. and Mrs. Robert S. Goldberg
Alfred G. & Hope P. Goldstein Fund
Estate of Helen M. Golen
Mr. and Mrs. Sidney Goodfriend
David J. Grais and Lisa A. Cutler
Mr. and Mrs. Peter G. Grayson
Mr. and Mrs. Alan I. Greene
Trust of Phyllis A. Greene
Trust of Richard M. Greifer
Estate of Edythe Griffinger
Peter M. Guggenheimer
Mr. and Mrs. William W. Haerther, Jr.
Estate of Ethel V. Haldeman
Evelyn A. J. Hall Charitable Trust
Mr. and Mrs. Stephen L. Hammerman
Estate of Olga V. Hargis
Susanne and Shelley Harrison
Mr. and Mrs. William B. Harrison, Jr.
Jane Hope Hastings
Philanthropic Trust
Estate of Judith B. Helfant
Trust of Richard V. Henry, Jr.
Estate of Ruth H. Hewlett
Richard Hogan and Carron Sherry
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Trust of Milan M. Holdorf
Trust of H. Thomas Hollingsworth
Trust of Benjamin Holmes
Trust of Karla Homburger
Hope Funds for Cancer Research
Estate of Claire Hughes-Glasgow
Estate of Jane Hunter
The Patricia M. Hynes and Roy L. Reardon Foundation
Deanne and Arthur Indursky
Invest for Children, a Foundation of Investindustrial
Mrs. H. Anthony Itleson
Trust of Clyde H. Jacobs
Johnson & Johnson
The Robert Wood Johnson Foundation
Trust of William C. Johnston
Estate of Al Jolson
Estate of Horace A. Jones
Stephanie and Ken Karl
Trust of Norman Katz
Fritz and Adelaide Kauffmann Foundation
Mr. and Mrs. Robert B. Kay
Pamela and Dwaine Kimmet
Kinetics Foundation
Estate of Joan E. Kinley
Kavlifondet
Estate of Hazel V. Knapp
Estate of Ruth Koch
The Koodish Family Charitable Trust
Trust of Robert W. Kreger
Mr. Kenneth J. Kret
The Kronthal Family
The Lakeside Foundation
The Jacob & Valeria Langeloth Foundation
Trust of Charles T. Larus
Trust of Ethel T. Larus
Estate of Owen Laster
Eugene and Elizabeth Lavin
Lazard Capital Markets
Estate of Anne Leventon
Mr. and Mrs. Allan L. Levey
Dr. Nancy Alpern Levin
Fran and Ralph Levine
Life Raft Group
Estate of Lillian Light
Trust of Catherine M. Lincoln
Estate of Leah W. Linn
Live4Life Foundation
Trust of Martin C. and Margaret V. Lohsen
Trust of Louis J. Lombardi
Mr. and Mrs. Edward Lundy
Lung Cancer Research Foundation
LUNGevity Foundation
Estate of Evelyn P. Lyon
Earle I. Mack Foundation
Manhasset Women’s Coalition Against Breast Cancer
Estate of Lucille Knowles Freedman Mann
March of Dimes Foundation
Estate of Dana Marin
Estate of Anne Markowitz
Trust of Anthony J. Masard
Max Cure Foundation
Mr. and Mrs. Louis V. Mazzella
Estate of William J. McCann
Trust of John C. McCormick
Mr. and Mrs. Thomas R. McCullough
The James S. McDonnell Foundation
Estate of Ralph Melson
The Mesothelioma Applied Research Foundation
Melifix Foundation
The Merck Company Foundation
Estate of Ruth Vitow Messias
Trust of Russell A. Meyer
Peter Michael Foundation
The Milbank Foundation for Rehabilitation
Francois Wallace Monahan
The Norman M. Morris Foundation
Trust of Paula Moss
Muscular Dystrophy Association
Mustaches for Kids
National Childhood Cancer Foundation
Carole and Raymond Neag
S. Arthur and Dorothy Neufeld Foundation
Neuroendocrine Tumor Research Foundation
News Corporation
Occidental Petroleum Corporation
Trust of Melba M. O’Connell
The Sylvan and Ann Oestreicher Foundation
Trust of Jo Anne H. Olmsted
E. Stanley O’Neal
Estate of Beatrice P. K. Palestin
Elsa U. Pardee Foundation
The PaulieStrong Foundation
Estate of James T. Perch
The Perelman Family Foundation
The Perkin Fund
Estate of Philip W. Pfeifer
Estate of Lucie Picard
Estate of Marion M. Pincus
Alicia and Corey Pinkston
Plastic Surgery Foundation
Josephine K. Poling
Polo Ralph Lauren Corporation
Ruth Porat and Anthony Paduano
Estate of Gerald E. Proctor
Project A.L.S.
Margot Rosenberg Pulitzer Foundation
PVH Corp.
The Mitchell P. Rales Family Foundation
Recanati Foundation
John Bradbury Reed
Trust of Irene Dorothy Reel
Estate of Muriel G. Reich
James N. Rentas 5K Run/Walk
Estate of Agnes Rezler
Trust of Argyll C. Rice
Estate of Richard A. Riecker
Louise and Frank Ring
The Andréa Rizzo Dance Therapy Fund
Rock Out for the Cure
Drs. Helena and David Rodbard
Alexander J. Roepers
Shafi Roepers
Trust of William C. Rogers
Mr. and Mrs. Stephen J. Rosenthal
The Arthur Ross Foundation, Inc.
Helena Rubinstein Foundation
Amanda and David Russekkoff
Estate of Edward G. Ryder
Moise Safra Family
Dr. Nathan E. Saint-Amand
Sarcoma Foundation of America
Henry Schein Cares Foundation
Estate of Michael Schein
Estate of George W. Schneider III
Ira Schneider Memorial Cancer Foundation
Estate of Alana M. Schuster
Trust of Leonard & Ruth Silverman
Evelyn R. Simmers Charitable Trust
Suzanne Cohn Simon
SIR Foundation
Trust of Barbara K. Snader
Estate of William E. Sneek
Beatrice Snyder Foundation
Lavinia Branca Snyder
The Society of MSK Associates Committee
Society of New York Workers’ Compensation Bar Association
Estate of Katherine R. Sonneman
Trust of Shirley J. Sonntag
Roy M. Speer Foundation
Spin4Survival
Trust of Barbara A. Stapleton
Estate of Helen E. Steadman
Mr. and Mrs. Howard Stern
Trust of Charles M. Stevenson
The Mel Stottlemeyer Myeloma Foundation
Trust of James Strobridge
Trust of Gail M. Suchocki
Mrs. Laure Sudreau-Rippe
The Michael Sweig Foundation
J. T. Tai & Co. Foundation
Ping Y. Tai Foundation
James R. Tanenbaum and Elizabeth M. Scofield
The Edward N. & Della L. Thome Memorial Foundation,
Bank of America, N.A. Trustee
The Craig D. Tifford Foundation, Inc.
TripAdvisor Charitable Foundation
Barbara Davies Troisi Foundation
Thomas N. Tryforos
Estate of Stanley F. Tucker
Turner Construction Company
Twenty-First Century Fox, Inc.
The Tyler Foundation
United Hospital Fund of New York
United Way of Tri-State
Trust of Ward M. Vanderpool
The Vanneck-Bailey Foundation
Variety–The Children’s Charity
Richard C. Vergobbi
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Estate of Christine Villano
Vital Projects Fund, Inc.
Walk the Walk America, Inc.
The Warner Foundation, Inc.
The Waislitz Family Foundation
Estate of Ingeborg K. Watson
Trust of Thomas J. Watson, Jr.
Estate of Ruth C. Weismann
Mr. and Mrs. Harold S. Wertheimer
WestRock Foundation
Trust of Reamer W. Wigle
Jacqueline and Robert Willens
The David and Ellen Williams Foundation
Trust of Maria Wolter
Mary and Bob Yellowlees
Trust of Richard A. Yudkin
Estate of Anna M. Zavatt
Larry and Anne Zimmerman

$250,000–$499,999
Anonymous
Trust of George Aaron
AbbVie Foundation
The Louis & Anne Abrons Foundation, Inc.
Accelerate Brain Cancer Cure Foundation
Estate of John D. Adams, Jr.
Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
Adenoid Cystic Carcinoma Research Foundation
The Louis & Bessie Adler Foundation
The Aetna Foundation
Trust of Sebastian & Helen Albrecht
The Alliance Against ASPS Foundation
Trust of Eileen Alpert
Alzheimer’s Association
American Asthma Foundation
American Heart Assistance Foundation
American Heart Association
The American Ireland Fund
The Ametek Foundation, Inc.
Dorothy A. Anderson
Estate of Margaret B. Anderson
Estate of Mark J. Anton
Estate of Anita S. Appel
Mr. and Mrs. Frank W. Appleton, Jr.
Estate of Bente Arquin
Joyce Ashley
Estate of Rose Ashton-Irvine
The David R. and Patricia D. Atkinson Foundation
Avon Foundation
B’Cured
Estate of William C. Bahn, Jr.
Ariela and Mendel Balk
The Banbury Fund
Estate of Iris Baranof
Trust of Margaret D. Barber
Estate of Florence Barrack
Estate of Marcia Batten
Betsy L. Battle
Trust of Gertrude E. Beck
Estate of Grace Becker
Cheryl K. Beebe and James A. Grimm
Estate of Ethel A. Bell
Trust of Virginia Poole Benjamin
Corinne Berezuk and Michael Stieber
Bergstein Family Foundation
Estate of Gertrude G. Bernstein
The Lisa E. Bilotti Foundation
The Blackstone Charitable Foundation
James Blake Foundation
The Nancy and Robert S. Blank Foundation
Trust of Ronald M. Blau
Madeline and Alan S. Blinder
Estate of Ida Bloom
Edith C. Blum Foundation, Inc.
Albert and Betty Bodian
Estate of Marthe Bonneau
Trust of Lillian Borchardt
The Louis L. Borick Foundation
The Albert C. Bostwick Foundation
Mr. and Mrs. Kevin A. Bousquet
Trust of Alice M. Branch
The Braver Foundation
Bridgemill Foundation
Estate of Paul P. Brieloff
Bright Focus
The Brightwater Fund, Gloria Jarecki
Trust of Marie H. Brock
Trust of Constantine Brown
David A. and Merle L. Brown
Brownstein Hyatt Farber Schreck
Mr. and Mrs. Norman Brownstein
Estate of Madalyn B. Bryant
The Bugas Fund
Estate of Lillian Burg
Estate of Edith R. Burger
Gilbert and Ildiko Butler Family Foundation, Inc.
Estate of Marian Butler
The Cancer Couch Foundation
Cancer Support Services, Inc.
The Paul Robert Carey Foundation
Mr. and Mrs. Michael Carr
Mark A. Castellano
Estate of Georgia M. Catrini
Trust of Ruth C. Colarek
Estate of Burdette G. Chamberlin
Trust of Cicely J. Chandler
Chanel, Inc.
Charina Endowment Fund
Mr. and Mrs. Bernard T. Chauss
Joan Chorney
Florence Chu, MD
Chris4Life Colon Cancer Foundation
CIBC World Markets Corporation
A. James & Alice B. Clark Foundation
Estate of Gerald Clements
Estate of Dorothy L. Cobb
Trust of Joan F. Cobb
Estate of Frances B. Cohen
Coins for Alzheimer’s Research Trust
Paul Jackson Coleman
Mr. and Mrs. John K. Colgate, Jr.
Terry Collins
The Community Foundation for Northern Virginia–Hanlon Family Fund
Estate of Robert L. Conley
Cooley’s Anemia Foundation
Estate of Lillian Copperman
Estate of Leonard Cossack
The Cowles Charitable Trust
Estate of Mary O. Craft
Cure Alzheimer’s Fund
Estate of Edna W. Curl
Filomen M. D’Agostino Foundation Corp.
Estate of Rosetta Damilano
Trust of DeWitt S. Davidson
Guy and Sally Davidson
Trust of Richard L. Davies
The Arthur Vining Davis Foundations
Estate of Frederick W. Davis
Estate of Leonard Davis
Trust of Marion E. Dean
Deborah A. DeCotis
Estate of Lorraine J. Dehoog
The Delaney Family
Trust of Carolyn B. Denney
The De Rosa Foundation for Colon Cancer Research and Prevention
The Desmoid Tumor Research Foundation
Hester Diamond Foundation
Mr. and Mrs. Lyman B. Dickerson
The Dickson Foundation
Estate of Evelyn Z. Diehl
The DiMenna Foundation, Inc.
Alcides & Rosaura Diniz Foundation
The Andree Wildenstein Dormeul & Roger Dormeul Foundation
William C. Dowling, Jr. Foundation
Dresner Foundation
Dr. Scholl Foundation
Trust of Margaret Due
Trust of Harriet C. Duker
Mr. and Mrs. Adam Dunn
Trust of Francis C. Dykeman
Marie E. Dykeman
Estate of Laura D. Eastman
The Eberstadt-Kuffner Fund Inc.
ECD Global Alliance
Mr. and Mrs. Thomas J. Edelman
The Edelman Family
Eli Lilly & Co.
Estate of Rita H. Schaefer Elliott
Empire Blue Cross & Blue Shield
The Charles Engelhard Foundation
Trust of June K. Evans
Trust of Lillian Evans
Lord Evans of Watford
Trust of Sarah W. Ewing
Mr. and Mrs. Barton Faber
Estate of Giuliana Fantini...
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Trust of Mary E. Farrell
Estate of Ralph R. Feigelson
The Feinstein Family Foundation
The Isabel, Harold, and Gerry Feld Fund for Bereavement
Trust of Robert I. Fendrich
Hilary Carla Feshbach
Mrs. Frederick Fialkow
Estate of Selma Fine
Jeanne Donovan Fisher
The Jodi Spiegel Fisher Cancer Foundation
Aaron Fleischman and Lin Lougheed Foundation
The Floren Family Foundation
Fondazione Italiana
For the Love of Life
Steve Forbes
Trust of William Forbes
Foundation 14
The Evan Frankel Foundation
Mr. and Mrs. Lewis Frankfort
Trust of Jill and Jayne Franklin
Mr. and Mrs. Lewis Frankfort
Trust of Esther B. Garnsey
Mr. and Mrs. Robert M.
Estate of Norman D. Galloway
Estate of Regina M. Galasso
Trust of Mary E. Farrell
Estate of Albert Manning
Estate of Julian Malkiel
John Magnier
Mr. and Mrs. Richard Lightburn
Estate of John E. Liebmann
Mr. and Mrs. Richard Lightburn
Young Ae Lim and Joonsik Moon
Pauline H. Lin
Linda Lipay
Estate of Marcella LoSasso
Estate of Mildred B. Gehrke
General Atlantic Foundation
The Patrick A. Gerschel Foundation
Leonardo Giambrone
The Albert and Pearl Ginsberg Foundation
Liane Ginsberg
GIST Cancer Awareness Foundation
The Glades Foundation
Mr. and Mrs. Eugene J. Glaser
Trust of Ruby A. Godfrey
Mr. and Mrs. Bradley Goldberg
Leslie H. Goldberg
Trust of Marc S. Goldberg
Corinne and Daniel Goldman
Susan Wallack Goldstein
Arthur A. Gosnell
Estate of Barbara Grace
Estate of Felice M. Grad
Laurence Graff
Graff Diamonds
Graham Holdings Company
Granary Associates
The Grateful Foundation, Inc.
Susan Zises Green
The Greenberg Breast Cancer Research Foundation
Estate of Eldridge A. Greenlee
Grinberg Family Foundation
Virginia and Howard Groombridge
Mr. and Mrs. Martin D. Gross
Trust of William Gross
Shoshanna Gruss
Gurwitch Products
Robert C. Halboth
Mrs. Melville W. Hall
Trust of Kenneth L. Hallam
Jeanne G. Hamilton and Lawson W. Hamilton, Jr. Family Foundation, Inc.
Trust of Florence M. Hammer
Trust of Robert Hanson
Mr. and Mrs. Jose Kuri Harfush
Harrington Discovery Institute
Mr. and Mrs. Robert L. Hartzeveld
Trust of Abraham Hases
Estate of Katherine Hawrylow
Estate of Irma Hayes
Haymakers for Hope
Austin D. Hearst
Hecht and Company
Philanthropic Fund
Mr. and Mrs. Charles Heimbold, Jr.
Cherie Henderson and David Poppe
Hendrickson Family Foundation
Heymann-Merrin Family Foundation
Brian J. Higgins
The Hillcrest Foundation
James and Angela Ho
The Cattie Hoch Foundation
Estate of Laverne Hodges
Estate of Dorothy M. Holder
Estate of Martha Holloway
Mr. and Mrs. D. Gregory Hornigan
Estate of Chester S. Howard
Dina Hubell and the Labkon Family
Estate of Karen L. Hudson
Estate of Samuel Hughes
Hunter Douglas
Syde Hurdus Foundation, Inc.
IBM International Foundation
The Interpublic Group of Companies
Bruce H. Jacobs
Trust of Clyde H. Jacobs
Harry A. Jacobs, Jr.
Janssen Pharmaceutical Products LP
Estate of Mira Jelin
Robert Charles Jenkins
The JMB Hope Foundation
Estate of Robert L. Jones
Max Kade Foundation, Inc.
Eugene S. and Constance Kahn
The Kahn Charitable Foundation
The Leonard B. Kahn Foundation
Kaleidoscope of Hope Foundation
Estate of William Kanter
Trust of Henry & Miriam Kaplan
Edward M. Kaufmann
Linda and Ian Kaufthal
Estate of Helen Keena
Trust of Fenton O. Keister
Robert J. Keller
J. C. Kellogg Foundation
The John R. Kennedy Foundation
Kern Family Fund
Estate of Patricia A. Kerrigan
The Kettering Family Foundation
Estate of Ursula A. Kildea
Trust of Estelle Knapp
Trust of Paul and Fran Knight
The Kohlberg Foundation
The Greater New York City Affiliate of Susan G. Komen for the Cure
The Kors Le Pere Foundation
Joel Koscitzky, Ramat Gan
Israel
The Gwen L. Kosinski Foundation
Mr. and Mrs. Marvin H. Koslow
The Fred W. Kramer Charitable Trust
Mr. and Mrs. Robert A. Kramer
Cheryl Gordon Krongard
Trust of Walter C. Kronke
Estate of Samuel Kuflik
Estate of Ann Kuhlmann
Estate of Harriette H. Kussin
Estate of Sidney J. Lacher
Mr. and Mrs. Joseph M. La Motta
Estate of Harriet L. Lampert
The Matthew Larson Foundation for Pediatric Brain Tumors
Trust of E.S. B. Lasson
Vivian F. Laube
Lavelle Fund for the Blind, Inc.
Betty Reid Lawson
Mrs. Lois H. Lazaro
The Iris and Junming Le Foundation
Lead Annuity Trust
Trust of Joseph Lebednik
The Richard S. and Karen LeFrak Charitable Foundation
Mr. and Mrs. Thomas V. Leeds
In memory of Stacey Leondis
Estate of Donald LeRoy
Leukemia Research Foundation
Estate of Barbara Grande LeVine
Trust of Leona Levy
Bertha and Isaac Liberman Foundation, Inc.
The Anne Boyd Lichtenstein Foundation
Estate of Helen Lieber
Estate of John E. Liebmann
Mr. and Mrs. Richard Lightburn
Young Ae Lim and Joonsik Moon
Pauline H. Lin
Linda Lipay
Estate of Marcella LoSasso
Lostritto Family
Dr. Christine A. Loveland
Milton Lowenstein
MacDonald-Peterson Foundation
MacMillan Family Foundation
John Magnier
Estate of Julian Malkiel
Estate of Albert Manning
Trust of Jack & Ruth Marcus
Estate of Marvin Margolies
Mrs. John L. Marion
Susan and Morris Mark
Trust of Sarah H. Marks
The Marmot Foundation
Estate of Edith Lipphardt Martens
Estate of Elizabeth Martin
Trust of Richard and Betty Martin
Estate of Ann L. Martinez
Dorothy Marx
The Lucille and Paul Maslin Foundation
Trust of Cecelia Matarazzo
Estate of Michael Matchen
Mr. and Mrs. Howard A. Matlin
Estate of Harry H. Maus
Paul S. May
The Mayday Fund
The Helen & William Mazer Foundation
MBNA America Bank
The MBNA Education Foundation
Mr. Brian McCarthy
Mary Jane McCarthy
The Michael W. McCarthy Foundation
Mr. and Mrs. Thomas R. McCullough
Estate of John C. McDaniels
Mr. and Mrs. Jay H. McDowell
Estate of Charles McGreevy
Estate of Mary T. McKibbin
Estate of Alan McMaster
Laura Mercier Ovarian Cancer Fund
The Reuven Merker Charitable Foundation, Inc.
Estate of Despina Messinesi
Mr. Robert A. Metzler
Trust of Russell H. Michel
Elizabeth R. Miller and James G. Dinan and the Dinan Family Foundation
Mr. and Mrs. Richard A. Miller
Mrs. Minot K. Milliken
Melissa and Robert Mittman
Estate of Dorothea K. Money
Trust of Anny S. Moore
Diana M. Moore
Yvonne and Arthur Moretti
Ronald and Brenda Morey
The Owen Moscone Foundation
Trust of Edmund L. Murray
Edith L. Nathanson
Trust of Louise F. Neely
Craig H. Neilsen Foundation
Estate of Gwendolyn L. Nekewich
Estate of Ann M. Nelson
Jerome and Elaine Nerenberg Foundation
Muriel Neumann
The Newport Foundation
Trust of Irene Newton
The New York Stem Cell Foundation
Estate of Jane M. Nicholson
Trust of Florence S. Nilsson
James G. Niven
Fred and Gilda Nobel
The Lyla Nsouli Foundation for Children’s Brain Cancer Research
The Oceanic Heritage Foundation
Trust of Robert M. Ochs
Trust of Dorothy B. O’Connor
Mr. and Mrs. Wm. Montague Oeste, Jr.
The Okonite Company
Grace Oughton Cancer Foundation
The William & Jane Overman Foundation
Eileen and James A. Paduano Parfums de Coeur Ltd.
Rosalind and Kenneth Pearlman
Richard S. Pechter
PepsiCo Foundation, Inc.
Trust of Jerry Perenchio
Estate of Ann Perkins
Estate of Claude E. Petruzzl
The Pew Charitable Trusts
Mr. Donald Pfanz
Pin Down Bladder Cancer
Mr. and Mrs. Jeroen Henk L. Pit
Jerry W. Pittman
Estate of Ronald A. Poeter
Estate of Elizabeth Polotaye Precision Medicine Research Associates
Trust of Helen M. Price
Estate of Seymour Price
Prudential Financial, Inc.
Trust of Raymond F. Prussing
Robert Pufahl
Purdue Pharma LP
Patricia A. Quick Charitable Trust
Stewart Rahr
Trust of Harriet C. Rath
Bonnie Reiss and Family
Estate of Helen H. Reiss
Trust of Ruben & Helga Resnik
Trust of Anne Ressner
Trust of Barbara C. Rex
Estate of Walter E. Rex III
The Rice Family Foundation
Anne S. Richardson Fund
The Ritter Family Foundation
Irene Ritter Foundation
Trust of Lillian Robbins
Mr. and Mrs. Stephen Robert
Robin Hood Foundation
Estate of Sandra Sheppard Rodgers
Estate of Ellen S. Bogoff
Kenneth C. Rohan
Ginni Bometty
Estate of Judith Rosenbaum
Estate of Nathan Rothstein
Estate of Wilhelmina T. Rouget
Trust of Cecile N. Ruben
Trust of Maurice Ruben
The Selma and Lawrence Ruben Foundation
Andrew Sabin Family Foundation
Mrs. Orhan I. Sadik-Khan
Mrs. Edmond J. Safra
Mr. and Mrs. Herbert E. Saks
Mara and Ricky Sandler Foundation
Isabella Santos Foundation
Trust of Erika Saphier
The Sassy Foundation for Medical Research
The Saw Island Foundation
Trust of Paul C. Sawyer
Trust of Edwin & Grace Sayers
Mr. Thomas Scalera and Dr. Rebecca Timlin-Scalera
Estate of Christine C. Scanlan
Trusts of Anabel M. Scarborough and Walter L. Scarborough
The Milton Schamach Foundation, Inc.
Mr. and Mrs. Stephen Scherr
Trust of Edward and Irene Schlosser
Trust of Jennie C. Schneider
Rob and Karen Schneider
Mrs. Silvia A. Schnur
Mr. and Mrs. Paul C. Schorr IV
Estate of Evelyn Schrank
Trust of Crystal Schull
Estate of Bertha Schulman
The Schultz Foundation
Mr. and Mrs. John W. Scully
Searle Scholars Program
The Selander Foundation
The Select Equity Group Foundation
The Nina and Ivan Selin Family Foundation
Estate of Sam Seltzer
Mr. Frank Senior
Seventh District Association, Inc.
Estate of Gladys N. Severud
The Shanken Family Foundation
Estate of Elizabeth L. Shanley
Estate of Odette Sharow
Trust of Minnie M. Shaw
Hope Sheridan Foundation
Shiseido Americas Corporation
Renee and Irwin Shishko
Estate of Lillian M. Siemionko
The Grace, George, and Judith Silverburgh Foundation
Leonard and Donna Simon
Trust of Angie S. Skinner
The Alan B. Slifka Foundation
Gordon Smith
The Gordon H. and Norma Smith Family Foundation
Estate of Robert A. Smith
Estate of Roberta A. Smith
Ms. Beryl Snyder
Society for Immunotherapy of Cancer
Solving Kids’ Cancer
JMC/MRJ Sorrell Foundation
The Seth Sprague Educational and Charitable Foundation
Trust of James L. Stackhouse
Arthur A. Stamm
The Robert Steel Foundation for Pediatric Cancer Research
Trust of Frederick T. Steinberg
The Jeffrey Steiner Family Foundation
The Guy M. Stewart Cancer Fund
Estate of Sonia Stolin-Moresco
Trust of May Strang
Estate of Erik Straub
The Daniel P. Sullivan Clinical Fellowship Fund
Timothy P. Sullivan Charitable Lead Trust
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Susquehanna Foundation
Trust of Hazel L. Sutton
The Taft Foundation
The Paula Takacs Foundation
for Sarcoma Research
Target MarkeTeam, Inc.
Frank N. Tedesco
Estate of Ida Tepper
Trust of Annette M. Terdina
Estate of Stella R. Thater
Think Pink Rocks
Thrasher Research Fund
Mr. and Mrs. Carl W. Timpson, Jr.
Mr. and Mrs. Alexander Tisch
Estate of Michael Z. Toman
The Robert Mize & Isa White
Trimble Family Foundation
Mr. Steven Trust
Walter and Elaine Ulrich
Trust of Irwin C. Unger
United Leukemia Fund Inc.
United Way of New York City
The Lucy & Eleanor S. Upton
Charitable Foundation
Estate of Monique Uzielli
Nancy and Nicholas Valeriani
The Vasey Foundation
Veejay Foundation
Estate of Eleanor B. Vogel
Voices Against Brain Cancer
Foundation
Douglas Walker
Estate of Muriel F. Wall
The Bert & Sandra Wasserman
Foundation
Marla J. Wasserman
Clyde Watson and Denis Devlin
Samuel Waxman Cancer
Research Foundation
Trust of Geraldine W. Webber
The Sue Ann and John L.
Weinberg Foundation
Stephen L. Weiner
The Scott Weingard Memorial
Fund
Mr. and Mrs. Boaz Weinstein
Estate of Elias Weiss
In memory of Marie T. Weiss
John A. Weissbach and Ann
Southworth
Effie Wells-Lonning
Trust of Ida Wharton
Estate of Ann White
Whitehall Foundation
John C. Whitehead
Estate of Ruth Whitfield
William F. and Barbara K.
Whitman
The Helen Hay Whitney
Foundation
Mr. and Mrs. Frank C.
Whittelsey III
The Jesse R. Wilke Charitable Trust
Estate of Sylvia C. Williams
Kendrick R. Wilson III
Mr. and Mrs. Jon Winkleried
Elizabeth Winterbottom
The Winters Family Fund
Wooden Nickel Foundation
Worldwide Cancer Research
Trust of Vincent J. Zappolo
The Zickler Family Foundation
Estate of Robert E. Ziegler
Nicholas B. Zoulas
Mr. and Mrs. Jeffrey A. Zucker

$100,000–$249,999
Anonymous
44Love Project
A & P Foundation
Catherine and Paul Aaron
Mr. and Mrs. Ghazi Abbar
Abbott Laboratories
Jean Ackerman
Estate of Michael Ackerman
Acorn Foundation
Mr. and Mrs. William R.
Acquavella
Mr. and Mrs. Laszlo Adam
The Francis X. Ahearn, Sr.
Foundation
Roger and Elizabeth Ailes
Mr. and Mrs. Lee S. Ainslie, III
Ms. Kay Alchu
Trust of Eileen I. Alessandrini
Daniel G. Alexander
Lee A. Alexander
The Shana Alexander Charitable
Foundation
Alexandria Real Estate Equities,
Inc.
Mr. and Mrs. John P. Allen
Robert and Elaine Allen
AllianceBernstein
Alliance for Life Sciences &
Health
Estate of Lori S. Alpern
Mr. and Mrs. Robert L. Alpern
Sheikha Noura Alsheikh
The Amaturo Foundation, Inc.
American Express Foundation
American Federation for Aging
Research
American Lung Association
American Society of Colon and
Rectal Surgeons
American Urological
Association
Amy’s, Inc.
Estate of Maurice Amzalak
Anderman Foundation
Mr. and Mrs. Harold F.
Anderson
Richard and Peggy Anderson
Warren and Lillian Anderson
Mr. and Mrs. Jerome V. Ansel
Anthony Brands
The Antonacci Family
Foundation
Anon Foundation
Estate of Marilyn Apelson
Maite Aquino Memorial Fund
Mr. and Mrs. Rand V. Araskog
Trust of Theodocia D. Arkus
Mr. and Mrs. William J.
Armfield IV
Paul Armin Family Foundation
Nicole Sinek Arnaboldi and Leo
Arnaboldi
Kym S. Arnone
The Aronson Family
Foundation
Trust of Richard Aronson
Mary Kay Ash Charitable
Foundation
The Isaac and Carol Auerbach
Family Foundation
Autism Speaks
AVIESAN
The Ayres Baechle Foundation
Mr. and Mrs. Charles Ayres
Trust of Maureen E. Bacchi
Dr. Joseph J. Bailey
Elliot A. Baines
The Baird Family Fund
Mrs. Judy K. and Mr. Jack W.
Baker
The Solomon R. and Rebecca D.
Baker Foundation
David M. and Barbara Baldwin
Foundation Inc.
Estate of David B. Ballard
Estate of Harold P. Bannister
Mr. and Mrs. Robert L.
Barbanell
Trust of James R. Barber
Estate of Lucille H. Barbour
Barish Family Foundation
Trust of Grace M. Barry
Estate of Kaethe F. Barry
Estate of Patricia A. Barry
Estate of Robert B. Bartow
Mario Batali Foundation
Trust of Eileen L. Batten
Trust of Joyce A. Battle
The Modestus Bauer Foundation
Trust of Ruth M. Baughman
Lynn B. Bayard
Estate of Thelma Beatty
Trust of John A. Beatty
Mr. and Mrs. Edmund Becker
Lisa J. Becker and Anthony M.
Beesley
Estate of Charles R. Beechler
Trust of Kathe Begeest
Laurence D. Belfer
The Robert & Renee Belfer
Family Foundation
Estate of Robert D. Bennett
Trust of Isidore Berger
Mr. Bernard S. Berkowitz
Joan and James Berkowitz Fund
Berkowitz II Foundation
Gary and Carol Berman Family
Foundation, Inc.
Estate of Tony P. Bernbach
The Bill Bernbach Foundation
Steffi and Robert Berne
Mrs. Louis Bernstein
Luciano and Giancarla Berti
Be the Difference Foundation
Jacqueline Bikoff
Estate of Margaret L. Bingman
Biomet
Trust of C. June Bisplinghoff
BJ's Charitable Foundation
Bladder Cancer Advocacy
Network
Trust of Raymond Blake
Blaker Family Fund
Hector Puyares Blanco
Bill Blass Licensing Company, Inc.
Mr. and Mrs. Jeff T. Blau
Ambassador and Mrs. Alan J.
Blinken
Mr. and Mrs. James A. Block
Estate of Vivian K. Blonder
Trust of George Blostein
The Walter & Adi Blum
Foundation, Inc.
Trust of Eli Blumenfeld
Donors to Memorial Sloan Kettering
January 1, 2002–December 31, 2017

Harold and Adele Blumenkrantz
Estate of Simon P. Blustone
D. Dixon Boardman
Bruce Bocina
Estate of Marti A. Boden
Peter Bodok
Estate of Alan A. Bohlinger
Estate of Marjorie R. Boselly
The Boston Foundation
Estate of Lydia Botfeld
Alan F. Bovee
Trust of William R. Boyle
Estate of Mary C. Brabson
Estate of Elsie L. Bradford
The Bradshaw Family
Neal C. Bradsher and Elizabeth M. Johnson
Brahman Capital
Brain Tumor Funders’ Collaborative
Anna M. and Mark R. Brann
Mr. and Mrs. Henry R. Breck
Milton Brenner
Mr. and Mrs. Fred J. Brettschneider
Estate of Mae Bridewell
The Broder Family Foundation, Inc.
Estate of Edna Brodie
Estate of Eleanor V. Brogdon
Tom and Meredith Brokaw
Randall Brooks
Carl and Nicky Brown
Trust of Fern G. Brown
Ms. Betsy Levine-Brown and Mr. Marc Brown
Trust of Ruth Ann Brown
Estate of William A. Brown, Sr.
Brown Helicopter, Inc.
Brown Performance Group
Trust of Blanche A. Brown
The Brownnington Foundation
Estate of Vernon Brunelle
Estate of Sheri-Ann Bryan
Elizabeth Bucher
Trust of William R. Buchner
The Peter & Carmen Lucia Buck Foundation
Estate of Edwin Buckingham
Melva Bucksbaum and the Robert I. Goldman Foundation
Janna Bullock
Mr. and Mrs. Roy R. Bumsted III
Trust of Florence Bunn
Mr. and Mrs. Franz H. Burda
Mrs. Coleman P. Burke
Trust of Dorothy A. Burkert
Estate of Louise V. Burnett
Mr. and Mrs. Harold Busch
Mr. and Mrs. Jonathan J. Bush
Estate of John D. Bush
The Paul Nabil Bustany Foundation
Estate of Ruth J. Butterworth
Estate of Lillian A. Byman
Dr. and Mrs. Robert A. Caine
Mr. and Mrs. Bruce L. Calhoun
Mr. and Mrs. Jeremiah M. Callaghan
Trust of Douglas M. & Dorothy M. Calligaris
Trust of Marilyn Campbell
Cancer Research & Treatment Fund
Leah Rush Cann
James A. Cannon
Estate of Edward A. Cantor
Paul T. Cappuccio
Michael and Carol Carey
Carlsberg Foundation
Trust of Jacqueline Carnrick
Mr. and Mrs. Edmund M. Carpenter
Mr. and Mrs. Warren E. Carpenter III
Estate of Eugene Carrara
Estate of Irene A. Carson
Estate of William K. Carson
Mr. and Mrs. William M. Carson
Estate of Colon B. Carter
Trust of Winifred T. Carter
Estate of Elsie Carttoto
Joan (Perkowski) Cashin Foundation
Casual Male Corp.
Catch 25 Foundation, Inc.
Catwalk 4 Cancer
The Cayuga Foundation
Estate of Charlotte A. Celian
Mr. and Mrs. E. Val Cerutti
Trust of George F. Chagnot
Trust of Henry D. Chaikin
Dr. Kalpana Chakraburtty
Ray and Patti Chambers
Margaret Anne Chappell
Tribhuwan N. and Sadhna Chaturvedi
Trust of Mea Chee
Michael and Pamela Chepiga
Estate of Camille Chericone
Chesed 24/7
Child Neurology Foundation
Childhood Brain Tumor Foundation
The Children’s Brain Tumor Foundation
Children’s Neuroblastoma Cancer Foundation
The Francis and Miranda Childress Foundation
The Jane Coffin Childs Memorial Fund for Medical Research
Chordoma Foundation
Estate of Selma Chyatt
William Joseph Ciliberti
The Cindy Foundation for Ovarian Cancer Research
Judith Ann Cion Revocable Trust
Estate of Piera Ciriello
Amanda Styles Cirelli Foundation for Pediatric Cancer Research
Mr. and Mrs. Robert Citrone
The Anne L. and George H. Clapp Trust
Estate of Lyman W. Clardy
Mr. and Mrs. Neil A. Clark
Estate of Ina Clarke
Estate of Mary M. Cleary
Cleveland Clinic Health System
CLL Global Research Foundation
Estate of Albert Cohen
Trust of David Cohen
Mr. and Mrs. Laurence W. Cohen
Clarence L. Coleman Jr. and Lillian S. Coleman Foundation
James J. Coleman, Jr.
Estate of Gertrude T. Coles
Karen Collias and Geoffrey Levitt
Robert and Maryann Collin
Estate of Arthur R. Collins
Estate of Edna E. Collins
Estate of Lila V. Collins
The Colon Cancer Foundation
James J. Colt Foundation, Inc.
Comerica Charitable Trust
Community Foundation for Greater Atlanta
Condé Nast Publications
Estate of John Confort, Jr.
Mr. and Mrs. Alexius Conroy
Consolidated Edison Company of New York
Dudley P. Cook
Mr. and Mrs. Errol M. Cook
Trust of Kristen H. Cook
Estate of Phyllis Cook
Mrs. William B. Cook
Mr. and Mrs. E. Gerald Cooper
Estate of Ruth L. Cooper
Estate of Morris Coppersmith
Estate of G. R. Couch
Mr. and Mrs. Paul Coulson
Courtsey Associates, Inc.
The Cowboy Fund
Anne Cox Chambers Foundation
Estate of Edith C. Cox
Trust of Burton L. Craig, Jr.
Trust of Franklin C. Craig
Mr. and Mrs. Lois Craig
Estate of John A. Cramption
Credit Suisse Group
Trust of Louise Crises
Cohn’s & Colitis Foundation of America
The Crown Family
Bruce Crystal
Trust of Leroy & Barbara Cubicciotti
The Cure Starts Now
Mr. and Mrs. James F. Curtis III
Cusa Realty, LLC
Custom Design Communications, Inc.
William J. Cwenn
Mark and Elizabeth Czarnecki
Mrs. Charles A. Dana, Jr.
Estate of Richard Daniels
The Gloria and Sidney Danziger Foundation, Inc.
Estate of Hannah Danziger
The E. S. P. Das Foundation
Barbara A. Dauphin
The Davee Foundation
Estate of Paul D’Aversa
Estate of Hazel Davidson
Mr. and Mrs. Scott E. Davidson
The Ellen and Gary Davis Foundation
Trust of Jane Davies
Trust of Hermine S. Dawson
Roxana V. Dawson
Estate of Sara De Castro
Estate of Karin D. de Chellis
Estate of Jean Decker
Estate of Libiro DeFilippis
The Lawrence and Florence DeGeorge Charitable Trust
Lynn DeGregorio
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

The DeGregorio Family Foundation
Mr. and Mrs. Roberto de Guardiola
Estate of Katherine C. DeHaan Goff
Mr. and Mrs. Morgan A.G. Dejoux
Anthony De Bove
Estate of Helen Demetriades
Mr. and Mrs. Steven Denning
The Derfner Foundation
Mr. and Mrs. Francois de Saint Phalle
Ernst and Paula Deutsch Foundation
Thomas and Margaret DeVita
The DeWitt Wallace Fund
Mr. and Mrs. Anthony Diaco
The Miriam & Arthur Diamond Charitable Trust
The Ernest & Jeanette Dicker Foundation
Estate of Margaret DiDonato
Estate of Richard I. Diennor
Trust of Mary L. Dillon
Discavage Family Foundation
Mr. and Mrs. Daniel L. Doctoroff
Oliver S. & Jennie R. Donaldson Charitable Trust
Estate of Maurice A. Donovan
John R. Doss
Percy S. Douglas
Estate of Susie M. Downing
Mr. and Mrs. Frank P. Doyle
Trust of Max Drechsler
Dreyer’s Grand Ice Cream, Inc.
Estate of Donald E. Dreskin
G. Clausen Drorbaugh
Dr. Jeffrey Duban
Trust of Anne Duerden
Trust of Patricia P. Duffy
Estate of Doris M. Dunham
Margaret H. Dunwiddie
The Durst Organization, Inc.
Estate of Evelyn J. Dyba
Thomas Edelman
Doris M. Edwards
E. E. Cruz Company
Mr. and Mrs. Blair W. Effron
Trust of Bertram Ehrlich
Trust of Raymond Ehrlich
Estate of Elinor Ehrman
Estate of Greta Einhorn
Albert Eisenberg Foundation Trust
Estate of Estelle Eisenstat
Mr. and Mrs. Frederick Elghanayan
Martin Elk League for Cancer Research
Trust of Arnold B. and Joan S. Elkind
Andrew J. Entwistle
EOS Products, LLC
Estate of Lillian Epps
Mr. and Mrs. Christopher Errico Rafael Etzioni
The Charles Evans Foundation
Estate of Eugene M. Evans, Jr.
The Evelyn Family Foundation
Expect Miracles Foundation
Trust of James D. Ezzell
Gloria B. Falkson
Family Reach Foundation
Fanconia Anemia Research Fund
Mr. and Mrs. Alfonso Fanjul, Jr.
Mr. and Mrs. James T. Fantaci
Joyce Fefferman
Estate of Marion E. Feigenbaum
The Alfred & Harriet Feinman Foundation
Gretchen V. and Samuel M. Feldman
The Corinne Feller Memorial Fund
Roger W. Ferguson, Jr.
Trust of Thelma F. Fernandez Fetzter Institute
Trust of Lydia K. Fiedler
Michael Fieldstone and Maya Hartman
Debra Fine and Martin Schneider
Estate of Gloria Fine
Randee and Howard Fischer
Estate of James K. Fisher
Estate of Nellie G. Fishman
Estate of William and Frederica Fissell
Trust of Loretta B. Fitzgerald
Mr. and Mrs. Thomas M. Fitzgerald III
James B. Flaws and Marcia D. Weber
Fleischer Family Foundation
The Francis Florio Fund of the New York Community Trust
Trust of Robert B. Fordham
The Mary Alice Fortin Foundation
Richard N. Foster
Trust of Aida A. Foti
Foundation for Women’s Cancer
Four Seasons Hotel–New York
The Fan Fox and Leslie R. Samuels Foundation, Inc.
Amy K. Foy and Nicholas J. DeFlora
Estate of Thomas R. Foy
Maria Frangella Foundation for Colon Cancer Research
Claire and Meyer W. Frank and Leann Frank Charitable Foundation
Trust of Irene R. Frank
Mr. and Mrs. Joel M. Frank
Nicole and Steve Frankel
Helen Frankenthaler Foundation
Mr. and Mrs. David Lee Frankfurt
Trust of James and Mary Frankhouse
Doreen Frasca and Tom Mead
Estate of Gloria Freed
The Freed Foundation
Estate of Katherine Freeman
Mr. and Mrs. Sanford Freiman
Frey Family Foundation, Inc.
Zoltan Fried
Susan and Fred Friedman
Charles A. Frueauf Foundation
Estate of Bella Frutkin
Estate of Roger M. Furinnes
Estate of Joseph F. Fursa, Jr.
Mr. and Mrs. Thomas J. Gahan
Trust of Ralph W. Gaines
Estate of Anne Gallagher
Anita C. Garoppolo
Mr. and Mrs. Julius R. Gaudio
GC for a Cure 5K Run/Walk
Bruce G. Geary Foundation
Trust of Louis C. Geiger
Trust of William G. Genner, Sr.
Kara and Peter Georgioupolus
Estate of Jacques A. Gerard
Robert and Sylvia Gergen
Estate of Charles J. Gerhart
Panayotis Gerolymatos
Trust of Alda Getti
Estate of Theresa A. Ghiringhello
Judith Gibbons and Francesco Scattone
The Ryan Gibson Foundation
Marlene and Alan Gilbert
Gilead Sciences
Estate of Rosemarie M. Gilman
Mrs. Bruce A. Gimbrel
Trust of Adele Ginsburg
Mr. and Mrs. William H. Girvan
The Harvey S. Gitlin Family Foundation
Gail C. Gittelston
Estate of Grace E. Glenn
Glenwood Management Corporation
Victoria and Justin Gmelich
Trust of Carmen Gobbi
Trust of Glenn R. Goble
Christina and Peter Gold
The Goldhirsh Foundation
Goldhirsh-Yellin Foundation
Estate of Elizabeth B. Golding
Ms. Miriam Goldman
The Barbara L. Goldsmith Foundation
Shelley and Graham Goldsmith
Lawrence Goldstone, MD
Herman B. Golub Charitable Trust
Trust of Manuel and Anne Goodman
Google
Trust of Steve Gorczyca
Christy and Sheldon Gordon
Jeff Gordon Children’s Foundation
The Gordon Family Foundation, Inc.
Trust of Louise S. Gosse
Marietta A. Goulandris
Eileen F. Gould and Robert J. Dwyer
Julie Gould Fund for Medical Research
Estate of Richard P. Gould
Go With Courage, Inc.
Grantham Mayor Van Otterloo & Co.
Estate of Harvey R. Graveline
Stephen and Myrna Greenberg
Brigadier General and Mrs. William S. Greenberg
Estate of Helen S. Greenwood
Mr. and Mrs. Peter S. Gregory
Trust of Maurice Griffel
Trust of Dorothy G. Griffin
John and Amy Griffin Foundation
Mr. and Mrs. Melvin W. Griffin
Trust of William C. Griffith, Jr.
Trust of Vernon H. Grigg
Grodetsky Family Foundation
Estate of Evelyn Gross
Estate of J. Stanley Gross
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Trust of Lambert J. Gross
Estate of Anthony Grosso
Trust of Bernice I. Grossteiner
Allen J. Grubman
Kenneth and Ginny Grunley
Audrey and Martin Gruss
Foundation
Estate of Wanda Grzymala
Guardsmark, LLC
Marilyn B. Gula
Mountains of Hope Foundation
Estate of Pauline R. Gulau
Trust of Elizabeth Guon
Drs. Satyendra and Manjula Gupta
Estate of Gloria E. Gurney
Gurney Foundation
Mimi and Peter Haas Fund
Helen and Samuel Haber
Hachette Filipacchi Media U.S.
Jayma Meyer Hack and Bruce L. Hack
The Hagedorn Fund
The LaVerne Hahn Trust
Estate of Margaret S. Hahn
Hairy Cell Leukemia Foundation
Martin and Deborah Hale
Estate of Elizabeth W. Hall
Estate of Mazie J. Hall
Trust of Lawrence E. Halvorsen
Estate of Helen Sue Hameetman
Milton and Miriam Handler Foundation
Estate of Stanley E. Handman
Trust of Elaine A. Hansen
Estate of Marion K. Hardwicke
Estate of Mary Jane Harrington
The Mary W. Harriman Foundation
Trust of Eugene R. Harris
Leonard B. Hart
Laura Hartenbaum Breast Cancer Foundation
Trust of William Hartman
Mr. and Mrs. William R. Hartong
The Abbe & Lloyd Hascoe Foundation
Have a Chance, Inc.
Trust of Peter J. Hayes
Morris A. Hazan Family Foundation
HCCF Foundation
Mr. and Mrs. Andrew P. Heaney
Trust of Lonie G. Hearn
Gillian Hearst
The Per and Astrid Heidenreich Family Foundation
Trust of Shirley S. Heiligman
Mr. and Mrs. Robert M. Hendrickson
Mr. and Mrs. John Hennessy
The Maxine R. and Richard L. Henry Trust
Estate of Robert Hensel, Jr.
Estate of Antje Hensen
The John & Rose Herman Foundation
Carolina Herrera, Ltd.
Trust of Leon Hershaft
Estate of Rita Hertzig
Ms. Marlene Hess and Mr. Jim Zirin
Trust of Marie Hesselbach
Hewlett-Packard Company
Heymann-Wolf Foundation
Trust of Gerald R. Hiering
Estate of Manny Hifman
Hillenbrand Family Foundation
Mrs. John S. Hilson
The Mark Hindy Charitable Foundation
Trust of Myfanwy Hinkle
The Hippodrome Dry Cleaning Histiocytosis Association
Estate of Vladimir Hladik
Estate of Edward B. Hodge
Estate of Agnes S. V. Hoffman
Estate of Marion Hoffman
Estate of Ruth M. Hoffman
Trust of Steward B. Hoffman, Sr.
Hoffman-La Roche Inc.
Deborah H. and Sigmar K. Hofmann
Hope V. Hofmann
Mrs. Carolyn T. Holden
Trust of Burt Holtzman
Howard and Carol Holtzmann
Estate of Margaret Hooghus
Estate of Herman L. Hoops
Trust of Anita S. Horbacz
Alfred Samson Hou
Robert Howard Family Foundation
Ted and Laura Hromadka
Estate of Frank Huber
Nancy Hughes
Humanscale Corporation
Estate of Edna Hunt
Carol Hunter
Constance D. Hunter
Estate of Edith M. Hunter
James B. Hunter
The Dr. Maxwell Hurston Family Foundation, Inc.
I Back Jack Foundation, Inc.
IBM Employee Services Center
Zapfel Fund
Mr. and Mrs. David W. Ichel
Estate of Priscilla T. Iden
Inamed Corporation
Incyte Corporation
Ingersoll Rand Company
Mr. and Mrs. William H. Ingram
International Myeloma Foundation
Irish Society of Medical Oncology
It Figures LLC
Jacobs-Iacobucci Foundation
Estate of Harold F. Jaeger
Mr. and Mrs. Stanley R. Jaffe
Thomas Jaffe
James Family Foundation
JDRF
Trust of Ann E. Jennings
Richard H. Jenrette
The Jewish Communal Fund
Jewish Federation of Cleveland
Mr. and Mrs. Peter James Johnson, Jr.
The Samuel C. Johnson Trust
Mr. and Mrs. Roy Johnson
Trust of Vivyan Jordan
Robyn and Ken Joseph
Dr. Anil and Mrs. Anju Joshi
J.P. Wish Fund
Judges and Lawyers Breast Cancer Alert
Trust of Frank J. Kahn
Trust of Nina M. Kaiser
Jane Kalmus
Harry P. Kamen Family Foundation
Mr. and Mrs. Daniel B. Kamensky
Trust of Mildred Kaminsky
Estate of Julie Kammerer
Kanarek Family Foundation
Estate of Lee L. Kanarian
Estate of Eleanor Kane
Mr. and Mrs. William Kane
Estate of Bernard Kantor
Steve and Meghan Kanzer
Estate of Irvin L. Kaplan
The Lawrence Kaplan and Marilyn Kaplan Foundation
Marie H. Karger
The Karma Foundation
George Karnoutsos
Kat’s Ribbon of Hope
Trust of Jerry Katz
Trust of Toby Katz
The Katzin Foundation
Trust of John Kaufmann, Jr.
Trust of Ralph W. Kaufmann
Mr. and Mrs. Robert M. Kavner
Carl Michael Kawaja and Gwendolyn N. Holcombe
Thomas F. Kearns
Charles L. Keith & Clara Miller Foundation
Trust of Harry M. Kelly
Trust of Jacquelin J. Kelly
Estate of Ruth C. Kelly
Mrs. Ann Kelman and the late Dr. Charles D. Kelman
Kemmerer Family Foundation
Estate of Barbara B. Kemp
Eleanor and Michael Kennedy
Peter Kenner Family Fund
J. Kevin Kenny
Kensico Capital Management
John A. Kent
Estate of Herman Kerner
Estate of Charles L. Kerstein
The Glenn D. Kessellhut Children’s Joy Fund
Estate of Mary F. Kessler
Mr. and Mrs. Peter A. Kessler
Coyla E. Ketch
Estate of Henri Khouri
Mr. and Mrs. Charles Khoury
The Kibetz Foundation
Kids’ Cancer Research Foundation
Doris and Floyd Kimble Foundation
The King Family Charitable Lead Trust
Mr. James W. Kinnear II
Patricia A. Kirby
Mr. and Mrs. James M. Klausmann
David L. Klein, Jr. Foundation
Jeffrey Klein and John Goldwyn
Kleinfield Bridal Corp.
Robert D. Klemme
The Esther and Joseph Klingenstein Fund
Mr. and Mrs. Steven B. Klinsky
Fernand Koch
Estate of Gale K. Kokubu
Estate of Elizabeth Koller
Mrs. Mitzi Koo
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Estate of Percy W. Moore
Tom & Judy Moore Foundation
The Garrett and Mary Moran Trust
Estate of Barbara B. Morgan
Melissa and Chappy Morris
Alfred L. and Annette S. Morse Foundation
Ken and Linda Mortenson
Estate of Lisa F. Morton
Mr. and Mrs. George K. Moss
Moss Foundation
Manuel and Mercedes Mosteiro
Lisa and Marcelo Mottesi
Trust of Helen J. Mueller
Virginia M. Mueller
Estate of Irving Mulke
Mrs. Sandy Mulligan
Estate of Earl Muroff
Mr. and Mrs. Thomas W. Murphy II
Ernest Muth
Sir and Mrs. Arthur D. Myers
Estate of Elaine Nachamis
The National Genetics Foundation, Inc.
NBC Universal
Trust of Joshua Needelman
Estate of Leslie A. Neelkin
Jane R. Nessen
New York City District Council of Carpenters Relief and Charity Fund
New York State Bowling Association
New York State Fraternal Order of Police Foundation
New York State Health Foundation
Gerald L. Nichols and Jacqueline W. Nichols Foundation
The Gertrude B. Nielsen Charitable Trust
Joseph P. Noonan
The Northrop Family/Linda Northrop Fund for Ovarian Cancer Research
Trust of Robert F. Novak
The Nussbaum/Kuhn Foundation
The Michael A. O’Bannon Foundation
Trust of Anita Ober
Estate of James O’Brien
Estate of Ernestine A. O’Connell
Mr. and Mrs. Jeremiah O’Connor
The Drew O’Donoghue Fund
Trust of Emily C. O’Grady
Dara and Tim O’Hara
Estate of Lynn O’Hara
Estate of Grace O’Hare
Wendy O’Neill
Oki Data Americas, Inc.
Harold N. Openshaw, Jr., Mr. and Mrs. John D. Opie
The Katie Oppo Research Foundation
Optiscan
Estate of Elaine Orbach
The Orchard Farm Foundation
Julie and Doug Ostrover
Otis Elevator Company
Mr. and Mrs. Gunnar S. Osterstrom III
William and Ella Owens
Medical Research Foundation
Mr. and Mrs. Neil Padron
Daniel P. and Nancy C. Paduano Family Foundation
Mr. and Mrs. Gregory K. Palm
Pam Pals Inc.
Mr. and Mrs. Jordan M. Panter
Estate of Thomas Parissidi
The Parnassus Foundation
Rosalie Pataro
Trust of Edith Pattison
Estate of Herman L. Paul, Jr.
Pediatric Brain Tumor Foundation
Pells-Mayton Foundation
Trust of James A. Pemberton
Mrs. Richard T. Perkin
Mort Perlooth
The Dina Perry Charitable Fund
Lisa and Richard Perry
Sandy and Norman Pessin
Estate of Ruth Peterson
Estate of Frederick D. Petrie
Samantha and Ernst Pfenninger
Trust of Peter H. Pfieuk
Phelps Family Foundation
Phoebe’s Phriends, Inc.
Estate of Edmund Piasecki
Trust of Charles V. Pickau
Estate of Irene Pickau
Mr. Alessandro Pinto
Mr. and Mrs. Roy R. Plum
Estate of Beatrice Pockrass
Estate of John E. Polek
Abigail Pollak
Mr. and Mrs. Gerard Pompilio
The Ponagansett Foundation, Inc.
Janis Z. Porch
Cynthia and Gary Porter
Trust of Ann C. Porterfield
Dennis B. Porter
Estate of Edna G. Potter
Estate of John A. Powers
John and Jane Powers Foundation
Dr. and Mrs. Mark Ptashne
Estate of Richard I. Purnell
Richard I. Purnell Fund
Bambi Lyman Putnam
Trust of Anna Marie Putti
The Quain Family
Roselyn Flaus Radcliffe
Trust of Samuel J. Radcliffe, Jr.
Trust of Betty Raiff
Richard E. Rainwater
Estate of John T. Rakowski
Norman R. and Ruth Rales Foundation
Rally Foundation
Mary L. Ralph Philanthropic Fund
Mr. and Mrs. Edward A. Rankin
Theodore A. Rapp Foundation
Theodore S. Rappaport, PE, PhD, NYU Wireless, NYU Langone Medical Center
John H. Rassweiler
Estate of Frank Rea, Jr.
Abigail T. Reardon
Estate of Phyllis E. Redmerski
Elenore Reed
John Bradbury Reed
Estate of Martha Cuneo Reed
Estate of Samuel P. Reed
Compton Rees, Jr.
Odette Regine Foundation
Christine and Mark Reichenbaum
Renaissance Charitable Foundation
The Beatrice Renfield Foundation
Dr. and Mrs. Ira L. Rennert
Olvier and Yosun Reza
The Audrey Rheinstrom and Anne Blevins Fund
Estate of Roland S. Rhode
Judy Rhulen and Family
Martin Rich
Trust of A. Leslie Richardson
Dr. and Mrs. Peter C. Richardson
Dee Dee Ricks
John and Emma Riconda
Trust of Margaret L. Rigby
Estate of Evelyn J. Rimosukas
Estate of Harry Rinehimer
Estate of Elizabeth M. Ringo
Trust of Victoria Rinius
The Fannie E. Rippel Foundation
Estate of Norma Risman
Abigail Rittmeyer
The RMF Family Fund, Inc.
The Caitlin Robb Foundation
Bernard and Elaine Roberts
Estate of Floyd B. Roberts
Trust of Irene M. Roberts
Vivien Rock
Robert and Ardath Rodale Family Foundation
Rodale, Inc.
Estate of Maria Rolfe
Michael Romanes
Sheldon Rose
Estate of Sylvia Rosenberg
Trust of Ilsa Rosenblum
Trust of Evelyn Rosenstein
Jeffrey Rosenzweig Foundation for Pancreatic Cancer Research
Leo Rosner Foundation
Estate of Barbara Ross
Mrs. Howard L. Ross
Estate of Sylvia Ross
Estate of Eva L. Rothberg
Philip and Marcia Rothblum Foundation
Mr. and Mrs. Eric A. Rothfeld
Estate of Eleanor S. Rothstein
Estate of Geraldine E. Rove
Denise Rover
Kylie Rowand Foundation
Fran and Jeff Rowbottom
Mr. and Mrs. Charles Royce
Estate of Pearl Rubin
Rose G. Rubenstein
Mr. and Mrs. Mitchell E. Rudin
Jane and Mal Rudner
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017
DONORS TO MEMORIAL SLOAN KETTERING
JANUARY 1, 2002–DECEMBER 31, 2017

Trust of James M. Taylor
Team Luke Neuroblastoma
The Sidney and Loretta Teich Foundation
Telethon Italy–US Foundation
Estate of Walter G. Terwedow
The T. F. Trust
Thank Heaven Foundation
Estate of Theresa M. Thingelstad
Mr. and Mrs. Andrew S. Thomas
Estate of Robert P. Thome
Trust of Robert W. and Pauline Z. Thompson
Trust of Vernon Thompson
The Vernon F. & Mae E. Thompson Charitable Foundation
Thrill Hill Productions
Trust of Bridge Tiedman
Tiffany & Co.
The Laurie M. Tisch Illumination Fund
Estate of Margaret R. Tomas
Trust of Bertha Tomaska
Estate of Milton Topolosky
Estate of John J. Tormey
The Tortuga Foundation
Estate of Virginia M. Toth
Trust of Angelina Ann Tovar
Toys ‘R’ Us Children’s Fund
Mr. and Mrs. David C. Tracey
Jill Tracey
Estate of Rita L. Tracey
Trust of Helen A. Trahin
Trust of Dorothy B. Traufield
Beatrice Travis-Cole
The Bud Traynor Memorial Fund, Inc.
Estate of Ruth Tropp
The W. James & Jane K. Truettner Foundation
Scott and Margy Trumbull
Estate of Ina Tuckman
Estate of R. Read Tull
Lucien L. and Shirley Turk
John J. Twomey
Ahavas Tzedek Foundation
David V. Uihlein, Sr.
Mr. and Mrs. Mark D. Unger
The Unger Family Foundation, Inc.
The Valley Foundation
Valley of the Sun United Way
The van Ameringen Foundation
Estate of June A. Vanderpool
Jonathan and Sarah Vanica (GS Gives)
Steven Vanover Foundation
Varheggi Foundation
The Varnum DeRose Trust
Dr. Terry G. Vavra and Linda F. Vavra
In memory of Madeline C. Verducci
Estate of Andrea M. Vernick
Victor’s Three D
The Victoria’s Smile Foundation
Trust of Eva Vida
Maria von Bothmer Villalba
The Family of Maria Elena Villanueva
Estate of Dorothy Voelker
Trust of Anna L. Vogel
Estate of Gertrude Vogel
Ralph W. Voit
Mr. and Mrs. John Vollaro
Trust of Beverly Wachtel
Wachtell, Lipton, Rosen & Katz
The Paul E. and Mary Wagner Trust
Estate of Lillie M. Waldon
Wallace Special Projects Fund
Mr. and Mrs. Scott S. Wallach
Mr. and Mrs. Paul D. Walsh
James M. and Marianne Walter
Estate of Frances M. Wanek
Mr. and Mrs. Desmond Wan
The Warburg Pincus Foundation
Estate of Shirley I. Warner
Warren/Soden/Hopkins Family Foundation
Mr. and Mrs. Bruce Wasserstein
Elizabeth T. Wassmundt
Estate of Shirley F. Watkins
Jesse O. and Doris R. Weaver Fund
Mr. and Mrs. Peter Webster
Mr. and Mrs. Bradford G. Weekes III
Mr. and Mrs. John G. Weiger
Trust of Gertrude H. Weiler
Mrs. John L. Weinberg
Marc S. Weinberger
Danny M. Weinheim
The Isak & Rose Weinman Foundation, Inc.
The Irving Weinstein Foundation
Estate of Louis Weinstock
Mr. and Mrs. Michael Weisberg
Charles and Elyse Weisenfeld
Andrew and Ronnie Weiss
Estate of Gertrude Weiss
Jill and Jeffrey Weiss
Trust of Gertrude Wellisch
The Nina W. Werblow Charitable Trust
Estate of Robert L. Werner
Virginia A. Werner
Estate of E. Olga Wesner
Mrs. Elizabeth G. Weymouth
When Everyone Survives
Whip Pediatric Cancer
John C. Whitaker
Estate of Frank A. Widenski
Nancy P. Widmer
Mr. and Mrs. Gene Wilder
Mr. Daniel Wilderman and Ms. Barbara Rockenbach
Wilderness Point Foundation
The Wil Family Foundation
Lise & Jeffrey Wilks Family Foundation
Andrea J. Will Memorial Foundation
Trust of Kyle Will
Barbara F. Williams
Mr. and Mrs. Eugene F. Williams III
Estate of Phyllis E. Williams
Williams Trading LLC
Trust of Helen A. Wilson
Helen and Stanley Wissak
Michel C. Witmer
Estate of James B. Wittrock
The Henry Wolf Foundation
Trust of Toby Wolfberg
Alice Aeschliman Wolfe
Mrs. Barbara Wolfson
Estate of Gordon Wootton
Deborah C. Wright
Trust of Twylia H. Wright
Estate of Bernadette Wyrough
Ofer J. Yardeni
Estate of Arthur P. Young
Estate of Ellen Youngelson
Alfred D. Youngwood
Zegar Family Foundation
The Patricia J. and Edward W. Zeh Charitable Foundation
The Isaac Ziegler Charitable Trust
Stanley Shalom Zielony Foundation
Ofer J. Yardeni
Estate of Bernadette Wyrough
Ofer J. Yardeni
Estate of Arthur P. Young
Estate of Ellen Youngelson
Alfred D. Youngwood
Zegar Family Foundation
The Patricia J. and Edward W. Zeh Charitable Foundation
The Isaac Ziegler Charitable Trust
Stanley Shalom Zielony Foundation
Martha E. Zimmer
Trust of Marie R. Zingg
SUPPORTING RESEARCH
The Society of Memorial Sloan Kettering’s Special Projects grants fund innovative research at the Sloan Kettering Institute that is often too nascent to receive support from conventional sources. This year, the grants were awarded to five scientists conducting research in developmental biology, immunology, and computational biology.

Each spring, The Society also awards research grants that specifically focus on providing crucial funding to MSK’s promising young investigators. In 2017, the grants were awarded to eight projects, including a study involving diet and obesity and their effect on breast cancer risk, a project exploring the mysteries of cancer metastasis, and a type of radiation therapy for advanced malignant pleural mesothelioma.

The Society’s Associates Initiative focused on the effort to establish a new standard of care for pediatric cancer survivors. The number of children surviving cancer is increasing, but the treatments that help these children survive their cancer can have a lasting negative impact, leading to learning disabilities as well as social-emotional and behavioral difficulties. Some children, free of cancer, then face challenges with attention and concentration, processing speed, memory, and social isolation — leading to lowered overall quality of life.

MSK’s researchers are seeking ways to identify specific groups of pediatric cancer patients at diagnosis that are at an increased risk for these issues and are implementing home-based computerized cognitive training programs immediately after finishing treatment to minimize ill effects.

The Society's Campaign focused on precision cancer prevention. Launched by Luis Diaz, Head of the Division of Solid Tumor Oncology, the Precision Interception and Prevention initiative is developing ways to tailor cancer prevention and early detection based on an individual’s genetic, lifestyle, and environmental risk factors. The goal is to prevent cancer from ever occurring or to intercept it at its earliest stages, maximizing the chance of a cure.

The Society Prize is awarded at the annual MSK Academic Convocation to a researcher, doctor, or team leader who has made a positive and lasting impact in the fight against pediatric cancer. The 2017 recipient of this prize was James Downing, President and CEO of St. Jude Children’s Research Hospital in Memphis. Among his many accomplishments, he has had a major influence on defining the genetics and genomics of pediatric cancers. Dr. Downing was instrumental in launching the Pediatric Cancer Genome Project, which has compared the complete genomes from the cancerous and normal cells of more than 800 young patients.

SUPPORTING PATIENT CARE
Some of the most cherished traditions and events at MSK — including the festive holiday parties held throughout the year, complete with overflowing gift bags for patients — are sponsored by The Society. This year was no different, with more than 200 of our youngest patients and their families and friends at Pediatric Prom in May.

SUPPORTING EDUCATION
Established in 2016 and first awarded in 2017, The Society Scholars Prize is intended to honor postdocs performing at the highest levels who are also managing additional familial obligations and adjusting to being new parents.

This merit-based prize is awarded annually to at least ten full-time postdoc researchers who complete a brief application and personal statement. They are reviewed by a selection panel made up of MSK faculty parents, with final approval from The Society president in consultation with its executive committee. The prize provides a cash award for up to four years and is open to postdocs at MSK who have a dependent child under four years of age.

“The Society is a group of dedicated, caring women. It is absolutely necessary that we continue to support the incredible strides Memorial Sloan Kettering Cancer Center has made through its research and patient care initiatives.”

—JAMEE GREGORY
1. Society President Jamee Gregory and Madison Avenue Business Improvement District President Matthew Bauer at the 31st Miracle on Madison Avenue shopping event benefiting The Society of MSK on December 2.

2. Pediatric oncologist Farid Boulad, Medical Director of the Pediatric Day Hospital, with a young friend at Pediatric Prom.

3. From left: Physician-in-Chief José Baselga, Silvia Garriga, Board Chair Douglas Warner, former Society President Lavinia Branca Snyder, Roser Salavert, Sloan Kettering Institute Director Joan Massagué, Tullia Lindsten, and MSK President and CEO Craig Thompson at The Society’s Spring Ball.

THE SOCIETY OF MEMORIAL SLOAN KETTERING CANCER CENTER
ADMINISTRATIVE BOARD

EXECUTIVE COMMITTEE

JAMEE GREGORY
President

MRS. MICHAEL CARR
Vice President

ALEXIA HAMM RYAN
Vice President

MRS. RICHARD A. MILLER
Vice President

MRS. SCOTT C. JOHNSTON
Treasurer

MRS. LARS FORSBERG
Assistant Treasurer

KATE ALLEN
Secretary

MRS. TIMOTHY P. O’HARA
Assistant Secretary

 MARTHA VIETOR GLASS
Past President

MEMBERS-AT-LARGE

Muffie Potter Aston
Gretchen Gunlocke Fenton
Mrs. Michael Kennedy

Mrs. James Halsey Bell
Ruth G. Fleischmann
Martha O’Brien Lamphere

Mrs. Alan J. Blinken
Elizabeth Kirby Fuller
Patricia Herrera Lansing*

Tory Burch
Mrs. Robert M. Gardiner
Kamie Lighthburn

Mrs. Bryan J. Carey
Mrs. Mark V. Giordano
Stephanie Loeffler

Mrs. Kevin C. Coleman
Mrs. Thomas S. Glover
Mrs. Roman Martinez IV

Mrs. Peter G. Cordeiro
Eugenie Niven Goodman
Joyce L. Moss

Mrs. Archibald Cox, Jr.
Mrs. Roger P. Griswold, Jr.
Jennifer Gaffney Oken

Jennifer Creel
Shoshanna Gruss
Palmer Jones O’Sullivan*

Mrs. Michael J.A. Darling
Leslie Heaney
Mrs. Gunnar S Overstrom, III

Mrs. Marvin H. Davidson
Shabnam Henry
Marcie Pantzer

Mrs. Hilary Dick
Melanie Seymour Holland
Mrs. Richard T. Perkin

Webb Egerton
Robyn Lane Joseph
Debra Pipines

Mrs. Christopher Enrico
Victoria Greenleaf Kempner
Shafi Roepers

SUSTAINING BOARD

Courtney Arnot
Mrs. Thomas M. Fitzgerald III
Mrs. Michael Kennedy

Mrs. Andres Bausili
Mrs. Roberto de Guardiola
Martha O’Brien Lamphere

Mrs. Andrew M. Blum
Mrs. John S. Hilson
Patricia Herrera Lansing*

Dianne G. Crazy
Mrs. Ann F. Jeffery
Kamie Lighthburn

Mrs. James F. Curtis III
Suzie Kovner
Stephanie Loeffler

Mrs. James H. Dean
Mrs. Brian A. McCarthy
Mrs. Roman Martinez IV

Antonia Paepcke DuBrul
Mrs. S. Christopher Meigher III
Joyce L. Moss

Mrs. Thomas J. Fahey, Jr.
Mrs. Minot K. Milliken
Jennifer Gaffney Oken

PRESIDENT’S COUNCIL

Mrs. Rand V. Araskog
Nina Garcia Conrod
Mrs. George F. Moss

D. Dixon Boardman
Mrs. Charles A. Dana, Jr.
Mrs. Charles H. Mott

Mrs. George F. Moss
Nancy Coffey Nagler
Mrs. Samuel F Pryor IV

Mrs. Richard J. Sterne
Leith Rutherfurd Talamo
Mrs. Bambi Putnam

Mrs. Donald B. Marron
Linda Gosden Robinson
Mrs. Benjamin M. Rosen

Past Presidents

Mrs. Coleman P. Burke
Mrs. Bruce A. Gimbel
Mrs. Thomas V. Leeds

Mrs. Edwin M. Burke
Alison Barr Howard
Mrs. Derek L. Limbocker

Mrs. William M. Carson
Mrs. Peter D. Jones
Jean Remmel Little

Mrs. Walter B. Delafield
Mrs. Kerry King
Mrs. M. Anthony May

Mrs. Charles H. Dyson
Mrs. Arie L. Kopelman
Mrs. Frank A. Metz, Jr.

Mrs. Edward C. Delafield

*indicates new member