

Therapeutic Medical Physics Residency Rotation Curriculum

Orientation and Professional Curriculum

Rotation Director: Watchman Rotation Mentors: Watchman Rotation Location(s): MSKCC Main Campus

Duration: 2 Weeks

Learning Objectives

- 1. The resident will be able to describe expectations required for clinical practice including
 - a. Basic safety, patient care
- 2. The resident will demonstrate knowledge of the six core competencies
- 3. The resident will be able to describe what a professional medical physicist is and the expectations of one.
- 4. The resident will be able to discuss ethical obligations of a medical physicist and be able to discuss solutions to ethical scenarios
- 5. The resident will be able to discuss the qualities of leadership and different leadership models
- 6. The resident will be able to discuss fundamental financial concepts in radiation oncology

Key Topics

- 1. Orientation to Clinical Practice
 - a. Expectations
- 2. Professional Curriculum
 - a. Core Competencies
 - i. Patient Care
 - ii. Medical Knowledge
 - iii. Practice-Based Learning and Improvement
 - iv. Interpersonal and Communication Skills
 - v. Professionalism
 - vi. System-Based Practice
 - b. Leadership
 - c. Ethics
 - d. Business and Finance
 - i. Billing CPT
 - ii. Budgeting
 - iii. SWOT Analysis
 - iv. Alternative Payment Model

Required Readings

- 1. RSNA/AAPM Ethics modules
- 2. Read Assigned Leadership Book
- 3. AAPM Medical Physics Practice Guideline 10.a.: Scope of practice for clinical medical physics published in the Journal of Applied Clinical Medical Physics (JACMP). (2018).

- AAPM Medical Physics Practice Guideline 3.a: Levels of supervision for medical physicists in clinical training published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 16, Number 3 (2015). [ISBN: 978-1-936366-45-3]
- 5. Ehsan, S et al. "Redefining and Reinvigorating the Role of Physics in Clinical Medicine: A Report from the AAPM Medical Physics 3.0 Ad Ho Committee." Med Phys 45 (9) e783-89, 2018
- 6. Additional readings as assigned

Tasks/Checklist Requirements/ Competencies

- 1. Complete all MSKCC on-boarding curriculum
 - a. If required (0+2)
- 2. Complete RSNA Modules
- 3. Complete Professionalism assignments
- 4. Meet with mentor as assigned and be prepared for the meeting

Evaluation Scheme:

Weekly Evaluation

1. Written weekly evaluations by mentor with resident achieving a marginal or greater score

Final Evaluation

1. Sign off by mentor

Therapeutic Medical Physics Residency Rotation Curriculum

Radiation Safety Curriculum

Rotation Director: Lawrence Dauer, PhD, CHP Rotation Mentors: Brian Quinn, Bae Chu Rotation Location(s): MSKCC Main Campus / Manhattan Campuses

Duration: 8 Weeks

Resident Professional Expectations

- 1. The resident will demonstrate a commitment to attainment of radiation safety knowledge and identify personal strengths and weaknesses in the attainment of radiation safety knowledge and, if indicated, demonstrate the ability to address weaknesses.
- 2. The resident will demonstrate responsible behaviors consistent with the highest ethical standards: honesty, respect, confidentiality, reliability, dependability, civility and punctuality.

Learning Objectives

- 1. The resident will be able to complete and discuss radiation surveys in a variety of contexts.
- 2. The resident will be able to complete and discuss patient dose monitoring.
- 3. The resident will be able to develop a radiation safety program.
- 4. The resident will be able to use and discuss the different aspects of radiation safety equipment.
- 5. The resident will be able to discuss and design laboratory radiation safety programs.
- 6. The resident will be able to complete external and internal dosimetry assessments for both clinical and occupational scenarios.
- 7. The resident will be able to demonstrate the ability to develop radiation shielding using NCRP methods.
- 8. The resident will be able to discuss and implement radioactive waste management methods.
- 9. The resident will be familiar with environmental radiation protection practice.
- 10. The resident will be able to develop and implement radiation safety training programs.
- 11. The resident will be able to demonstrate knowledge of federal, state and city laws/regulations related to the safe use of radiation producing machines and radioactive material.

Key Topics and Tasks

- 1. **Radiation safety surveys**: Appropriate selection of radiation instrumentation including energy response, efficiency, sensitivity and geometry. Performing radiation measurements and evaluation of radiation measurements with regard to purpose of survey and regulatory requirements. Radiation measurements in diagnostic and therapeutic radiation settings. Surveys for removable contamination. Radiation safety features of equipment and treatment room.
- 2. **Patient dose monitoring**: In-air measurements of exposure and exposure rates from equipment and measurements with phantoms using ionization chambers, patient dose measurement, calculation of skin entrance dose, internal organ dose, effective dose equivalent, risk estimation, evaluation of potential for deterministic effects, calibration and quality assurance of dosimeters and automated dosimetry systems.
- 3. *Additional experiences:* Design of radiation safety program, presentation of radiation safety in-service education, shielding design, consultation regarding radiation safety, patient doses

and image quality improvement.

- 4. *Clinical radiation safety*: Observation of inpatient therapy measurements/patient education. Observe brachytherapy implants (temporary/permanent) measurement/patient education. Review patient instruction booklets.
- Radiation safety instrumentation hands-on understanding: Understand operational differences/pros/cons for portable equipment. Tour the installed waste monitors. Perform wipe tests/leak tests.
- 6. *Laboratory radiation safety:* Assist in research laboratory radiation safety audits. Review the authorized user permitting process and inventory control.
- 7. *External dosimetry system:* Discuss monitoring program objectives and administration. Identify and discuss occupational dose limits. Review dosimetry reports (SDE, LDE, DDE, ALARA levels).
- 8. **Shielding design:** Understand NCRP methodology. Identify important points in Linac/PET shielding applications. Review ongoing shielding design packages and installations (depending on current construction projects); review design of existing facilities. Understand contribution to shielding requirements of head leakage, workload determination, broad beam transmission measurements, interpretation of regulatory requirements.
- 9. *Radioactive waste management:* Tour the decay-in-storage area. Review shipping manifests. Review DOT shipping course materials.
- 10. *Environmental protection:* Discuss regulatory limits on releases (air, water, etc.). Understand typical background levels.
- 11. *Training:* Discuss clinical desk in-service topics nurses, doctors, and patients. Review laboratory desk training package researchers.

Required Readings/Training

- 1. Khan Chapters 15 and 16
- 2. NCRP Reports 116, 147, 151, 155.
- 3. ICRP Report 103, 118
- 4. Health Physics Journal Articles as assigned
- 5. CFR and State Regulations as assigned
- 6. Additional reading as determined by the rotation mentor

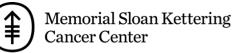
Tasks/Checklist

Торіс	Radiation Safety Section Contact	Notes
Clinical L	Desk	
Management of Therapy Patients	Bae Chu	
Observe 2 Inpatient therapy measurement/patient education (as available) Observe 2 Outpatient therapy measurement/patient education	Medical Health Physics Clinical Team: Bae, Kassia, Brian S, Joaquin	Check in with clinical team daily until all required cases are observed. Accompany clinical team in clinic.
Review Radioactive Precautions on Patient Eduction web pages: Search "LDR", "Radioactive", etc Observe 3 Y90 Spheres Case	https://www.mskcc.org/cancer- care/patient-education	
Observe IORT Case (as available)	Medical Health Physics Clinical Team	
Radiation Safety In	Radiation Safety Instrumentation	
Hands On Operation and Theory	Dan Chiappetta	Schedule with indicated contact
Perform a Wipetest/leaktest	Brian Serencsits	
Laborat	ory	
Assist a Research Laboratory Audit	Kyle Machon/	Schedule with indicated contact
Review the PI permitting process	Brian Serencsits	
External Do.	simetry	
Discuss Monitoring Program Objectives and Administration		Schedule with indicated
Identify and Discuss Occupational Limits	Daniel Miodownik	contact
Review Landauer Reports (SDE, LDE, DDE, ALARA Levels)		

md Licensing Matt Williamson pecially NCRP 151) d) Larry Dauer n te Management Bae Chu	Schedule with indicated contact Schedule with indicated contact
pecially NCRP 151) d) Larry Dauer n te Management	Schedule with indicated
d) Larry Dauer n te Management	
n te Management	
n te Management	
te Management	
Bacifiu	
Bao Chu	
Bae Cliu	Schedule with indicated contact
als	
al Protection	
Brian Quinn	Schedule with indicated contact
ing	
s Bae Chu	Schedule with indicated contact
	ning ts Bae Chu Daniel Miodownik

Торіс	Radiation Safety Section Contact	Notes
Review Laboratory Desk Training package – researchers		
	Brian Serencsits	
	Dan Chiappetta	
Literature Review: Resident	folder in H:\Public	Resources available on network drive.
Khan – Radiation Safety		
NCRP –116, 147, 151; ICRP – 103, 118		
Health Physics Society Journal	Larry Dauer	
Dose Quantities and Estimation		
ICRP Dose and Risk Quantities/Units		
Internal Dosimetry Approaches		

Final Evaluation


- 1. Multiple choice exam is given to identify areas of improvement before final evaluation
- 2. Oral exam and evaluation, mentor team has a checklist of required knowledge
- 3. Sign off by rotation director

Therapy Physics Residency Program Faculty Evaluation of Resident

	mon or restu	CHU		
Resident Name	NAME			
Rotation Name	Medical Healt	h Physics - Radia	tion Safety	
Inclusive Dates of Rotation DATES				
Faculty Name / Signature	Lawrence T. Dauer /			
Evaluation Criteria	Not	Marginally	Fully	Explanatory
Evaluation Criteria		- ·		
	Competent	Competent	Competent	Notes
Radiation Safety - Medical Health Physics				
 Medical Health Physics Procedures 				
 Identifies and locates institutional radiation safety administrative 			✓	
policies, medical staff rules, and procedures.				
Medical Health Physics Instrumentation				
 Understand radiation detector design considerations (detection 			✓	
mechanisms, sensitivity, detection element size, energy				
dependence, dose and dose rate range, and stability of readings).				
 Reviews the advantages and disadvantages of each detector type 			~	
in relation to different uses.				
 Demonstrates ability to use variety of available medical health 			✓	
physics instrumentation.				

 Cont 				
	amination Control			
	 Lists federal, state, and city regulatory requirements related to 		~	
	receipt of radionuclides, disposal of radioactive waste, and daily			
	checks for contamination.			
	 Demonstrates familiarity with and reviews the records required in 		✓	
	the Radiation Oncology and Radiation Therapy Physics area.		-	
	 Demonstrates the ability to use health physics instrumentation to 		Ý	
	perform surveys for contamination control, radionuclide package			
	receipt, and radioactive waste disposal.			
	 Demonstrates the ability to perform wipe tests for contamination. 		✓	
C1 1 1				
	lding Design for Radiation Therapy Facilities			
	 Demonstrates familiarity with shielding design concepts and 		Ý	
	describes what information is required to perform shielding			
	calculations and site planning and construction supervision.			
	 Demonstrates knowledge of radiation exposure limits pertaining 		✓	
	to staff and the general public for shielding.			
	 Discusses shielding considerations for LINAC, HDR 		·	
	Brachytherapy, CT SIM, PET/CT, General Radiology,			
	Fluoroscopy, and radioactive material use areas. IMRT.			
	 Performs shielding calculations for a LINAC suite. (NCRP-151) 		~	
	<i>v v v</i>			
		1		
 Radi 	ation Exposure to Personnel and the Public			
	 Demonstrates knowledge of radiation exposure limits to staff and 		✓	
	the general public.			
	 Describes radiation signage required for therapy facilities. 		~	
	 Explain risks of radiation exposure, LNT, source of information 		~	
	on secondary cancers from therapy.			
			✓	
	 Know the major natural sources of background radiation and 		Ť I	
	know the major man-made sources of radiation exposure in U.S.	ļ		
	 Demonstrate knowledge of external radiation exposure protection 		~	
	principles (including: time, distance, shielding, planning).			
	 Understand the use of personnel monitoring systems, procedures, 		✓	
	and reports, including declared pregnant workers.			
D. 1				
	ation Protection Programs			
	 Discuss the role and responsibility of a radiation safety officer and 		~	
	radiation safety committee.			
	 Discuss the significance of ACR, ASTRO, AAPM, NCRP, and 		×	
	ICRP recommendations.			
	 Understand written directive requirements for Brachytherapy. 			
 Radi 	ation Incidents			
	 Describes action plan for controlling the spread of contamination 		×	
	after a spill.			
	 Describes the procedure for decontamination after a spill of 		✓	
	radioactive material (or participates in response to a spill).			
 Medi 	ical Events			
	 Demonstrates knowledge of the definition of a medical event 		×	
	under federal, state, and city regulations and the rules for			
	under federal, state, and city regulations and the rules for reporting a medical event.			
	under federal, state, and city regulations and the rules for			
Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus		√	
Dose	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus o Demonstrates knowledge of the definition of medical event with			
Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable.			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy.			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy.			
• Dose	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.).			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. o Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance o Familiarity with the recommendation organizations such as the			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. o Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance o Familiarity with the recommendation organizations such as the			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection			
Dose Radia	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). to Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the			
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety.			
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC-		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection.		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. Demonstrates knowledge of the principles of radiation protection:		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection.		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus O Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. O Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance o Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. O Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation.		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). tation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection Gased) related to medical health physics/radiation protection. Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation.		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. to Embryo/Fetus O Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. O Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance o Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. O Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation.		· · · · · · · · · · · · · · · · · · ·	
Dose Radi	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus o Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. o Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. o Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance o Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection (ICRP), the International Atomic Intersey Agency (IAEA), and the Joint Commission, and FDA for radiation protection. o Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. o Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation.		· · · · · · · · · · · · · · · · · · ·	
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation.		· · · · · · · · · · · · · · · · · · ·	
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Comission on Radiological Protection (ICRP), International Comission on and Ultrasound safety. • Familiarity with the published literature (especially MSKCC-based) related to medical health physics/radiation protection: justification, optimization, and limitation. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Comission on Radiological Protection (ICRP), International Comission on and Ultrasound safety. • Familiarity with the published literature (especially MSKCC-based) related to medical health physics/radiation protection: justification, optimization, and limitation. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation.			
Dose Radii Radia	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), International Comission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation. • Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. • Understands what an agreement state is and how they regulate. • Demonstrates familiarity with the contents and requirements of a			
Dose Radi Radi	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. Understands what an agreement state is and how they regulate. Demonstrates familiarity with the contents and requirements of a radioactive materials license.			
Dose Radi Radi	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), International Comission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation. • Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. • Understands what an agreement state is and how they regulate. • Demonstrates familiarity with the contents and requirements of a			
Dose Radi Radi	under federal, state, and city regulations and the rules for reporting a medical event. e to Embryo/Fetus Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. Understands what an agreement state is and how they regulate. Demonstrates familiarity with the contents and requirements of a radioactive materials license.			
Radia	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation. • Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. • Understands what an agreement state is and how they regulate. • Demonstrates familiarity with the contents and requirements of a radioactive materials license. • Participates in audits of areas that use radiation for compliance with regulations and recommendations.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), International Comission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation and ultrasound safety. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation. • Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. • Understands what an agreement state is and how they regulate. • Demonstrates familiarity with the contents and requirements of a radioactive materials license. • Participates in audits of areas that use radiation for compliance with regulations and recommendations.			
Dose Radii Radii	under federal, state, and city regulations and the rules for reporting a medical event. eto Embryo/Fetus • Demonstrates knowledge of the definition of medical event with regard to unplanned fetal exposure and how to determine if an event is reportable. • Demonstrates familiarity with the resources related to fetal dose calculations and protection in therapy. • Recognizes the applicable fetal dose guidance documents (NCRP Report No. 174; etc.). ation Safety Guidance • Familiarity with the recommendation organizations such as the National Council on Radiation Protection and Measurements (NCRP), International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the Joint Commission, and FDA for radiation protection. • Familiarity with the published literature (especially MSKCC- based) related to medical health physics/radiation protection. • Demonstrates knowledge of the principles of radiation protection: justification, optimization, and limitation. • Complete assigned readings for this rotation. • Demonstrates familiarity with federal, state, and city regulations relevant to imaging and nuclear medicine radiation protection and transportation of radioactive material. • Understands what an agreement state is and how they regulate. • Demonstrates familiarity with the contents and requirements of a radioactive materials license. • Participates in audits of areas that use radiation for compliance with regulations and recommendations.			

Therapeutic Medical Physics Residency Rotation Curriculum Dosimetry

Rotation Director: Michael Lovelock Rotation Mentors: as assigned Rotation Location(s): MSKCC Main Campus / Manhattan Campuses

Duration: Ongoing through year 2

Resident Professional Expectations

- 1. The resident will demonstrate punctuality.
- 2. The resident will be present for all assignments
 - a. Should a resident not be able to attend assignment enough notification with faculty should be given
- 3. The resident will communicate effectively with faculty, staff and physicians.
- 4. The resident will demonstrate professional curtesy with all oncology and physics team members.
 - a. This will include use of equipment and return of facility to clinical readiness
- 5. The resident will support the radiation therapists.

Learning Objectives

- 1. The resident will be able to independently conduct daily, monthly and annual linac QA.
- 2. The resident will be able to develop a quality assurance program for all equipment used in clinical and quality assurance activities.
- 3. The resident will be able to conduct quality assurance activities in a large practice and small practice environment.
- 4. The resident will be able to discuss and use all quality assurance tools covered in this rotation.
- 5. The resident will develop treatment machine skills in treatment, physics and service modes.

Required Readings/Training

- 1. Report of the Task Group #51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)
- 2. Report of the Task Group #53 Quality Assurance for Clinical Radiotherapy Treatment Planning (Reprinted from Medical Physics, Vol. 25, Issue 10)
- 3. Report of the Task Group #62 Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy
- Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics, Vol. 30, Issue 8
- 5. Dosimetry Task Group #70 Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25 Medical Physics, Vol 36, Issue 7
- 6. Report of the Task Group #74 Report of AAPM Therapy Physics Committee Task Group 74: In- air output ratio, *S*_C, for megavoltage photon beams, Medical Physics, Vol 36, Issue 11
- 7. Dosimetry Task Group #70 Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25, Medical Physics, Vol 36, Issue 7

- 8. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Medical Physics, Vol 35, Issue 9
- 9. Report of Task Group 142 : Quality assurance of medical accelerators Medical Physics, Vol 36, Issue 9.
- 10. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
- 11. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 18, Number 4 (2017).
- 12. Others as assigned.

Key Topics and Tasks

1. Complete assignments for sign off in document below.

MSKCC Physics Residency: Radiation Therapy Rotation

Dosimetry Group Progress Checklist

	Start date
Resident:	8/13/2018

Notes

1. Tasks can be competed at the earliest opportunity, prior to the milestone date. Tasks do not have to be completed in sequence.

2. There are sets of questions for each of the milestone dates. Short, concise responses are required. Email your answers to your current mentor and to Michael Lovelock. Your mentor will review your responses with you. Your responses form part of your Dosimetry Group record.

3. You are required to perform one or more end to end tests using an anthropomorphic phantom to quantify dosimetric and geometric accuracy of dose delivery. (See AAPM MPPG 9a). At the 12 month milestone, schedule with you mentor the setup and CT scan of the phantom. Over the next few weeks you need to setup the phantom in the CT simulation suite, scan ther phantom, plan the the dose distribution , deliver the treatment, and then using film dosimetry, analyse the results, and write a short report suitable for departmental review.

4. There will be two oral sessions with members of the Dosimetry Group to review your progress. These will be scheduled after the 12 and 21 month milestones

	Milestone Date	Physicist Initial	Signoff Date
Tasks to be Completed within 6 months:	2/13/2019		
Shadow therapists for morning QA (at least 5 sessions on different machines)			
Perform monthly QA for the CT simulation suite. Operate CT scanner for phantom			
scans.			
Perform monthly linac QA inclusive of imaging systems			
Perform patient specifc QA using EPID			
Perform patient specifc QA using mapcheck			

Tasks to be Completed within 12 months:	8/13/2019	
Perform Daily QA of Calypso		
Perform Daily QA of ExacTrac		
Perform Daily QA of AlignRT		

Perform TBI/TSET QA	
Perfrom monthy and annual QA of a kV therapy unit	
Perform radiochromic fim analysis	
Assist in Annual QA and associated data analysis of a Linac including imaging, TG51	
procedure including handcalculations for photons and electrons	
Under the supervision of a qualified medical physicist, able to calibrate the morning QA	
device	
Run the automatic QA process on a TrueBeam (MPC).	
Perform an ISOCAL calibration or verification on a TrueBeam	
Schedule with your mentor one or more end-to-end tests (localization and dosimetry)	
of anthropomorphic phantom(s)	
Calibrate OSLDs	

Tasks to be Completed within 18 months:	2/13/2020	
Independently perform the Annual QA of a CT simulation suite		
Under the supervision of a qualified medical physicist, able to use t	he Profiler	

Tasks to be Completed within 21 months:5/13/2020		
Independently perform annual QA, including dosimetry of the Linac imaging systems		
Complete end-to-end test of the anthropomorhpic phantom and su	001	

Final Evaluation

- 1. Written exam (timed closed book)
 - a. Oral if written final exam is <80%
 - i. Oral exam score ≥3 on 5 point scale

Therapeutic Medical Physics Residency Rotation Curriculum Imaging

Rotation Director: Lawrence Rothenberg Rotation Mentors: as assigned Rotation Location(s): MSKCC Main Campus and other locations as assigned

Duration: Ongoing for 1 year

Resident Professional Expectations

- 1. The resident will exhibit professional standards of MSKCC
- 2. The resident will complete reading and imaging QA assignments on time and as assigned
- 3. The resident will proactively coordinate training sessions with imaging faculty to ensure all obligations are met in conjunction with their other rotations

Learning Objectives

- 1. The resident will be able to develop an imaging quality assurance program.
- 2. The resident will be able to conduct imaging quality assurance activities in a large practice and small practice environment.
- 3. The resident will be able to discuss and use all imaging quality assurance tools covered in this rotation.

Required Readings/Training

- 1. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
- AAPM Medical Physics Practice Guideline 2.a: Commissioning and quality assurance of X-ray– based image-guided radiotherapy systems published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 15, Number 1 (2014). [ISBN: 978-1-936366-31-6]
- 3. ACR Guidance Document on MR Safe Practices: 2013. Journal of Magnetic Resonance Imaging 37:501-530 (2013).
- 4. Phantom Test Guidance. ACR MRI Accreditation Program. American College of Radiology.

Key Topics and Tasks

- 1. Review appropriate AAPM Task Group Reports of relevant Diagnostic Imaging Devices
- 2. Complete Annual Compliance Tests on
 - a. 2 or more CT scanners
 - b. 2 or more ultrasound units
 - c. 2 or more mobile C-arm fluoroscopy units
 - d. At least 1 MRI scanner
 - e. At least 1 PET/CT scanner

Final Evaluation

1. Mentor sign off on task list

	IERAPY PHYSICS R EVALUATION OF RE				
Resident name					
Rotation name	Computed Tomog	raphy			
Inclusive dates of rotation	_				
Faculty name					
Evaluation Criteria	Not Completed	Marginally Completed	Fully Completed	Explanatory Notes	
Patient care	(residents should provide information that is appropriate, accurate and relevant to diagnosis of health problems)				
1. Observes and understands annual compliance testing of a computed tomography scanner.					
2. Observes and understands annual compliance testing of a second computed tomography scanner.					
3. Observes and understands annual compliance testing of additional computed tomography scanners.					
4. Understands calculation of CTDI for computed tomographic examinations.					
Medical knowledge	(residents should be	e knowledgeable, so	cholarly, and committ	ed to lifelong learning)	
5. Explains the complete computed tomographic imaging chain from production of X-rays to image reconstruction.					
6. Explains the physical meaning of Hounsfield Units.					
7. Explains how specifics of imaging protocol affect patient dose and diagnostic benefits of examination.					
Practice-based learning and improvement			ate patient care prac ove patient care prac		
8. Assists with analysis of results of testing and observes unexpected findings including image artifacts.					
9. Assists with investigation of equipment performance and image quality problems.					
10. Recognizes and corrects personal errors.					
Interpersonal and communication skills			information exchang rofessional associate		
11. Works effectively with others as a member of a health care team.					

12. Assists with production of written reports		
13. Listens effectively and follows directions		

THERAPY PHYSICS RESIDENCY PROGRAM FACULTY EVALUATION OF RESIDENT – IMAGING ROTATION					
Resident name					
Rotation name	ULTRASOUN	ID			
Inclusive dates of rotation					
Faculty name					
Evaluation Criteria	Not Completed	Marginally Completed	Fully Completed	Explanatory Notes	
Patient care	(residents sho	ould provide info		appropriate, accurate	
1. Observes and understands annual physics quality control testing of a general ultrasound unit and associated transducers.					
2. Observes and understands annual physics quality control testing of a second general ultrasound unit and associated transducers.					
3. Observes and understands annual physics quality control testing of additional general ultrasound units and associated transducers.					
4. Reviews historical QC data for units from at least one section of DI scanners (general, breast, IR, head and neck, O.R./ICU)					
5. Is familiar with all the areas in DI using ultrasound and the primary exams performed in each area.					
Medical knowledge	(residents sho lifelong learni		geable, scholar	ly, and committed to	
 6. Explains the complete ultrasound imaging chain from production of vibrations to image reconstruction. 7. Explains the sources of contrast in 					
ultrasound imaging.					
8. Explains how specifics of imaging protocol affect the diagnostic benefits of examination.					
9. Understands and can explain the principles of ultrasound safety and ALARA with respect to FDA regulations.					
10. Understands and can explain modern clinical ultrasound techniques, some common commercial names and their use/benefit in the clinic, including power doppler, tissue harmonic imaging, spatial/frequency compound imaging, panoramic imaging, phase aberration correction, 1.5D and 2D scanhead					

(residents should investigate and evaluate patient care practices, appraise and assimilate scientific evidence and improve patient care practices)					
(residents should demonstrate effective information exchange with physicians, technologists, service personnel, and professional associates)					

	PY PHYSICS RESIDI UATION OF RESIDE			
Resident name				
Rotation name	FLUOROSCOPY			
Inclusive dates of rotation				
Faculty name				
Evaluation Criteria	Not Completed	Marginally Completed	Fully Completed	Explanatory Notes
Patient care	(residents should pr diagnosis of health	ovide information the	at is appropriate, accu	irate and relevant to
1. Observes annual compliance testing of a mobile fluoroscopic system.				
2 Observes annual compliance testing of a second mobile fluoroscopic system.				
3. Observes operation of fluoroscopic systems with appropriate regard for radiation safety.				
4. Determines entrance exposure rate for fluoroscopic examinations.				
5. Estimates patient ionizing radiation dose and risk for fluoroscopic examinations.				
Medical knowledge	(residents should be	knowledgeable, scl	holarly, and committe	d to lifelong learning)
6. Explains the complete fluoroscopic imaging chain from production of X-rays to image formation.				
7. Explains how operator choices affect patient dose and image quality.				
8. Explains methods of exposure control in fluoroscopic systems that use image intensifiers and digital receptors.				
Practice-based learning and improvement			te patient care practio ve patient care practio	
 Assists with analysis of results of testing and observes unexpected findings. 				
10. Observes Investigation of equipment performance and image quality problems.				
11. Recognizes and corrects personal errors.				
Interpersonal and communication skills			information exchange ofessional associates	
12. Works effectively with others as a member of a health care team.				
13. Assists with production of written reports that are accurate, concise, and grammatically correct.				

14. Listens effectively and follows directions.

THERAP FACULTY EVALU	Y PHYSICS RES				
Resident name					
Rotation name	NUCLEAR MED	DICINE – PET, S	SPECT, GAMM	A CAMERA	
Inclusive dates of rotation		,	,		
Faculty name					
Evaluation Criteria	Not Completed	Marginally Completed	Fully Completed	Explanatory Notes	
Patient care		d provide inform	nation that is app	propriate, accurate and	
1. Assists with performance of annual compliance testing of a nuclear medicine gamma camera.					
2. Assists with performance orf annual compliance testing of a positron emission tomography scanner.					
3.Assists with performance of QC tests and calibrations of nuclear medicine imaging systems, dose calibrators, and counting systems.					
 4. Estimates patient and conceptus ionizing radiation doses and risk for nuclear medicine examinations. 					
5. Is familiar with radiopharmacy and radiation safety and protection procedures and associated regulations.					
6. Computes exposure factors related to radiation safety of release of a radioactive patient.					
Medical knowledge	(residents shoul lifelong learning		able, scholarly,	and committed to	
7. Explains the complete nuclear medicine imaging chain from the ionizing radiation source to image reconstruction.					
8. Understands the use and characteristics of radionuclides for nuclear medicine imaging and therapy.					
9. Explains how uptake and clearance of radionuclides affects patient dose and benefits of examination.					
Practice-based learning and improvement	(residents should investigate and evaluate patient care practices, appraise and assimilate scientific evidence and improve patient care practices)				
10. Assists with analysis of results of testing and recognition of unexpected findings.					
11. Assists with investigation of equipment performance and image quality problems.					
12. Recognizes and corrects personal errors.					

	(maniple inter also bit		-time information	:		
Interpersonal and communication	(residents should demonstrate effective information exchange with					
skills	physicians, technologists, service personnel, and professional					
	associates)					
13. Works effectively with others as a						
member or leader of a health care team.						
14. Assists with production of written						
reports that are accurate, concise, and						
grammatically correct.						
16. Listens effectively and follows						
directions.						
Professionalism	(residents					
	should carry					
	out					
	responsibilities,					
	adhere to					
	ethical					
	principles and					
	show					
	sensitivity to a					
	diverse patient					
	population)					
17. Responsive to the needs of patients	population)					
that supersedes self-interest.						
18. Respects patient privacy and						
confidentiality.						
19. Commitment to excellence and						
ongoing professional development.						
Systems-based practice	(residents					
	should be					
	aware of the					
	system of					
	health care					
	and					
	effectively call					
	on system					
	resources to					
	provide optimal					
	care)					
20. Understands how their professional						
practices affect other health care						
professionals.						
21. Utilizes system resources effectively						
to provide care that is of optimal value.						
	1					

THERAPY PHYSICS RESIDENCY PROGRAM FACULTY EVALUATION OF RESIDENT – IMAGING ROTATION						
Resident name						
Rotation name	MAGNETIC RE	SONANCE IMA	GING			
Inclusive dates of rotation						
Ecoulty nome						
Faculty name						
Evaluation Criteria	Not Completed	Marginally Completed	Fully Completed	Explanatory Notes		
Patient care	(residents shoul relevant to diagr			propriate, accurate and		
1. Assists with annual testing of a						
magnetic resonance imaging						
system.						
- Observes and understands Annual Evaluations and Quality						
Control Testing of an MRI						
System including RF Coil						
Evaluations.						
2. Assists with daily quality control tests of						
a magnetic resonance imaging system.						
4. Assists with quality control tests on RF						
coils.						
5. Analyzes phantom images with all						
other requirements of ACR MR						
accreditation program.						
a) Learn how to complete ACR						
Data Form for Weekly (Daily)						
MRI Equipment Quality Control.						
b) Understand the meaning of data						
and parameters measured and						
entered on ACR Form during						
Weekly (Daily) QC MRI Testing.						
c) To be able to complete ACR						
MRI Accreditation Program Visual Checklist Form during						
observation of Annual						
Evaluations.						
6. Practices MR safety.						
- Comply with MSKCC MRI Safety						
Training and with any other MRI Safety						
requirement before accessing an MRI						
Suite for the first time.						
7. Reviews plans for siting of a magnetic						
resonance imaging system.						
8. Uses information technology to						
retrieve and store patient demographic,						
examination, and image information.						
Attend MRI Clinical Observation Sessions						
at sites available at the time of scheduling						

Medical knowledge	(residents		
	should be		
	knowledgeable,		
	scholarly, and committed to		
	lifelong		
	learning)		
9. Explains the complete magnetic resonance imaging chain from production			
of signal to image reconstruction. 10. Explains the role of k-space mapping		T	
in MR imaging.			
11. Explains how specific pulse			
sequences affect contrast in MRI and			
diagnostic benefits of examination.			-
12. Uses information technology to			
investigate clinical, and technical questions.			
Practice-based learning and	(residents	1	1
improvement	should		
	investigate and		
	evaluate		
	patient care		
	practices, appraise and		
	assimilate		
	scientific		
	evidence and		
	improve patient		
	care practices)		
13. Assists with analysis of results of			
testing and recognizes unexpected findings including image artifacts.			
14. Assists with investigation of			
equipment performance and image			
quality problems.			
15. Recognizes and corrects personal			
errors.			
Interpersonal and communication	(residents		-
skills	should		
	demonstrate		
	effective		
	information		
	exchange with		
	physicians,		
	technologists,		
	service personnel, and		
	professional		
	associates)		
16. Works effectively with others as a member or leader of a health care team.		 	
17. Assists with production of written			
reports that are accurate, concise, and grammatically correct.			
18. Listens effectively.			
Professionalism	(residents		
	should carry		

	out responsibilities, adher to ethical principles and show sensitivity to a diverse patient population)	
20. Responsive to the needs of patients that supersedes self-interest.		
21. Respects patient privacy and confidentiality.		
22. Commitment to excellence and ongoing professional development.		
Systems-based practice	(residents should be aware of the system of health care and effectively call on system resources to provide optimal care)	
24. Understands how professional practices affect other health care professionals.		

Therapeutic Medical Physics Residency Rotation Curriculum Radiation Oncology Informatics

Rotation Director: Watchman Rotation Mentors: Watchman Rotation Location(s): MSKCC Main Campus

Duration: 4 Weeks full time Clinical assignment when opportunity is available

Resident Professional Expectations

- 1. The resident will exhibit professional standards of MSKCC
- 2. The resident will complete reading assignments prior to weekly meetings with mentor

Learning Objectives

- 1. The resident will be able to discuss imaging informatics standards.
- 2. The resident will be able to discuss DICOM-RT Standards.
- 3. The resident will be able to discuss and work with Record and Verify systems.
- 4. The resident will be able to develop and run imaging workstation quality assurance.
- 5. The resident will be able to discuss and implement treatment record design and maintenance.
- 6. The resident will understand the roles of the different members of the medical/radiation oncology informatics team.

Required Readings/Training

- Starkschall, G and Siochi, A. Informatics in Radiation Oncology. CRC Press 2013, ISBN: 9781439825822
- RA Soichi et al. AAPM Report 201. "Information Technology Resource Management in Radiation Oncology". OURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009. https://doi.org/10.1120/jacmp.v10i4.3116
- 3. Assessment of Display Performance for Medical Imaging Systems: Executive Summary of AAPM TG18 Report. https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1861159
- 4. <u>https://www.aapm.org/IHERO/</u>
- 5. https://www.dicomstandard.org/
- 6. M Law, B Lui. "DICOM-RT and its Utilization in Radiation Therapy". Radiographics Vol. 29 No. 3 Pg. 655-667.
- 7. Bushberg , JT et al. "Chapter 5: Medical Imaging Informatics" <u>The Essential Physics of Medical</u> <u>Imaging</u>. 3rd Edition, Lippincott Williams & Watkins ©2012

Key Topics and Tasks

- 1. PACS systems and their integration
- 2. HL7
- 3. DICOM standards
- 4. DICOM in radiation therapy (DICOM-RT)
- 5. Information acquisition from PACS/images
- 6. Quality/maintenance of imaging workstations
- 7. Evaluation of viewing conditions

- 8. Image registration, fusion, segmentation, processing
- 9. Quantitative analysis
- 10. Record and verify systems
- 11. Treatment record design/maintenance
- 12. IHE Radiation Oncology (IHE-RO)
- 13. Network integration/management, and roles of physics and information technology staff

In addition to the Radiation Oncology specific informatics discussions the residents will meet with or have lectures from the following:

- PACS and RIS systems and their integration (Radiology Workflow) Brenda Maxworthy
- What is HL7 (Health Level Seven International) (Daniel LaFontaine)
- DICOM standards (Brad Beattie)
- Information acquisition from PACS/images (Daniel LaFontaine)
- Informatics variations among modalities (Daniel LaFontaine)
- Dose reporting features Dose watch (Usman Mahmood)
- Use of IHE (Integrating Healthcare Enerprise) radiology profiles (Brenda Maxworthy)
- Open source software resources (Krishna Juluru)
- How do radiologists read scans (Krishna Juluru)
- Quality/maintenance of imaging workstations (Andreas Ruuge)
- Evaluation of viewing conditions (Andreas Ruuge)
- Image registration, fusion, segmentation, processing (Aditya Apte)
- Quantitative analysis (Amita Dave)
- Kinetic modeling/computer analysis (Brad Beattie)
- Radiomics / Texture Analysis (Aditya Apte)
- Deep Learning (Harini Veeraraghavan)
- Artificial Intelligence (Anyi Li)

These meetings/lectures will be given annually and the resident will provide documentation of attendance.

Final Evaluation

- 1. Oral Exam
 - a. Oral exam score \geq 3 on 5-point scale

Therapeutic Medical Physics Residency Rotation Curriculum Commissioning

Rotation Director: Michael Lovelock Rotation Mentors: S. Gary Lim Rotation Location(s): Location TBD based on machine location

Duration: 4 Weeks full time

Additional assignments given when available

Resident Professional Expectations

- 1. The resident will demonstrate punctuality.
- 2. The resident will be present for all assignments
 - a. Should a resident not be able to attend assignment enough notification with faculty should be given
- 3. The resident will communicate effectively with faculty, staff and physicians.
- 4. The resident will demonstrate professional curtesy with all oncology and physics team members.
 - a. This will include use of equipment and return of facility to clinical readiness
- 5. The resident will support the radiation therapists.

Learning Objectives

- 1. The resident will understand and be able to acquire needed beam data.
- 2. The resident will be able to manage beam data.
- 3. The resident will understand process of beam modelling.
- 4. The resident will be able to evaluate image import and quality in the commissioned system.
- 5. The resident will be able to discuss and implement the process of commissioning.

Required Readings/Training

- 1. Report of Task Group 142 : Quality assurance of medical accelerators Medical Physics, Vol 36, Issue 9.
- 2. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
- 3. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 18, Number 4 (2017).
- 4. AAPM Medical Physics Practice Guideline 2.a: Commissioning and quality assurance of X-ray– based image-guided radiotherapy systems published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 15, Number 1 (2014). [ISBN: 978-1-936366-31-6]
- 5. Report of Task Group#119 IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119, Medical Physics, Vol 32, Issue 11
- 6. Report of the Task Group #53 Quality Assurance for Clinical Radiotherapy Treatment Planning (Reprinted from Medical Physics, Vol. 25, Issue 10)
- 7. Report of the Task Group #51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)
- 8. Report of the Task Group #51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)

Key Topics and Tasks

- 1. Complete the commissioning report and include all data
 - a. See report after evaluation

Final Evaluation

- 1. Oral Exam
 - a. Passing \geq 3 on a 5 point scale.

Linear accelerator commissioning report

Machine name:

SN:

Machine type: Varian

Energies:

Photons:

Electrons:

Acceptance Date:

Clinical release date:

Commissioning Personnel:

Contents:

- 1. Clinical Release Form (Signatures)
- 2. Acceptance Certificate

3.	Water tank measurements	5
4.	Annual QA report	14
5.	Machine output (TG51)	22
6.	Preclinical plan QA	27
7.	Radiation Survey	31
8.	SRS End to End test	33
9.	Imaging Geometrical Accuracy	35
10.	KV Mechanicals / Safety / Image Quality	36
11.	KV dosimetry	37
12.	IROC Output Reports	39

Release of a New Treatment Machine

Department of Medical Physics

Name of Machine:

Serial Number:

Site

Request for Clinical Release

Requested and Certified by:

Signature:

Approval for Release

Dosimetry Approval Signature:

Treatment Planning Approval:

Signature:

Regional Lead Approval:

Signature:

Date of Release for Clinical Service:

SRS Clinical Release:

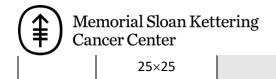
Description:

Acceptance Certificate

Water Tank measurements

PDDs

Beam Quality Photons: PDD at d=10 cm, 20 cm


Machine	
Date of measurement	
Physicists	
Water tank	
Field detector	
Reference detector	
SSD	
Data processing	
Reference data	

	Photons (Tolerance 1% - TG142)								
Energy	Field Size	%DD (10	%DD (10 cm) %DD (20 cm)		% Difference from 245-TB3				
	(cm)					%DD (10 cm)	%DD (20 cm)		
	3×3								
6 MV	10×10								
	30×30								
	3×3								
6FFF	10×10								
	30×30								

Beam Quality Electrons R50

	Electrons (Tolerance 1 mm – TG142)									
Energy	Field Size (cm)			R50 (mm)						
	6×6									
6 MeV	10×10									
	25×25									
	6×6									
9 MeV	10×10									
	25×25									
12 MeV	6×6									
	10×10									

Profiles

Measurement data extracted from OmniPro Accept/myQA Accept using the profile analysis template "Varian" for photons and electrons.

Machine	
Date of measurement	
Physicists	
Water tank	
Field detector	
Reference detector	
SSD	
Data processing	
Reference data	

Predefined parameters are:

- Center
- Penumbra
- Field width
- Flatness: defined as Variation over mean (80%). It's calculates as F = 100*|d_{max}- d_{min}//(d_{max} + d_{min}).

• Symmetry: defined as Point difference: max difference in dose between points on equal distance from central axis within flattened area:

Symmetry = 100*max (|Point_L - Point_L|)| / D_{cax}

The flattened area is defined as 80% of FW.

Photon Symmetry. QA3 used for measurement. Tolerance 1% TG142

Energy	dmax (cm)	Center	Center Gun Target Right Left		Target Right Left		etry (%)	
					0		Radial	Trans
6х	1.5							
6fff	1.5							

	Sy	/mmetrized Ph	oton Profile	e Flatness.	Tolerance 1% TG	142
Energ Y	Field Size (cm)	Depth (cm)				% Difference (Machine - 245)
			Inline			
	3×3	1.4	Crosslin e			
			Inline			
		10	Crosslin e		6.11	
		1.4	Inline	0.75	0.65	-0.1
6 MV	10×10		Crosslin e			
0 111	10/10		Inline			
			Crosslin e			
			Inline			
	30×30	1.4	Crosslin e			
	30,00		Inline			
		10	Crosslin e			

	Symn	netrized Electrons F	Profile Flatness.	Tol: 1%	from basel	ine (444) TG142
	Depth (cm)	Field Size (cm)				Difference (Machine - 444)
		6×6	Inline			
			Crossline			
6E	1.2	10×10	Inline			
			Crossline			
		25×25	Inline			
		20/20	Crossline			
		6×6 2.0 10×10 25×25	Inline			
			Crossline			
9E	2.0		Inline			
			Crossline			
			Inline			
		201120	Crossline			
		6×6	Inline			
			Crossline			
12	2.5	10×10	Inline			
E			Crossline			
		25×25	Inline			
		20/20	Crossline			

	Electron Symmetry. QA3 used for measurement. Tolerance 1% TG142									
Energy	dmax (cm)	Center	Gun	Target	Right	Left	Asymmetry (%)			

				Radial	Trans
6e	1.5				
9e	2.0				
12e	2.5				

Output Factors

 (\mathbf{a})

Machine	
Date of measurement	
Physicists	
Water tank/solid water	
Detector (SN)	
Electrometer	
SSD	
Electrometer voltage bias	
Data processing	
Reference data	

	Photons. Tolerance 2% < 4x4, 1% > 4x4. TG142											
Energy	Field Size	245 TB3	Measu	% Diff								
	(cm)		Raw reading	Output factor	(Machine/245)							
	3×3	0.877										
6 MV	10×10	1.000										
	30×30	1.100										
	3×3	0.895										
6FFF	10×10	1.000										
	30×30	1.072										

Cone Factors

	Electrons. Tolerance +/- 2%. TG142											
Energy	Field Size	245 TB3	Meası	% Diff								
	(cm)		Raw reading	Output factor	(Machine/245)							
	6×6	0.937										
	10×10	1.000										
6 MeV	15×15	1.003										
	20×20	1.046										
	25×25	1.072										
	6×6	0.982										
	10×10	1.000										
9 MeV	15×15	0.996										
	20×20	1.009										
	25×25	1.008										
	6×6	0.959										
	10×10	1.000										
12 MeV	15×15	1.003										
	20×20	1.002										
	25×25	0.990										

Percentage depth dose -SRS

Measurement data extracted from OmniPro Accpet/myQA Accept

using the depth dose analysis template "AAPM TG-21" for photons and "AAPM TG-25" for electrons.

Machine	
Date of measurement	
Physicists	
Water tank	
Field detector	
Reference detector	
Setup	
Data processing	
Reference data	

	Photon PDD. Tolerance: 10cm and 20 cm: 1% TG142												
Energy	MLC (cm) X, Y		%DD (10 cm)		%DD ((20 cm)	% Difference (Machine - 244)						
							%DD (10 cm)	%DD (20 cm)					
	0.5 × 1.0	1.2 × 1.2											
6 MV	1×1	1.2 × 1.2											
0	2 × 2	2.2 × 2.2											
	3 × 3	3.2 × 3.2											
	0.5 × 1.0	1.2 × 1.2											
6 FFF	1×1	1.2 × 1.2											
0	2 × 2	2.2 × 2.2											
	3 × 3	3.2 × 3.2											

Profiles - SRS

Measurement data extracted from OmniPro Accpet/myQA Accept using the profile analysis template "Varian" for photons.

Machine	
Date of measurement	
Physicists	
Water tank	
Field detector	
Reference detector	
Setup	
Data processing	
Reference data	

			Syn	nmetry 3% (MP	PG9a)	
Energ y	MLC (cm) X, Y	Jaws (cm) X, Y	Dept h (cm)			Difference (Machine - 444)
			1.4	Inline		
6X	1 × 1	1.2 × 1.2	1.1	Crossline		
UN	1 / 1	1.2 ^ 1.2	10	Inline		
			10	Crossline		

Memorial Cancer Ce	Sloan Kette enter	ering			
		1.4	Inline		
2 × 2	2.2 × 2.2		Crossline		
2 ~ 2	212 / 212	10	Inline		
		10	Crossline		
		1.4	Inline		
3 × 3	3.2 × 3.2		Crossline		
0 / 0	0.2 × 0.2	10	Inline		
			Crossline		

Dynamic Wedges

Ra	atio of Wedge	Profiles: mach	nine # to
Correspond	ling point calc	ulated in Eclip	se Tol 2%. TG142
Field size (cm)	(X,Y)	45 deg IN	45 deg OUT
4 × 4	САХ		
	CAX		
	(x,y) = 0, 3		
1010	(x,y) = 3, 0		
10 × 10	(x,y) = 0, -3		
	(x,y) = 3, -3		
	(x,y) = 3, 3		
	САХ		
20 20	(x,y) = 0, 7		
20 × 20	(x,y) = 7, 0		
	(x,y) = 0, -7		

(x,y) = 7,-7	
(x,y) = 7, 7	

Ratio (%) of Wedge Factors: 243 / Eclipse (Tolerance 2%. TG142)

Wedge:	10 deg IN	15 deg IN	20 deg IN	25 deg IN	30 deg IN	45 deg IN	60 deg IN	45 deg IN, 50 MU	45 deg IN, 200 MU	45 deg OUT
CAX										

Annual QA Report

		MSKCC Lina	<u>c Annual Ca</u>	libration		Year	2019	Room	243
Enter current values (record visu						te onto the right o			
olerances are consistent with T					n levels at MSKCC.		*Fill in green cells		
ach linac is associated with its c		tient for various te	sts in the annua	I QA.				cate calculated value	
Associated Aria test patient MRI	N:						***Blue cells indic	ate calculated/looku	p values
1. Field light centricity									
Date: 11/6/2019		Physicist:	SL		Tolerance :	1 mm shift			
						,			
For TrueBeam machines:									
The centricity of the light sour	ce with collimator	rotation can be ch	ecked by using	the shadow of th	e crosshairs proie	cted to a piece o	f paper at the base	of the 25×25 elect	ron cone at
collimator angles of 90° and 2							· · ·		
·	Light bulb 1	Light bulb 2							
Radial shift (mm)	< 0.5 mm	< 0.5 mm							
Transverse shift (mm)	0.5 mm	0.5 mm							
For C-series machines:									
For C-series machines: The centricity of the light source	ce with collimator i	rotation can be ch	ecked by using	an object with a	right angle at one	comer, suspende	ed close to the cro	sshairs. The shadow	v of the obje
The centricity of the light sour			, ,		0 0	, ,		sshairs. The shadow	v of the obje
			, ,		0 0	, ,		sshairs. The shadow	v of the obje
The centricity of the light sour			, ,		0 0	, ,		sshairs. The shadow	v of the obje
The centricity of the light sour	marked on a piece		, ,		0 0	, ,		sshairs. The shadow	v of the obje
The centricity of the light source on the couchtop at 100 SSD is	marked on a piece		, ,		0 0	, ,		sshairs. The shadow	v of the objec
The centricity of the light sour on the couchtop at 100 SSD is Radial shift (mm)	marked on a piece		, ,		0 0	, ,		sshairs. The shadow	v of the objec
The centricity of the light source on the couchtop at 100 SSD is Radial shift (mm) Transverse shift (mm)	Marked on a piece	of paper at collin	nator angles of		0 0	, ,		sshairs. The shadow	v of the objec
The centricity of the light source on the couchtop at 100 SSD is Radial shift (mm) Transverse shift (mm) 2. Crosshair Centricity a	Marked on a piece	of paper at collin	nator angles of		cord the radial and	transverse shift	5.		v of the obje
The centricity of the light source on the couchtop at 100 SSD is Radial shift (mm) Transverse shift (mm)	Marked on a piece	of paper at collin	nator angles of		cord the radial and	transverse shift			v of the obje
The centricity of the light sources on the couchtop at 100 SSD is a source of the couchtop at 10	marked on a piece	of paper at collin	ation SL	90 [°] and 270°. Ret	Tolerance :	transverse shift 2 mm diamter fo	s.		v of the obje
The centricity of the light sources on the couchtop at 100 SSD is a source of the couchtop at 10	marked on a piece	of paper at collin	ation SL	90 [°] and 270°. Ret	Tolerance :	transverse shift 2 mm diamter fo	s.		v of the obje
The centricity of the light sources on the couchtop at 100 SSD is a source of the couchtop at 10	marked on a piece	of paper at collin	ation SL	90 [°] and 270°. Ret	Tolerance :	transverse shift 2 mm diamter fo	s.		v of the obje
The centricity of the light source on the couchtop at 100 SSD is Radial shift (mm) Transverse shift (mm) 2. Crosshair Centricity a Date: 11/6/2019 a) The projection of crosshairs is	marked on a piece	of paper at collin	ation SL	90 [°] and 270°. Ret	Tolerance :	transverse shift 2 mm diamter fo	s.		v of the obje
The centricity of the light sources on the couchtop at 100 SSD is a source of the couchtop at 10	marked on a piece	of paper at collin	ation SL	90 ⁰ and 270 ⁰ . Red	Tolerance :	transverse shift 2 mm diamter fo lest circle at 100 c	s.		v of the obje
The centricity of the light source on the couchtop at 100 SSD is in Radial shift (mm) Transverse shift (mm) 2. Crosshair Centricity a Date: 11/6/2019 a) The projection of crosshairs is 0.5 mm diameter b) Align the graph paper using a	marked on a piece	of paper at collin	ation stion sL , and 270° at 100 Record the devi	90 ⁰ and 270 ^o . Red	Tolerance :	transverse shift 2 mm diamter fo lest circle at 100 c	s.		v of the obje
The centricity of the light source on the couchtop at 100 SSD is in Radial shift (mm) Transverse shift (mm) 2. Crosshair Centricity a Date: 11/6/2019 a) The projection of crosshairs is 0.5 mm diameter	marked on a piece	of paper at collin	ation stion sL , and 270° at 100 Record the devi	90 ⁰ and 270 ^o . Red	Tolerance :	transverse shift 2 mm diamter fo lest circle at 100 c	s.		v of the object

4. Mechanical Isocenter vs Gantry Rotation Date: 11/6/2019 Physicist: SL/TL Tolerance : ±1 mm from baseline-> mm, from Check the extension of the front pointer by rotating the gantry from 90° to 270°. A second pointer, with a 2 mm diamter tip is secured horizontally off the end of the table top so that its tip is near the isocenter. The horizontal pointer is moved vertically and laterally, such that the center of the circle is defined by the horizontal pointer by rotating the gantry through 360°. The center of this circle is effectively the mechanical isocenter. The degree of extension of the front point should be recorded for future reference. Record the diameter of the smallest circle, which includes all the pointer positions. *Note: leave the horizontal front pointer in this position for the next two tests. 0.5 mm diameter 5. Crosshair Centricity vs Gantry Rotation Date: 11/19/2019 Physicist: SL Tolerance : 2 mm diameter The projection of the crosshairs, w.r.t. the horizontal front pointer, is observed at various gantry angles through 360° by placing a piece of graph paper just behind the pointer. The center of the horizontal front pointer is the mechanical isocenter, the maximum crosshair shift is: < 0.5 mm 6. Laser Alignment Date: 11/19/2019 Physicist: SL Tolerance : 1 mm For 100 cm wall lasers, check position w.r.t. the mechanical isocenter using the front pointer. For 130 cm lasers, measure the distance from the 100 cm lasers using a ruler. For ceiling and sagittal lasers, align the graph paper using a 1 cm MLC field (at collimator 0° only). Record the shifts of the lasers with respect to the graph paper. The MLC file is located at: va_transfer\TDS\input\Physics\Monthly QA\MLC 40x1cm.mlc Right Wall Left wall Transverse Longitudinal Lateral Ceiling Vertical Horizontal Vertical Horizontal 0.5 mm < 0.5 mm 100 cm 0.5 mm < 0.5 mm 0.5 mm < 0.5 mm < 0.5 mm Sagittal 130 cm 0.5 mm 0.5 mm < 0.5 0.5 mm 7. Optical Distance Indicator Date: 11/19/2019 Physicist: SL Tolerance : 1 mm @ isocenter (2 mm @ 80, 5 mm@ 130) Place the graph paper on the couch. To make sure the surface of the paper is at SSD 100 cm, rotate the gantry ±45° and adjust the couch height until the crosshair projection doesn't vary with respect to the line on the paper. Check and make sure the ODI is at 100 cm. Attach a ruler to the couch (best to attach the ruler to a 5 cm slab phantom placed on the couch). Use the laser to guide you to adjust the couch up by 20 cm and down by 30 cm. Check the ODI at 80 cm SSD and 130 cm SSD. Distance 80 cm SSD 100 cm SSD 130 cm SSD ODI

	ngle Indicator	r								
Date:	11/18/2019		Physicist:	SL		Tolerance :	: 1.0° (0.5°)			
						thogonal gantry ang				
						will appear as a 0.26	5 cm translation of	the isocenter (30	0 cm x tan 0.5°).	
e calibration o	f the gantry angle	at 0° and 180° sho	uld be more strin	gent, when possi	ble, for these ma	chines.				
-	14h 1 1	1000		-0	2700	1000				
	ith spirit level	180° cw	90°	0°	270°	180° ccw				
Digital	Indicator	180.0	89.9	359.9	269.9	180.0				
Collimate	r Angla India	ator						1		
	or Angle Indic	ator								1
Date:	11/18/2019		Physicist:	SL	ļ	Tolerance :	: 1.0° (0.5°)			
ign the graph i	apport following th		adura as for the s	oiling/cogittal log	orc Adjust the ss	llimator angle suc	h that the MIC is n	arallal to the gray	ah papar. This is th	o offortivo
						ligned to the graph				
commator and	sie. Necora the al	gital indicator read	ing. Notate the co	initiator angle so		lighted to the graph				aunigs.
		90°	0°	270°	1					
Digital	Indicator	90.0	0.0	270.0						
). Field siz	e defined at 1	100 cm SAD b	y light field	JAWS)						
Date:			Physicist:			Tolerance	2 mm or 1% of fie	eld width at isoce	nter (symmetric)	
	,,		,						nter (asymmetric)	
just the collin	nators to match se	veral field sizes co	vering the clinica	range. Record th	ne digital readout.	. Do this for the up				des).
Symmetri	c mode (cm)	Digital rea	dout (cm)							
•	• •	Y	х							
	×5	5.0	5.0							
	×10	10.0	10.0							
	×20	20.0	20.0							_
30	×30	30.0	30.0							
Asymmetri	c mode (cm)		Digital rea			-				
_C	(Y)	Y1 -9.1	Y2 -9.0	X1	X2					
	, -2 (X)	-9.1	-9.0	-1.9	-2.0					
	2	2.0	2.0	2.0	2.0					
	8	8.0	8.0	8.0	8.0					
	14	14.0	14.0	14.0	14.0					
f	19	19.0	19.0	19.0	19.1					
1a. Field si	ze defined at	: 100 cm SAD	by light field	(MLC)						
Date:			Physicist:			Tolerance :	: 1 <i>mm</i>			
ad the "Leafca	l2.mlc" file and sta	art the autocycle m	node. Record the l	eaf positions obs	served on the grap	ph paper, Note: If l	eaf positions exce	ed tolerance, rei	ntialize and reched	ck. If this do
ot correct the p	roblem, verify the	at the gap and offse	et calibration valu	es in the configu						
					ration file have no					
	L					ot changed.				
<u>r TB</u> : To reocro			mode, select "MLC	C" tab. Select "Ini	itialization" and th	ot changed. nen select "Calibrat				
<u>r TB</u> : To reocro			mode, select "MLC	C" tab. Select "Ini	itialization" and th	ot changed.				
<u>r TB</u> : To reocro <u>r C-series</u> : The	control paramete	ers are located in fi	mode, select "MLG iles on the MLC wo	C" tab. Select "Ini orkstation compu	itialization" and th	ot changed. nen select "Calibrat	ncology\Clinac\Co	ntroller\SysOffse		
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm)	control paramete Carriage A	ers are located in fi Carriage B	mode, select "MLC iles on the MLC wo A leaves	C" tab. Select "Ini orkstation compu B leaves	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\O	ncology\Clinac\Co	ntroller\SysOffse meters (cm)	ets.txt	
<u>r <i>TB</i></u> : To reocro r <u>C-series</u> : The	control paramete	ers are located in fi	mode, select "MLG iles on the MLC wo	C" tab. Select "Ini orkstation compu	itialization" and th	ot changed. hen select "Calibrat les (x86)\Varian\O Truel	ncology\Clinac\Co	ntroller\SysOffse meters (cm) C-s		
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm) 16.0	control paramete Carriage A 16.0	ers are located in fi Carriage B 16.0	mode, select "MLG iles on the MLC wo A leaves 16.0	C" tab. Select "Ini orkstation compu B leaves 16.0	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\O	ncology\Clinac\Co Control para	ntroller\SysOffse meters (cm)	ets.txt	
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm) 16.0 12.0	Carriage A 16.0 12.0	ers are located in fi Carriage B 16.0 12.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\O Truel A start	ncology\Clinac\Co Control para Beam 0.054	ntroller\SysOffse meters (cm) LfGpErr	ets.txt	
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0	Carriage A 16.0 12.0 8.0	Carriage B 16.0 12.0 8.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\O Truel A start A stop	ncology\Clinac\Co Control para Beam 0.054 0.069	ntroller\SysOffse meters (cm) C-s LfGpErr CntLnOfs	ets.txt	
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0	Carriage A 16.0 12.0 8.0 4.1	ers are located in fi Carriage B 16.0 12.0 8.0 4.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\O Truel A start A stop B start	Control para Control para Beam 0.054 0.069 -0.004	ntroller\SysOffse meters (cm) C-s LfGpErr CntLnOfs	ets.txt	
<u>r 78</u> : To reocrd r <u>c-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5	Carriage A 16.0 12.0 8.0 4.1 0.6	ers are located in fi Carriage B 16.0 12.0 8.0 4.0 0.5	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. nen select "Calibrat les (x86)\Varian\Or Truel A start A stop B start B start B stop	Control para Control para Beam 0.054 0.069 -0.004	ntroller\SysOffse meters (cm) C-: LfGpErr CntLnOfs Skew	series	
<u>r TB</u> : To reocra <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. en select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm	series	
<u>r TB</u> : To reocra <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. en select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm	ets.txt	
<u>r TB</u> : To reocre <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. hen select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-: LfGpErr CntLnOfs Skew parameters (cm C-:	ets.txt	
<u>r TB</u> : To reocre <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. hen select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-: LfGpErr CntLnOfs Skew I parameters (cm C-: LfGpErr	ets.txt	
<u>CTB</u> : To reocre <u>C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0	mode, select "ML0 iles on the MLC wo A leaves 16.0 12.1 8.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. hen select "Calibrat les (x86)\Varian\Or Truel A start A stop B start B stop Truel A start A stop	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-3 LfGpErr CntLnOfs Skew I parameters (cm C-3 LfGpErr CntLnOfs	ets.txt	
<u>r 7B</u> : To reocra <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9	mode, select "MLC wo A leaves 16.0 12.1 8.1 4.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. en select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-3 LfGpErr CntLnOfs Skew I parameters (cm C-3 LfGpErr CntLnOfs	ets.txt	
<u>r TB</u> : To reocrd <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -8.0 12.0 -16.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0	mode, select "MLC wo A leaves 16.0 12.1 8.1 4.1	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0	itialization" and th	ot changed. en select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-3 LfGpErr CntLnOfs Skew I parameters (cm C-3 LfGpErr CntLnOfs	ets.txt	
<u>r TB</u> : To reocro <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 1b. Picket	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9	mode, select "MLC wo A leaves 16.0 12.1 8.1 4.1	C" tab. Select "Ini orkstation compu B leaves 16.0 12.0 8.0 4.0	itialization" and th	ot changed. hene select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop B start B stop B start A stop B start	Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Contro Beam	ntroller\SysOffse meters (cm) C-3 LfGpErr CntLnOfs Skew I parameters (cm C-3 LfGpErr CntLnOfs	ets.txt	
<u>r 7B</u> : To reocrd <u>r C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 10.0 10.0 10.0 10.0 11.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9 fence with ga	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9	mode, select "MLC wo A leaves 16.0 12.1 8.1 4.1	C" tab. Select "Ini orkstation compu B leaves 16.0 12.0 8.0 4.0	itialization" and th	ot changed. hene select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop B start B stop B start A stop B start	ncology\Clinac\Co Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control	ntroller\SysOffse meters (cm) C-3 LfGpErr CntLnOfs Skew I parameters (cm C-3 LfGpErr CntLnOfs	ets.txt	
r TB: To reocra r <u>c-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 12.0 -16.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9 fence with ga 10/31/2019	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9 antry rotation	Mode, select "MLu iles on the MLC wo A leaves 16.0 12.1 8.1 4.1 4.1 Physicist:	C" tab. Select "Ini orkstation compu B leaves 16.0 12.0 8.0 4.0 4.0 SL/TL	itialization" and the second s	ot changed. hene select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop B start B stop B start A stop B start	Control para Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control Beam	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm C-: LfGpErr CntLnOfs Skew	ets.txt series series	
r <u>7B</u> : To reocro r <u>C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 12.0 -16.0 12.0 -16.0	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9 fence with ga 10/31/2019 film on the block of the second seco	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9 antry rotation tray with 2 mm cop	mode, select "MLL iles on the MLC wo A leaves 16.0 12.1 8.1 4.1 4.1 Physicist: pper plate for buil	C" tab. Select "Ini orkstation compu Bleaves 16.0 12.0 8.0 4.0 4.0 5L/TL dup. Mount the b	titalization" and th tter C:\Program Fi	ot changed. en select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop B start B stop Truel A start A stop B start B stop	Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control Beam	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm C-: LfGpErr CntLnOfs Skew	ets.txt series series	
r <u>78</u> : To reocro r <u>C-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 Lb. Picket Date: cure a piece a ur bands are d	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -11.9 -15.9 fence with ga 10/31/2019 film on the block t	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9 antry rotation tray with 2 mm cop	mode, select "MLL iles on the MLC wo A leaves 16.0 12.1 8.1 4.1 Physicist: pper plate for buil d is delivered at e	C" tab. Select "Ini orkstation compu B leaves 16.0 12.0 8.0 4.0 4.0 SL/TL dup. Mount the b each of the follow	titalization" and th tter C:\Program Fi	ot changed. nen select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop Truel a start a stop B start B stop	Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control Beam	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm C-: LfGpErr CntLnOfs Skew	ets.txt series series	
<u>r 778</u> : To reocro <u>r c-series</u> : The Setting (cm) 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 12.0 -16.0 1b. Picket Date: cure a piece a ur bands are d	Carriage A 16.0 12.0 8.0 4.1 0.6 -4.0 -8.0 -11.9 -15.9 fence with ga 10/31/2019 film on the block k lelivered at gantry riation of the leave	Carriage B 16.0 12.0 8.0 4.0 0.5 -4.0 -8.0 -12.0 -15.9 antry rotation tray with 2 mm copr 0°, while one ban	mode, select "MLL iles on the MLC wo A leaves 16.0 12.1 8.1 4.1 Physicist: pper plate for buil d is delivered at e	C" tab. Select "Ini orkstation compu B leaves 16.0 12.0 8.0 4.0 4.0 SL/TL dup. Mount the b each of the follow	titalization" and th tter C:\Program Fi	ot changed. nen select "Calibrat les (x86)\Varian\O Truel A start A stop B start B stop Truel A start A stop B start B stop Truel a start a stop B start B stop	Control para Beam 0.054 0.069 -0.004 -0.019 Reference: Control Beam	ntroller\SysOffse meters (cm) LfGpErr CntLnOfs Skew I parameters (cm C-: LfGpErr CntLnOfs Skew	ets.txt series series	

\smile										
12a. Graticu	Ile Position									
Date:	11/26/2019		Physicist:	SL		Tolerance :	2 mm (1 mm)		1	
Check for either	the electronic grid	d or physical grid, o	lenending on the	machine						
check for entiter	lite cicectonic gin	a or priysical grid, c	acpending on the	machine.						
Electronic gri	id (digital grat	icule)								
Align MV/kV iso	concordance phar	ntom with lasers. A	Acquire a MV imag	ge of the phantom	n at gantry 0º.					
Load image in the	e Aria/Eclipse sys	tem or at the mach	nine console. Turn	on the digital gra	aticule.					
						ring (which is a surr	ogate of the isore	enter)		
incusare and ree			tenter of the gru			ing (million is a sum				
Deviation	< 0.5	mm								
Physical grid	(physical grat	icule)								
		nair at gantry 0°, at	SED 100 cm. Mou	nt the physical gr	aticulo trav on the	antru				
Measure and rec	ord the distance/	deviation from the	e center of the gra	ticule to the cent	er of the graph pa	per (crosshair).				
Deviation		mm								
	Destation						1	1		
12b. Block I	ray Position									
Date:	11/26/2019		Physicist:	SL		Tolerance :	2 mm			
Incort block trav	Moocuro doviatio	n with the light fi	ald at isocontor I	hotwoon the mar	hino crocchairc ar	d the tray crosshai	**			
insert block tray.		on with the light h	elu, at isotelliel, i	between the mat		iu the tray crossnar	15.			
Deviation:	1.0	mm	Che	ck here if the blo	cking tray latches	Y				
13 Electron	Applicator P	osition								
		USITION	í .			i .			1	1
Date:	11/26/2019		Physicist:	SL		Tolerance :	2 mm			
Find the center of	of the field with th	e standard insert	(i.e. align the field	d edges symmetri	ically about an ori	gin indicated on gra	aph paper), and re	cord the deviatio	n from the crossha	irs. Verify
	present without in		(8,		0				,
that menock is p		isert (T/N).								
Co	one	Radial (cm)	Transverse (cm)	Insert interlock						
6	×6	1 mm	0.5 mm	V						
10	×10	< 0.5 mm	0.5 mm	V						
	×15	0.5 mm	0.5 mm	V						
	×20	0.5 mm	1 mm	V						
25	×25	0.5 mm	0.5 mm	V						
14 Radiatio	n Isocenter v	s Gantry Rota	ation							
		s Gantry Rota								
	n Isocenter v 11/19/2019	s Gantry Rota	ation Physicist:	SL/TL		Tolerance : ±1 mm	from baseline->		mm, from	
		s Gantry Rota		SL/TL		Tolerance : ±1 mm	from baseline->		mm, from	
Date:	11/19/2019		Physicist:	SL/TL		Tolerance : ±1 mm	from baseline->		mm, from	
Date:	11/19/2019	s Gantry Rota	Physicist:	SL/TL		Tolerance : ±1 mm	from baseline->		mm, from	
Date: *Note: check cali	11/19/2019 ibrations of MLC b	efore performing	Physicist: this test.							
Date: *Note: check cali a) Attach the from	11/19/2019 ibrations of MLC b nt pointer and ma	efore performing rk the mechanical	Physicist: this test. isocenter with a p	pen on a film. A "s		sure is created on t	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the from slit field (MLC-de	11/19/2019 ibrations of MLC b nt pointer and ma efined) at several	efore performing rk the mechanical gantry angles diffe	Physicist: this test. isocenter with a pering by 40°. Set co	pen on a film. A "s	0°. The MLC file o	sure is created on t can be found in TDS	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the from slit field (MLC-de	11/19/2019 ibrations of MLC b nt pointer and ma efined) at several	efore performing rk the mechanical	Physicist: this test. isocenter with a pering by 40°. Set co	pen on a film. A "s	0°. The MLC file o	sure is created on t can be found in TDS	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the from slit field (MLC-de	11/19/2019 ibrations of MLC b nt pointer and ma efined) at several	efore performing rk the mechanical gantry angles diffe	Physicist: this test. isocenter with a pering by 40°. Set co	pen on a film. A "s	0°. The MLC file o	sure is created on t can be found in TDS	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the fron slit field (MLC-de Draw the center-	11/19/2019 ibrations of MLC b nt pointer and ma efined) at several lines of these fie	efore performing rk the mechanical gantry angles diffe	Physicist: this test. isocenter with a pering by 40°. Set co	pen on a film. A "s	0°. The MLC file o	sure is created on t can be found in TDS	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the from slit field (MLC-de	11/19/2019 ibrations of MLC b nt pointer and ma efined) at several	efore performing rk the mechanical gantry angles diffe	Physicist: this test. isocenter with a pering by 40°. Set co	pen on a film. A "s	0°. The MLC file o	sure is created on t can be found in TDS	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8	11/19/2019 Ibrations of MLC b nt pointer and ma efined) at several lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d	Physicist: this test. isocenter with a p ering by 40°. Set co iameter of the sm	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8	11/19/2019 Ibrations of MLC b nt pointer and ma efined) at several lines of these fiel mm	efore performing rk the mechanical gantry angles diffe	Physicist: this test. isocenter with a p ering by 40°. Set co iameter of the sm	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8	11/19/2019 Ibrations of MLC b nt pointer and ma efined) at several lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d	Physicist: this test. isocenter with a p ering by 40°. Set co iameter of the sm	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8	11/19/2019 Ibrations of MLC b nt pointer and ma efined) at several lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d	Physicist: this test. isocenter with a p ering by 40°. Set co iameter of the sm	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de	11/19/2019 brations of MLC b nt pointer and ma fined) at several lines of these fiel mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d	Physicist: this test. isocenter with a p ering by 40°. Set co iameter of the sm	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3	11/19/2019 ibrations of MLC b fined) at several lines of these fie mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3	11/19/2019 ibrations of MLC b fined) at several lines of these fie mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e	pen on a film. A "s ollimator angle tc nallest circle whic	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio	11/19/2019 ibrations of MLC b pointer and ma fined) at several lines of these fie mm viation of the rad mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e	ben on a film. A "s ollimator angle to allest circle whic 2. the center of th	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A		the transverse pla	ne) a 3 mm
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio	11/19/2019 ibrations of MLC b fined) at several lines of these fie mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e	ben on a film. A "s ollimator angle to allest circle whic 2. the center of th	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines.	he film by repeat /input/Physics/A		the transverse pla tarshot.mlc.	ne) a 3 mm
Date: *Note: check cali a) Attach the fron slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date:	11/19/2019 Ibrations of MLC b Int pointer and ma efined) at several lines of these fiel mm viation of the rad mm n Isocenter v 11/19/2019	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I	Physicist: this test. isocenter with a pering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist:	ben on a film. A "s ollimator angle to allest circle whic 2. the center of th	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A		the transverse pla tarshot.mlc.	ne) a 3 mm
Date: *Note: check cali a) Attach the fron slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date:	11/19/2019 Ibrations of MLC b Int pointer and ma efined) at several lines of these fiel mm viation of the rad mm n Isocenter v 11/19/2019	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan	Physicist: this test. isocenter with a pering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist:	ben on a film. A "s ollimator angle to allest circle whic 2. the center of th	0 0°. The MLC file o h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A		the transverse pla tarshot.mlc.	ne) a 3 mm
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali	11/19/2019 ibrations of MLC b ibrations of MLC b ifined) at several lines of these fie mm viation of the rad mm In Isocenter v 11/19/2019 ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test.	pen on a film. A "s ollimator angle to allest circle whic 2. the center of th SL/TL	0 ^o . The MLC file (h intersects all th e circle w.r.t. the	sure is created on t can be found in TDS e center-lines. pen mark. <i>Tolerance</i> : ±1 mm	he film by repeat /input/Physics/A from baseline->	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from	
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali	11/19/2019 ibrations of MLC b ibrations of MLC b ifined) at several lines of these fie mm viation of the rad mm In Isocenter v 11/19/2019 ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test.	pen on a film. A "s ollimator angle to allest circle whic 2. the center of th SL/TL	0 ^o . The MLC file (h intersects all th e circle w.r.t. the	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A from baseline->	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from	
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror	11/19/2019 ibrations of MLC b ibrations of MLC b int pointer and ma efined) at several lines of these fiel mm iviation of the rad mm 11/19/2019 ibrations of MLC b ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical	Physicist: this test. isocenter with a p ering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p	ben on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL ben on a film. A "s	0°. The MLC file of h intersects all th e circle w.r.t. the tar" pattern expo	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to	11/19/2019 Ibrations of MLC b int pointer and ma efined) at several lines of these fiel mm viation of the rad mm 1 ISOCENTER V 11/19/2019 Ibrations of MLC b ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M	Physicist: isocenter with a p ering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou	pen on a film. A "s ollimator angle to nallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to	11/19/2019 Ibrations of MLC b int pointer and ma efined) at several lines of these fiel mm viation of the rad mm 1 ISOCENTER V 11/19/2019 Ibrations of MLC b ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical	Physicist: isocenter with a p ering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou	pen on a film. A "s ollimator angle to nallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the from slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the from perpendicular to Draw the center-	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 brations of MLC b int pointer and ma the central axis of lines of these fiel	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M	Physicist: isocenter with a p ering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou	pen on a film. A "s ollimator angle to nallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to	11/19/2019 Ibrations of MLC b int pointer and ma efined) at several lines of these fiel mm viation of the rad mm 1 ISOCENTER V 11/19/2019 Ibrations of MLC b ibrations of MLC b	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M	Physicist: isocenter with a p ering by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou	pen on a film. A "s ollimator angle to nallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3	11/19/2019 ibrations of MLC b nt pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p iring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3	11/19/2019 ibrations of MLC b nt pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3	11/19/2019 ibrations of MLC b nt pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de	11/19/2019 ibrations of MLC b int pointer and ma fined) at several ilines of these fiel mm viation of the rad mm 11/19/2019 brations of MLC b int pointer and ma the central axis of lines of these fiel mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3	11/19/2019 ibrations of MLC b nt pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e	pen on a film. A "s ollimator angle to hallest circle whic e. the center of th SL/TL pen on a film. A "s nd in TDS/input/f hallest circle whic	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A from baseline-> he film by repeat	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.3 16. Patient \$	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm viation of the rad mm Support Assee	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: isocenter with a p isocenter with a p iring by 40°. Set cc iameter of the sm ical isocenters, i.e Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e OCENTER	ben on a film. A "s ollimator angle to allest circle whic e. the center of th sL/TL ben on a film. A "s nd in TDS/input/f allest circle whic e. the center of th	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines. pen mark.	he film by repeat /input/Physics/A //input/Physics/A //input/Physics/A //input/Physics/A	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the t	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.3 16. Patient \$	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e	ben on a film. A "s ollimator angle to allest circle whic e. the center of th sL/TL ben on a film. A "s nd in TDS/input/f allest circle whic e. the center of th	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines.	he film by repeat /input/Physics/A //input/Physics/A //input/Physics/A //input/Physics/A	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.3 16. Patient \$	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b nt pointer and ma the central axis o lines of these fiel mm viation of the rad mm Support Assee	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d	Physicist: isocenter with a p isocenter with a p iring by 40°. Set cc iameter of the sm ical isocenters, i.e Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e OCENTER	ben on a film. A "s ollimator angle to allest circle whic e. the center of th sL/TL ben on a film. A "s nd in TDS/input/f allest circle whic e. the center of th	0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Q, h intersects all th	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines. pen mark.	he film by repeat /input/Physics/A //input/Physics/A //input/Physics/A //input/Physics/A	nnual QA/3mm_s	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the t	slit field
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient 1 Date:	11/19/2019 ibrations of MLC b int pointer and ma fined) at several ilines of these fiel mm viation of the rad mm 11/19/2019 brations of MLC b ines of these fiel mm viation of the rad mm Support Assee 11/19/2019	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan ation and mechan	Physicist: isocenter with a p ring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e OCENTER	Den on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL Den on a film. A "s nd in TDS/input/f allest circle whic e. the center of th SL/TL	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo Physics/Annual Qu h intersects all th e circle w.r.t. the	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines. pen mark.	he film by repeat /input/Physics/A from baseline-> he film by repeat lc. The collimator	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient S Date: a) The movement	11/19/2019 ibrations of MLC b ibrations of tMLC b int pointer and ma fined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined	Physicist: isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e ocenter Physicist: d by attaching the	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient S Date: a) The movement	11/19/2019 ibrations of MLC b ibrations of tMLC b int pointer and ma efined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined	Physicist: isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e ocenter Physicist: d by attaching the	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark. Tolerance : ±1 mm sure is created on t A/3mm_starshot.m e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the froi slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the froi perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient S Date: a) The movemen every 45° on grag	11/19/2019 ibrations of MLC b int pointer and ma fined) at several -lines of these fiel mm viation of the rad mm 11/19/2019 ibrations of MLC b int pointer and ma the central axis of -lines of these fiel mm viation of the rad mm Support Assee 11/19/2019 It of the PSA isoce ob paper secured	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined	Physicist: isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e ocenter Physicist: d by attaching the	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient S Date: a) The movement	11/19/2019 ibrations of MLC b ibrations of tMLC b int pointer and ma efined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis o lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined	Physicist: isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e ocenter Physicist: d by attaching the	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient \$ Date: a) The movement every 45° on grag 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis of lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce oh paper secured mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined to the tabletop. Re	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e Ocenter Physicist: d by attaching the ccord the diamete	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass r of the smallest	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient \$ Date: a) The movement every 45° on grag 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis of lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce oh paper secured mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e Ocenter Physicist: d by attaching the ccord the diamete	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass r of the smallest	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient \$ Date: a) The movement every 45° on grag 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis of lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce oh paper secured mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined to the tabletop. Re	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e Ocenter Physicist: d by attaching the ccord the diamete	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass r of the smallest	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.
Date: *Note: check cali a) Attach the fror slit field (MLC-de Draw the center- 0.8 b) Record the de 0.3 15. Radiatio Date: *Note: check cali a) Attach the fror perpendicular to Draw the center- 0.3 b) Record the de 0.8 16. Patient \$ Date: a) The movement every 45° on grag 0.3	11/19/2019 ibrations of MLC b int pointer and ma fined) at several lines of these fiel mm in Isocenter v 11/19/2019 ibrations of MLC b int pointer and ma the central axis of lines of these fiel mm viation of the rad mm support Assee 11/19/2019 it of the PSA isoce oh paper secured mm	efore performing rk the mechanical gantry angles diffe ds. Measure the d ation and mechan s Collimator I efore performing rk the mechanical f the beam. The M ds. Measure the d ation and mechan mbly (PSA) Is nter is determined to the tabletop. Re	Physicist: this test. isocenter with a p rring by 40°. Set cc iameter of the sm ical isocenters, i.e Rotation Physicist: this test. isocenter with a p ILC file can be fou iameter of the sm ical isocenters, i.e Ocenter Physicist: d by attaching the ccord the diamete	een on a film. A "s ollimator angle to allest circle whic e. the center of th SL/TL een on a film. A "s d in TDS/input/f nallest circle whic e. the center of th SL/TL front pointer ass r of the smallest	b 0°. The MLC file of h intersects all th e circle w.r.t. the star" pattern expo hysics/Annual Q h intersects all th e circle w.r.t. the embly or observi	sure is created on t can be found in TDS e center-lines. pen mark.	he film by repeat /input/Physics/A /input/Physics/A ///////////////////////////////////	edly exposing a 3 is rotated 30 ^o bet	the transverse pla tarshot.mlc. mm, from mm MLC-defined ween each of the f	slit field 6 exposures.

47 DCA D 1 11									
17. PSA Rotation Alignme	ent						1 0 0 4 0 (0 0 0)		,
Date: 11/20/2019		Physicist:	SL		Tolerance :	absolute position	at 0°:1°(0.2°); re	lative position: 0.5°	
he MLC file is located at: va_trans	fer\TDS\input\Ph	ysics\Monthly QA	\MLC 40x1cm.mlc						
Rotate the gantry to 0°. Rotate the									
PSA top is placed at the isocenter h									
parallel to the MLC. If it is not, adju The PSA is then rotated to other an								oor marker should	ndicate this.
Note: while 1.0° is recommended b	-		-					tableton is shifter	hack laterally
however, this is often not apparen									
shift for a 40 cm longitudinal shift.									
			-						
Digital Indicator	270°	0°	90°						
Digital Indicator	270.0	359.9	89.9						
18. Table Top Sag									
Date: 12/27/2019		Physicist:	SI .		Tolerance : ±1 mm	from baseline->		mm, from	
Dute: 12/2//2013		Thysicisc.	52		Tolefunce . 11 min				
Measure the sag at the isocenter w	vith the tabletop a	t isocenter height	, at 140 cm longit	udinal position, a	nd ~200 lb distribut	ed evenly (e.g. a	volunteer).		
2.0 mm									
19. PSA Vertical Motion									
Date: 11/20/2019		Physicist:	SL		Tolerance :	absolute position	at 0 cm : 2 mm; re	elative position: 1 n	nm
The accuracy of the vertical positio	n is assessed by m	easuring vertical	displacements or	d observing the r	ligital indicator				
The digital readout should indicate									
Measured distance from 0 cm	Digital indi	icator (cm)							
-35.0	965								
-20.0 0.0	980								
20.0	19.								
40.0	39.								
52.0	51.	.84							
20. PSA Longitudinal Mo	tion								
20. PSA Longitudinal Mo Date: 11/20/2019	tion	Physicist:	SL		Tolerance :	absolute position	at 140 cm : 2 mm	; relative position: :	l mm
Date: 11/20/2019							at 140 cm : 2 mm	; relative position: :	l mm
Date: 11/20/2019 The accuracy of the longitudinal po	osition is assessed	by measuring lon	gitudinal displace		rving the digital ind		at 140 cm : 2 mm	; relative position: :	l mm
Date: 11/20/2019 The accuracy of the longitudinal po	osition is assessed	by measuring lon	gitudinal displace		rving the digital ind		at 140 cm : 2 mm,	; relative position: 2	l mm
Date: 11/20/2019 The accuracy of the longitudinal po	osition is assessed	by measuring lon 0 when the 0 dete	gitudinal displace		rving the digital ind		at 140 cm : 2 mm	; relative position: :	l mm
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet	osition is assessed top should be 140.	by measuring lon 0 when the 0 dete icator (cm)	gitudinal displace		rving the digital ind		at 140 cm : 2 mm,	; relative position: :	l mm
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0	osition is assessed top should be 140. Digital indi 129 139	by measuring lon 0 when the 0 dete icator (cm) .90 .92	gitudinal displace		rving the digital ind		at 140 cm : 2 mm	; relative position: :	I mm
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0	osition is assessed top should be 140. Digital indi 129	by measuring lon 0 when the 0 dete icator (cm) .90 .92	gitudinal displace		rving the digital ind		at 140 cm : 2 mm,	; relative position: :	l mm
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0	osition is assessed top should be 140. Digital indi 129 139	by measuring lon 0 when the 0 dete icator (cm) .90 .92	gitudinal displace		rving the digital ind		at 140 cm : 2 mm	; relative position: :	L mm
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion	osition is assessed top should be 140. Digital indi 129 139	by measuring lon 0 when the 0 deta icator (cm) .90 .92 .87	gitudinal displace		ving the digital ind s.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0	osition is assessed top should be 140. Digital indi 129 139	by measuring lon 0 when the 0 dete icator (cm) .90 .92	gitudinal displace		ving the digital ind s.	icator.		; relative position: :	
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019	osition is assessed top should be 140. Digital indi 129 139 149	by measuring lon O when the O deta cator (cm) .90 .92 .87 Physicist:	gitudinal displace ent is aligned with	n the lateral laser	Ving the digital ind S. Tolerance :	icator.			
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position	osition is assessed top should be 140. Digital indi 129 139 149 n is assessed by mo	by measuring lon O when the O deta (cator (cm) .90 .92 .87 Physicist: easuring lateral di	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	Ving the digital ind S. Tolerance :	icator.			
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position	osition is assessed top should be 140. Digital indi 129 139 149 n is assessed by mo	by measuring lon O when the O deta (cator (cm) .90 .92 .87 Physicist: easuring lateral di	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	Ving the digital ind S. Tolerance :	icator.			
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate	osition is assessed top should be 140. Digital indi 129 139 149 n is assessed by mo	by measuring lon 0 when the 0 dete (cator (cm) .90 .92 .87 Physicist: easuring lateral di the tabletop is c	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0	osition is assessed top should be 140. Digital indi 129 139 149 149 1 is assessed by me c 0.0 ± 0.2 cm wher Digital indi	by measuring lon O when the 0 deta icator (cm) .90 .92 .87 Physicist: easuring lateral di the tabletop is c icator (cm) .04	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 0.0	Digital indi Digital indi Digital indi 129 139 149 149 0.0 ± 0.2 cm wher Digital indi 990 0.2	by measuring lon 0 when the 0 dete icator (cm) .90 .92 .87 Physicist: easuring lateral di t the tabletop is c icator (cm) .04	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0	osition is assessed top should be 140. Digital indi 129 139 149 149 1 is assessed by me c 0.0 ± 0.2 cm wher Digital indi	by measuring lon 0 when the 0 dete icator (cm) .90 .92 .87 Physicist: easuring lateral di t the tabletop is c icator (cm) .04	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 10.0	position is assessed top should be 140. Digital indi 129 139 149 0.0 ± 0.2 cm wher Digital indi 990 0.1	by measuring lorn O when the O dete cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cicator (cm) .04 10 03	gitudinal displace ent is aligned with SL splacements and	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 10.0 22a-b. Output Calibration	n is assessed by me co.0 ± 0.2 cm wher Digital indi 0.0 ± 0.2 cm wher 0.0 ± 0.1 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.1 cm wher	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cator (cm) .04 10 03 Check	gitudinal displace ent is aligned with splacements and entered.	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal po The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 10.0 22a-b. Output Calibration	n is assessed by me co.0 ± 0.2 cm wher Digital indi 0.0 ± 0.2 cm wher 0.0 ± 0.1 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.2 cm wher 0.10 ± 0.1 cm wher	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cator (cm) .04 10 03 Check	gitudinal displace ent is aligned with splacements and entered.	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan	n is assessed by me Digital indi 129 139 149 n is assessed by me Digital indi 990 0.1 10 n and Energy mber/electromete	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cator (cm) .04 10 03 Check	gitudinal displace ent is aligned with splacements and entered.	n the lateral laser	ving the digital ind S.	icator.			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr	n is assessed by me Digital indi 129 139 149 n is assessed by me Digital indi 990 0.1 10 n and Energy mber/electromete	by measuring lon 0 when the 0 dete icator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c icator (cm) .04 10 03 Check r cross calibration	gitudinal displace ent is aligned with splacements and entered.	n the lateral laser	Tolerance :	absolute position			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan	n is assessed by me Digital indi 129 139 149 n is assessed by me Digital indi 990 0.1 10 n and Energy mber/electromete	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cator (cm) .04 10 03 Check	gitudinal displace ent is aligned with splacements and entered.	n the lateral laser	ving the digital ind S.	absolute position			
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019	n is assessed by me e 0.0 ± 0.2 cm wher Digital indi 129 149 0.0 ± 0.2 cm wher Digital indi 990 0.1 10 n and Energy mber/electromete	by measuring lon 0 when the 0 dete cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cicator (cm) .04 10 03 Check r cross calibration Physicist:	gitudinal displace ent is aligned with splacements and entered. worksheet tab if	applicable).	Tolerance :	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1177
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019 The reproducibility of the monitor	n is assessed by me objective of the second	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c icator (cm) .04 10 .03 Check r cross calibration Physicist: d by determining	gitudinal displace ent is aligned with splacements and entered. worksheet tab if SL SL the coefficient of	applicable).	Tolerance :	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1177
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019 The reproducibility of the monitor	Digital indi Digital indi 129 139 149 149 149 149 149 149 149 149 149 14	by measuring lon 0 when the 0 dete icator (cm) 90 92 87 Physicist: easuring lateral di the tabletop is c icator (cm) 100 03 Check r cross calibration Physicist: d by determining thly output measure	gitudinal displace ent is aligned with splacements and entered. worksheet tab if SL SL the coefficient of urements.	applicable).	Tolerance : Tolerance :	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1177
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019 The reproducibility of the monitor These measurements can be extra	bition is assessed top should be 140. Digital indi 129 139 149 0.0 ± 0.2 cm wher 0.0 ± 0.2 cm wher 0.0 ± 0.2 cm wher 0.1 ± 0.2 cm wher 0.2 ± 0.2 ± 0.2 cm wher 0.2 ± 0.2 ± 0.2 tm wher 0.2 ± 0.2 ± 0.2 tm wher 0.2	by measuring lon 0 when the 0 dete icator (cm) .90 .92 .87 Physicist: easuring lateral di the tabletop is c icator (cm) .04 03 Check r cross calibration Physicist: d by determining nthly output meas 6FFF	gitudinal displace ent is aligned with splacements and entered. worksheet tab if SL SL the coefficient of urements. 6e	applicable).	Tolerance : Tolerance : Tolerance : Tolerance : Tolerance : Tolerance :	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1177
The accuracy of the longitudinal por The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019 The reproducibility of the monitor These measurements can be extra	Digital indi 129 139 139 149 139 149 139 149 149 149 149 100 100 100 100 100 100 100 10	by measuring lon 0 when the 0 deta cator (cm) .90 .92 .87 Physicist: easuring lateral di n the tabletop is c cator (cm) .04 10 03 Check r cross calibration Physicist: d by determining thly output meas GFFF 20.18	gitudinal displace ent is aligned with splacements and entered. worksheet tab if SL SL the coefficient of urements. 6e 21.52	observing the dip observing the dip applicable).	Tolerance : Tolerance : gital indicator. Tolerance : re standard deviation	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1m
Date: 11/20/2019 The accuracy of the longitudinal pc The absolute position of the tablet Measured distance from ref (cm) -10.0 0.0 10.0 21. PSA Lateral Motion Date: 11/20/2019 The accuracy of the lateral position The digital readout should indicate Measured distance from iso (cm) -10.0 0.0 10.0 22a-b. Output Calibration See TG 51 worksheet tab (and chan 23. Monitor System Repr Date: 11/20/2019 The reproducibility of the monitor These measurements can be extra	bition is assessed top should be 140. Digital indi 129 139 149 0.0 ± 0.2 cm wher 0.0 ± 0.2 cm wher 0.0 ± 0.2 cm wher 0.1 ± 0.2 cm wher 0.2 ± 0.2 ± 0.2 cm wher 0.2 ± 0.2 ± 0.2 tm wher 0.2 ± 0.2 ± 0.2 tm wher 0.2	by measuring lon 0 when the 0 dete icator (cm) .90 .92 .87 Physicist: easuring lateral di the tabletop is c icator (cm) .04 03 Check r cross calibration Physicist: d by determining nthly output meas 6FFF	gitudinal displace ent is aligned with splacements and entered. worksheet tab if SL SL the coefficient of urements. 6e	applicable).	Tolerance : Tolerance : Tolerance : Tolerance : Tolerance : Tolerance :	absolute position	at 0 cm : 2 mm; rd	elative position: 1 n	1m

00

3 52

Memorial Sloan Kettering Cancer Center

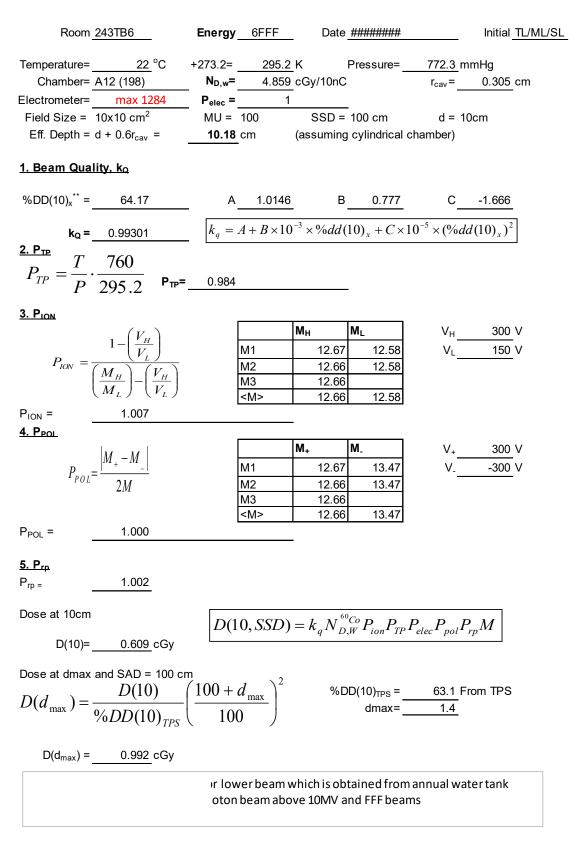
24. Morning dosimeter calibration check Date: 12/23/2019 Physicist: SL Tolerance : 1% 12/23/2019 Setup the morning checker as per morning setup procedure. Verify the calibration relative to the machine output. Reference dose from monthly output on: Gun Reference dose Center/Ref dos Center Gun Target Right Left 6x 99.81 102.3 102.4 102.8 102.6 100. 0.997 Center X 6fff 99.61 81.15 80.77 81.03 80.99 99.83 0.998 Right Left 100.92 99.38 98.88 98.61 6e 98.43 101.11 0.998 100.77 102.61 103.60 103.13 103.09 9e 100.28 1.00 12e 100.76 0.99 100.06 102.5 102.7 102.9 Target 25a. Monitor System Linearity (Dose linearity vs Dose) Date: 11/21/2019 Physicist: S Tolerance : ±2% The linearity of the monitor system is assessed using an ion chamber on the central axis of a 10×10 cm field for the range of MU settings currently allowable. The results normalized to the number of monitor units used for routine calibration, 100 MU, are calculated. Depth = 2 cm, SCD = 130 cm (or other appropriate distance, so that all measurements are on one range of the electrometer) 10 MU 100 MU 500 MU 50 MU 500 MU 3000 MU Energy/Rep rate Energy/Rep rate 6X М 12.200 12.230 61.190 6FFF (1400 Μ 5.970 59.600 357.740 (600 MU/min) M MU/M 100 MU/min) M MU/M 500 6.002 5.003 0.100 0.995 9.935 49.770 Μ 6E (600 MU/min) M MU/M 100 0.100 5.010 12.640 9E М 1.264 63.26 (600 MU/min) M_MU/M_100 0.100 5.005 12F М 12,480 62.430 1.245 (600 MU/min) M_MU/M_100 0.100 5.002 25b. Monitor System Linearity (Dose linearity vs Rep Rate) 11/21/2019 Date: Physicist: S Tolerance : +2% The linearity of the monitor system is assessed using an ion chamber on the central axis of a 10×10 cm field for the range of rep rate settings currently allowable. The results normalized to the rep rate used for routine calibration, 600 MU/min for flattened x-rays, 1400 MU/min for 6FFF, and 2400 MU/min for 10FFF, are calculated. Depth = 2 cm, SCD = 130 cm (or other appropriate distance, so that all measurements are on one range of the electrometer) 100 MU/min 600 MU/min 400 MU/min 6FFF: 1400 MU/min, Energy/MU Energy/MU М М 6FFF (500 MU) 6X (100 MU) M/M 600 0 998 M/M 1400 1 002 26a. DMLC output (gap width) check Date: 11/22/2019 Physicist: SL Tolerance : Within 3% of target ratio (i.e. < 0.2 mm gap) Measure the output for the scanned field before and after reinitializing the MLC. Measure the output for a 10×10 cm2 reference field size defined by the jaws (MLC retracted). Calculate the ratio of the scanned field to the reference field outputs File: \TDS\input\Physics\Monthly QA\OUTPUT12.mlc Energy: 6 MV Dose: 100 MU Dose rate: 600 MU/min SAD: 100 cm Depth: 1.4 cm Backup: 10 cm Field size: 10x10 cm TB (M120) TB (HD MIC) C-series (M120) After Before Target ratio (MPK 1525 1375 1575 Reference Reference reinitialization reinitialization Targe ratio (A12) 1540 1389 1590 20.25 3 13 3 12 20.25 20.26 3.12 3.12 20.25 MyQA Input 20.26 3.12 3.12 20.26 Ratio Average 20.257 3.123 3.120 20.253 Before After Ratio 0.1542 0.1540 1541.88 1540.49 26b. Beam Holdoff Functionality Date: 11/22/2019 Tolerance : Functioning Physicist: SL Same setup as 26a, dose = 5 MU Record the output. Check if the holdoff is being applied Reading 0.15 Functioning (Y/N) 26c. DMLC output vs Gantry and Collimator Angles Physicist: SL/ML Date: 11/4/2019 Tolerance : max/min ≤5% (3%) Reinitialize the MLC. Position a cylindrical chamber in air at isocenter. For each gantry angle, measure the open field and the scanned field outputs. At gantry angles of 90° and 270°, also measure output for collimator angles of 90°. Calculate the ratio of the scanned field to the reference field outputs. File: \TDS\input\Physics\Monthly QA\DMLCvsGantry.dcm Energy: 6 MV Dose: 100 MU Dose rate: 600 MU/min SAD: 100 cm Spokus in air w/buildup Field size: 10x10 cm MyQA Input DMLC/Reference DMLC/Reference Reference DMLC Gantry Angle 0° 90° 0° 90° 0° 90° 0 0° 0.1569 22.43 0.1575 90° 22.29 0.1584 1583.67 1574.70 270 22.58 3.54 3.53 0.1568 0.1563 1567.76 1563.33 180° 22.42 3.56 0 1588 Max/Min 1587 87

1.6

27a. Enhanced dynamic wedge: Wedge factors and profiles vs field sizes 11/29/2019 Date: Physicist: S Tolerance : 2% Backup: 5-10 cm Buildup: 5 cm 100 MU Measure with MapCheck with SAD setup. Gantry and collimator at 0° Wedge factor 6X 30° OUT 60° IN Open field 30° OUT 60° IN м TPS M/TPS м TPS M/TPS CAX 90.180 59.070 0 849 0.852 0.997 0.655 0.657 0.997 76 570 10×10 Y = 3 cm 90.450 70.800 77.290 0.783 0.784 0.998 0.855 0.857 0.997 CAX 96.350 65,410 40.180 0.679 0.684 0.993 0.417 0.418 0.998 20 × 20 Y = 7 cm98,100 56.270 0.574 0.998 1.000 76.090 0.575 0.776 0.776 27b. Enhanced dynamic wedge: Wedge factors for all angles Tolerance : 2% Date: 11/29/2019 Physicist: Same setup as 27a. CAX Open field 10° 15° 20° 25° 30° 45° 60° IN 33.25 81.02 78.80 6.60 69.07 OUT 85.420 83.190 81.000 78.850 76.570 69.070 58.970 0.928 0.770 WF(IN) 0.952 0.903 0.878 0.854 0.658 6X WF(OUT) 0.952 0.927 0.903 0.879 0.853 0.770 0.657 WF(TPS) 0.949 0.925 0.901 0.877 0.852 0.768 0.657 0.36 0.31 0.23 0.15 0.21 0.24 0.21 WF(IN)/WF(TPS) (%) WF(OUT)/WF(TPS) (%) 0.32 0.24 0.20 0.21 0.17 0.24 0.04 MyQA input 10° 15° 20° 25° 30° 45° 60° WF(IN) (%) 95.2 92.8 90.3 87.8 85.4 77.0 65.8 6x WF(OUT) (%) 95.2 92.7 90.3 87.9 85.3 77.0 65.7 28. Output vs Field size Tolerance : 2% for FS <4×4; 1% for FS ≥4×4 from baseline (photon baseline are from Eclipse Date: 11/25/2019 Physicist: SL/TL v13 AAA calculations and electron baselines are from input data to TPS) Radiation dose is measured with the cc04 ion chamber on the central axis at 5 cm depth for photons and dmax for electrons for the range of clinically used field sizes. The measurements are normalized to a 10×10 field. These values are compared with the baseline. For electrons, also record the collimator sizes. 6 MV Output factors Field size OF (Tables) Meter reading OF (Measured) Measured/Tables 3×3 0.880 849.65 0.881 1.001 4×4 0.905 875.33 0.907 1.002 10×10 1.000 964.88 1.000 1024.10 0.996 1.066 1.061 20×20 **6 FFF Output factors** Field size OF (Tables) Meter reading OF (Measured) Measured/Tables 3×3 0.897 0.898 841.82 1.001 4×4 0.921 864.96 0.923 1.002 10×10 1 000 937.10 1 000 15×15 1.032 963.06 1.028 0.996 6 MeV Electron output factors Collimator size Collimator size OF (Tables) Meter reading OF (Measured) Measured/Tables Cone Insert Depth (cm) prescribed observed 6×6 20×20 20 x 20 6×6 1.2 0.943 1.005 0.939 1045.00 10×10 22×22 10×10 1.2 1.000 1107.60 1.000 15×15 20×20 1.2 0.999 20×20 25×25 20×20 1.2 1.012 30×30 1.2 1.008 25×25 9 MeV Electron output factors Collimator size Collimator size Depth (cm) OF (Tables) Meter reading OF (Measured) Measured/Tables Cone Insert prescribed observed 6×6 20×20 6×6 2.0 0.985 10×10 1.000 10×10 2.0 1.000 15×15 20×20 20 x 20 15×15 2.0 0.995 1120.10 0.996 1.001 20×20 25×25 20×20 2.0 0.986 30×30 0.964 25×25 25×25 2.0 12 MeV Electron output factors Collimator size Collimator size OF (Tables) OF (Measured) Measured/Tables Cone Insert Depth (cm) Meter reading prescribed observed 6×6 0.980 6×6 11×11 2.5 1137.20 10×10 15×15 15 x 15 10×10 2.5 1.000 1.000 15×15 19×19 2.5 1.003 1143.40 1.005 20×20 20×20 2.5 1.003 25x25 30×30 25×25 25 0.951

29a. Flatness and Symmetry with ion chamber Date: 12/12/2019 Physicist: SL Tolerance : ±1% for symmetry; ±13 Electrometer: MAX801 Chamber: A12 (2501) Gantry and collimator: 0° FFF electrons Backup: 10 cm Gantry and collimator: 0° Field size (cm) 30×30 32×25 X-rays and FFF: SAD setup MU: 100 Depth dmax dmax dmax Gantry and collimator: 0° Depth dmax dmax dmax Gantry and collimator: 0° Depth dmax dmax Gantry and collimator: 0° Depth dmax dmax Gantry and collimator: 0° Depth dmax dmax Mux Gantry and collimator: 0° The flatness and symmetry is measured with an ion chamber by shifting the ion chamber (i.e. the by shifting the couch) to 5 different positions. Yunc Center	(%) Trans 0.4 0.5	Unflat Radial	ichine baseline)
Date:12/12/2019Physicist:SLTolerance :±1% for symmetry;±1%Electrometer:MAX801Chamber:A12 (2501)Gantry and collimator:0* i electrometer:MAX801Gantry and collimator:0*Gantry and collimator:0* i electrometer:Maxa030×3025×25X-rays and FFF: SAD setupMU: 1000DepthdmaxdmaxdmaxElectrons:SSD setupMU: 1000Off-axis distance10 cm5 cm8 cmSSD/SAD: 100 cm00The flatness and symmetry is measured with an ion chamber by shifting the ion chamber is no chamber by shifting the ion chamber is center in the flatness and symmetry is measured with an ion chamber by shifting the ion chamber is center in the flatnessGantry and collimator:0%AsymmetryMac-Mr Mc-Mr 2McMac-Mr 2McMat+Mg 2McLeft x x x x TargetRightLeftfenergydmax (cm)CenterGun 2McTargetRightLeftAsymmetry6x1.522.5023.2923.250.000.70.76e1.523.3923.2623.2123.3223.280.20.29e2.022.5923.2723.3823.3423.27-0.50.412e2.522.4623.0523.1423.0623.12-0.40.4	(%) Trans 0.4 0.5	Unflatr	nchine baseline)
Electrometer: MAX801 Chamber: A12 (2501) k-rays FFF electrons Backup: 10 cm Gantry and collimator: 0° Field size (cm) 30×30 25x25 X-rays and FFF: SAD setup MU: 100 Depth dmax dmax dmax Electrons: SSD setup MU: 100 The flatness and symmetry is measured with an ion chamber by shifting the ion chamber by shifting the couch) to 5 different positions. Gantry and collimator: 0° Transverse %Asymmetry Radial MG-MT Transverse Center Center x x x Right Radial Radial %Unflatness MG-MT Mt+Mg (subtract 1, multiply by 100%) Target Right Right Radial Radial %Unflatness MG-MT 2Mc (subtract 1, multiply by 100%) Target Right Radial Radial Radial 6x 1.5 22.50 23.29 23.35 23.25 0.0 0.7 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9 <td>(%) Trans 0.4 0.5</td> <td>Unflatr</td> <td>in the observery of the</td>	(%) Trans 0.4 0.5	Unflatr	in the observery of the
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trans 0.4 0.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trans 0.4 0.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trans 0.4 0.5		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Trans 0.4 0.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trans 0.4 0.5		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Trans 0.4 0.5		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Trans 0.4 0.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trans 0.4 0.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trans 0.4 0.5		
(Mg+Mr)/2 (Mg+Mr)/2 (Mg+Mr)/2 Left Center x x x x x %Unflatness Mg+Mr 2Mc (subtract 1, multiply by 100%) - x x x x Energy dmax (cm) Center Gun Target Right Left Asymmetry (Radial 6x 1.5 22.50 23.29 23.25 23.25 0.0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	Trans 0.4 0.5		
Kinder ML) 2 (Mer ML) 2 (Mer ML) 2 Left x X x x Right %Unflatness Mg+Mr 2Mc ML+Mg (subtract1, multiply by 100%) x x x x Energy dmax (cm) Center Gun Target Right Left Asymmetry (Radial 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	Trans 0.4 0.5		
Energy dmax (cm) Center Gun Target Right Left Asymmetry (Radia) 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 23.25 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 23.22 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 0.4	Trans 0.4 0.5		
Energy dmax (cm) Center Gun Target Right Left Asymmetry (Radia) 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 23.29 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 23.29 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 0.4	Trans 0.4 0.5		
Energy dmax (cm) Center Gun Target Right Left Asymmetry (Radial 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9e 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 9e	Trans 0.4 0.5		
Energy adma (cm) Center Gun larget right Left Radial 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 0 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 0 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 0 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 0	Trans 0.4 0.5		
Energy adma (cm) Center Gun larget right Left Radial 6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 0 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 0 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 0 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 0	Trans 0.4 0.5		ness (%)
6x 1.5 22.50 23.29 23.29 23.35 23.25 0.0 6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 6 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 6 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 1 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 6	0.4 0.5	Radiai	
6fff 1.5 21.50 19.55 19.41 19.50 19.40 0.7 6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	0.5	0.5	Trans
6e 1.5 23.39 23.26 23.21 23.32 23.28 0.2 9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4 14		3.5	3.6
9e 2.0 22.59 23.27 23.38 23.34 23.27 -0.5 12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	0.2	-9.4	-9.5
12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	0.2	-0.7	-0.4
12e 2.5 22.46 23.05 23.14 23.06 23.12 -0.4	0.3	3.3	3.2
	-0.3	2.8	2.8
	0.0		2.0
	100000		
* Chamber meas repeated on 12/26/2019 to check consistency (see 243 Flat Symm worksheet	12262019.xls)		
Diff = (Measurement - Reference)			
Eclipse Measurement - Eclipse			
	Transverse		
Radial Trans Radial Trans %Asymmetry Mg-MT	MR-ML		
	$(M_R+M_L)/2$		
0A <u>5.2</u> 5.5 0.5 0.5	(
6fff -9.7 -9.8 0.3 0.3 %Unflatness Mg+MT	<u>ML+MR</u> (sub	otract 1, multiply b	v 100%)
6e -0.5 -0.7 -0.2 0.3	2Mc	, indee 1, indee proj o	,
9e 2.9 2.7 0.4 0.5	21110		
12e 2.3 2.3 0.5 0.5			
*Eclipse reference from calculations using AAA_v13623 and EMC_v13623_TEST (new EMC) (6EX, C-series and TrueBeam specific)			
Mount the morning checker or MapCheck to the gantry using the mounting device with x MU Collin	imator size: 32 ×	- 32	
Target		52	
Gantry 6x 6FFF 6e 9e 12e			
0° 270.53 254.58 272.01 265.24 262.12			
90° 270.64 254.52 272.09 265.10 261.85			
Output			
270° 270.50 254.60 270.08 265.42 261.64			
0° -0.25 -0.63 -0.40 0.43 0.78			
Symmetry (G-T) 90° -0.68 -0.73 -0.17 0.15 0.70			
180° -0.22 -0.47 -0.02 0.43 0.90			
270° -0.35 -0.48 -0.24 0.67 0.90			
0° -0.25 0.56 1.17 0.34 0.14			
Symmetry (LB) 90° -0.31 0.92 0.84 0.31 -0.15			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.61 17.24 2.09 4.12 2.41			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.61 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.61 17.24 2.09 4.12 2.41			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.61 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.61 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25 180° 2.73 17.22 1.82 3.83 1.89			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 0° 2.66 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25 180° 2.73 17.22 1.82 3.83 1.89 270° 2.68 17.23 1.94 3.55 2.30			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 Platness 0° 2.66 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25 180° 2.73 17.22 1.82 3.83 1.89 270° -6.68 17.23 1.94 3.55 2.30			
90° -0.31 0.92 0.84 0.31 -0.15 180° -0.51 0.82 0.89 0.35 0.06 270° -0.41 0.61 1.06 0.67 0.26 p0° 2.61 17.24 2.09 4.12 2.41 90° 2.66 17.28 1.83 3.99 2.25 180° 2.73 17.22 1.82 3.83 1.89 270° 2.68 17.23 1.94 3.55 2.30 Relative to 0° (%) Telatory 6x 6FFF 6e 9e 12e			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{split} & \begin{array}{ c c c c c c c c } \hline 90^0 & -0.31 & 0.92 & 0.84 & 0.31 & -0.15 \\ \hline 180^0 & -0.51 & 0.82 & 0.89 & 0.35 & 0.06 \\ \hline 270^0 & -0.41 & 0.61 & 1.06 & 0.67 & 0.26 \\ \hline 270^0 & 2.61 & 17.24 & 2.09 & 4.12 & 2.41 \\ \hline 90^0 & 2.66 & 17.28 & 1.83 & 3.99 & 2.25 \\ \hline 180^0 & 2.73 & 17.22 & 1.82 & 3.83 & 1.89 \\ \hline 270^0 & 2.68 & 17.23 & 1.94 & 3.55 & 2.30 \\ \hline \hline & & & & & & & & & & & & & & & & &$			
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{split} & \begin{array}{ c c c c c c c c c c c c } \hline 90^{\circ} & -0.31 & 0.92 & 0.84 & 0.31 & -0.15 \\ \hline 180^{\circ} & -0.51 & 0.82 & 0.89 & 0.35 & 0.06 \\ \hline 270^{\circ} & -0.41 & 0.61 & 1.06 & 0.67 & 0.26 \\ \hline 270^{\circ} & 2.61 & 17.24 & 2.09 & 4.12 & 2.41 \\ \hline 90^{\circ} & 2.66 & 17.28 & 1.83 & 3.99 & 2.25 \\ \hline 180^{\circ} & 2.73 & 17.22 & 1.82 & 3.83 & 1.89 \\ \hline 270^{\circ} & 2.68 & 17.23 & 1.94 & 3.55 & 2.30 \\ \hline & & & & & & & & & & & & & & & & & &$			
$\begin{split} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{split} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{split} & \begin{tabular}{ c c c c c c } \hline 90° & -0.31 & 0.92 & 0.84 & 0.31 & -0.15 \\ \hline 180° & -0.51 & 0.82 & 0.89 & 0.35 & 0.06 \\ \hline 270° & -0.41 & 0.61 & 1.06 & 0.67 & 0.26 \\ \hline 270° & -0.41 & 0.61 & 1.06 & 0.67 & 0.26 \\ \hline 0° & 2.66 & 17.28 & 1.83 & 3.99 & 2.25 \\ \hline 180° & 2.73 & 17.22 & 1.82 & 3.83 & 1.89 \\ \hline 270° & 2.68 & 17.23 & 1.94 & 3.55 & 2.30 \\ \hline 180° & 2.73 & 17.22 & 1.82 & 3.83 & 1.89 \\ \hline 270° & 2.68 & 17.23 & 1.94 & 3.55 & 2.30 \\ \hline 180° & 2.68 & 17.23 & 1.94 & 3.55 & 2.30 \\ \hline 180° & 0.04 & -0.02 & 0.03 & -0.05 & -0.10 \\ \hline 180° & -0.08 & 0.13 & -0.12 & -0.03 & 0.40 \\ \hline 180° & -0.08 & 0.13 & -0.12 & -0.03 & 0.40 \\ \hline 270° & -0.01 & 0.01 & -0.71 & 0.07 & -0.18 \\ \hline 99° & 0.04 & -0.02 & 0.03 & -0.05 & -0.10 \\ \hline 180° & 0.08 & 0.13 & -0.12 & -0.03 & 0.40 \\ \hline 270° & -0.01 & 0.01 & -0.71 & 0.07 & -0.18 \\ \hline 99° & -0.43 & -0.10 & 0.23 & -0.28 & -0.08 \\ \hline 99° & -0.43 & -0.10 & 0.23 & -0.28 & -0.08 \\ \hline 90° & -0.43 & -0.10 & 0.23 & -0.28 & -0.08 \\ \hline 180° & 0.03 & 0.16 & 0.38 & 0.00 & 0.12 \\ \hline 270° & -0.10 & 0.15 & 0.16 & 0.24 & 0.12 \\ \hline 99° & -0.06 & 0.36 & -0.33 & -0.03 & -0.29 \\ \hline 180° & -0.26 & 0.26 & -0.28 & 0.01 & -0.08 \\ \hline 270° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.33 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0° & -0.16 & 0.05 & -0.11 & 0.03 & 0.12 \\ \hline 0			
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $			

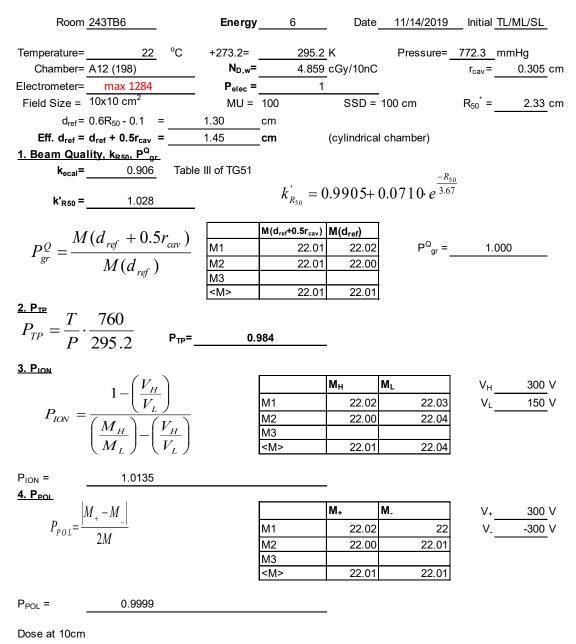
1. Portal Dosimetry Cali	bration							
Date: 11/25/2019		Physicist:	SL		Tolerance :	0.5%		
Calibrate MV panel for EPID dosime								
cquire a test image (10 × 10 cm ² o	pen field) after ca	alibration and not	e the mean dose	of a 1 × 1 cm ² ROI a	around the CAX. Rec	cord the CU per 1	00 MU.	
	Outrast 140		1					
Energy 6FFF		0 MU (CU) 001		MyQA Input				
6 MV)01)01		100.12 100.06				
UNIV	1.0			100.00				
32. MV/kV isocenter and	radiation isc	center conc	ordance					
Date: 11/5/2019	100101130	Physicist:			Tolerance :	1 mm	1	
Dutc. 11/3/2013		ritysicist.	02		ioiciunce.			
Align the MV/kV iso concordance p	hantom with the	lasers. Deliver th	e plan "MV kV iso	" in the Course "N	Ionthly QA" from th	e Aria test patier	nt or run the XML	file
TDS\input\Physics\Monthly QA\S								
Imaging mode		rom radiation isod		4				
CBCT	X (+ Left)	Y (+ Posterior)	Z (+ Superior)					
(odd month: full fan,	-0.88	-0.41	0.25					
even month: half fan)	-0.00	-0.41	0.25	Half fan was useo	4			
Radiograph	-0.08	0.23	-0.01		-		1	
Record additional information for:								
				-	Panel alignment	X (+ Rght)	Y (+ Up)	
	X (Left-Rgt)	Y (Ant-Post)	Z (Sup-Inf)		MV	-0.17	0.00	
Isocenter size (isocenter walk)	0.17	0.28	0.39		kV	0.06	-0.01	
33. VMAT QA		Dhue'-'-t	C1		Telever	Pass		
Date: 11/25/2019 Aria QA test patient MRN:	#REF!	Physicist: * Used 70000445			Tolerance :	russ		
Ana QA Lest patient MIKIN.	#I\LI ;	0360 70000443						
a) Dose-rate gantry speed (DRGS) t	<u>est</u>							
oad Plan "RA_DRGS" in Course "M		Aria QA test patie	nt in QA mode. Ar	nalyze in myQA.				
Pass/Fail Pass								
	~ ~ t							
a) Dose-rate gantry speed (DRGS) t oad Plan "RA_MLCspeed" in Cours		rom Aria OA toct	nationt in OA mor	Analyza in my	<u>م</u> د			
Louis fair INA_INICOPEED III COURS	ic informating QA T			. Anaryze m myt				
Pass/Fail Pass								
34. Couch Pitch and Roll								
Date: 11/6/2019		Physicist:	SL		Tolerance :	Observed angle:	1°(0.5°)	
						Observed shift: 0		
First zero the couch pitch and roll.			nce test phantom)	on the couch with	n lasers.			
et the pitch and roll to +3° for eve								
Record the pitch and roll using a le	vel; record the sh	ift in the sphere p	osition using the	service mode/XI t	ab tools.			
	Observed		<u> </u>	-		Much	A Input	
Pitch(°) Roll(°)	LAT shift (mm)	LNG shift (mm)	VRT shift (mm)			Pitch(°)	Roll((°)	*absolute values
3.0 3.0	0.10	0.30	0.10			3.00	3.00	
		1	1	1				1



ŧ

TG 51 Calibration Worksheet - 6MV Photons

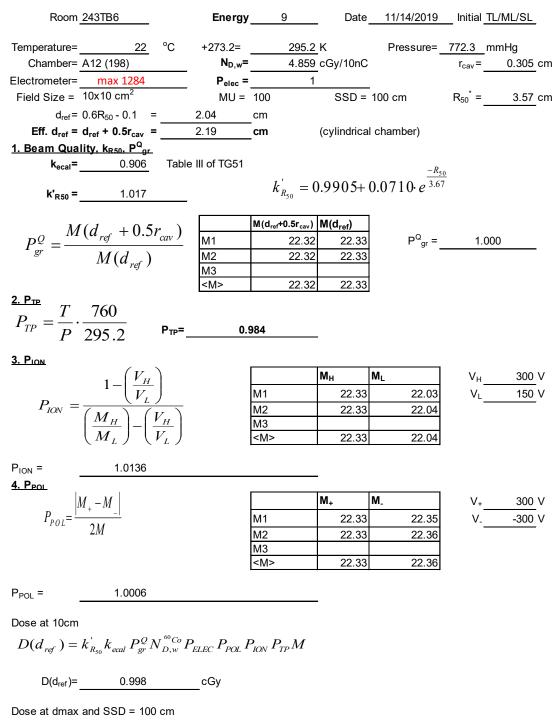
Room <u>243TB6</u>	Energy6DateH###############################			
Temperature= 22 °C	+273.2= <u>295.2</u> K Pressure= <u>772.3</u> mmHg			
Chamber= A12 (198)	N _{D,w} = 4.859 cGy/10nC r _{cav} = 0.305 cm			
Electrometer= max 1284	P _{elec} = 1			
	MU = 100 SSD = 100 cm d = 10cm			
Eff. Depth = $d + 0.6r_{cav}$ =	10.18 cm (assuming cylindrical chamber)			
<u>1. Beam Quality, k_o</u>				
%DD(10) _x [*] = <u>66.21</u>				
k _Q = <u>0.99301</u>	$k_q = A + B \times 10^{-3} \times \% dd(10)_x + C \times 10^{-5} \times (\% dd(10)_x)^2$			
$\frac{2. P_{TP}}{P_{TP}} = \frac{T}{P} \cdot \frac{760}{295.2} P_{TP} =$				
$P_{TP} = \frac{1}{P} \cdot \frac{1}{295 2} P_{TP} = \frac{1}{P} \cdot \frac{1}{295 2}$	=0.984			
<u>1 275.2</u> <u>3. P_{ION}</u>				
(\ldots)	M _H M _L V _H 300 V			
$P_{ION} = \frac{1 - \left(\frac{V_H}{V_L}\right)}{\left(\frac{M_H}{M}\right) - \left(\frac{V_H}{V_L}\right)}$	M1 13.46 13.41 V _L 150 V			
$P_{ION} = \frac{1}{\left(M_H\right)} \left(V_H\right)$	M2 13.45 13.41			
$\left(\overline{M_L}\right)^{-}\left(\overline{V_L}\right)$	M3 <m> 13.455 13.41</m>			
P _{ION} = 1.003				
4. P _{POI}				
$M_{\odot} - M_{\odot}$	M ₊ M. V ₊ <u>300</u> ∨			
$P_{POL} = \frac{\left M_{+} - M_{-}\right }{2M}$	M1 13.46 13.47 V300 V			
2M	M2 13.45 13.47 M3			
	<m> 13.46 13.47</m>			
P _{POL} = 1.001				
5. P _{rp}				
$P_{rp} = 1.000$				
·r				
Dose at 10cm	$D(10, SSD) = k_q N_{D,W}^{60} P_{ion} P_{TP} P_{elec} P_{pol} P_{rp} M$			
D(10)= <u>0.641</u> cGy				
Dose at dmax and SAD = 100 c	m			
-(10)	$(100 + d_{max})^2$ %DD(10) _{TPS} = <u>66.18</u> From TPS			
$D(d_{\text{max}}) = \frac{D(10)}{\% DD(10)_{TPS}}$	$\frac{100 + u_{\text{max}}}{100} \qquad $			
$D(d_{max}) = 0.994 \text{ cGy}$				
	/ or lower beam which is obtained from annual water tank			
	photon beam above 10MV and FFF beams			


TG 51 Calibration Worksheet - 6FFF Photons

Memorial Sloan Kettering

Cancer Center

TG 51 Calibration Worksheet - 6 MeV Electrons

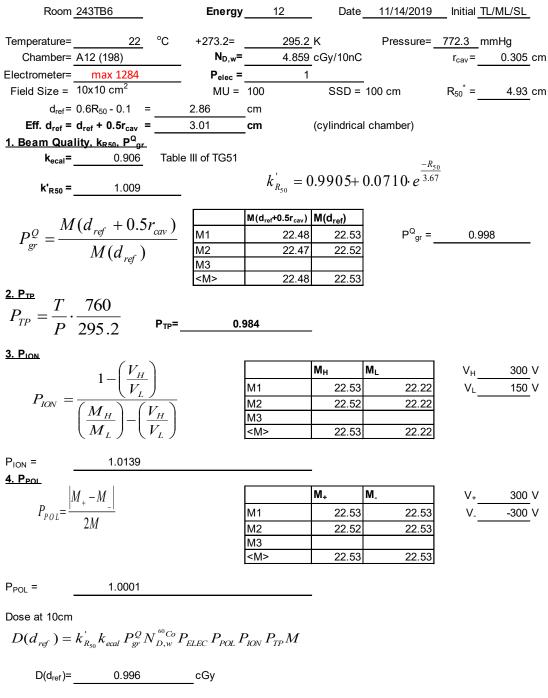

$$D(d_{ref}) = k_{R_{50}} k_{ecal} P_{gr}^{Q} N_{D,w}^{60} P_{ELEC} P_{POL} P_{ION} P_{TP} M$$

Dose at dmax and SSD = 100 cm

$$D(d_{\text{max}}) = \frac{D(d_{\text{ref}})}{\% D D (d_{\text{ref}})_{\text{TFS}}}$$
$$D(d_{\text{max}}) = \underline{1.004} \quad \text{cGy}$$

*Obtained from annuel water tank scan using $R_{50} = 1.029I_{50} - 0.06$ (cm)

TG 51 Calibration Worksheet - 9 MeV Electrons



 $D(d_{\text{max}}) = \frac{D(d_{\text{ngf}})}{\% DD (d_{\text{ngf}})_{\text{IPS}}}$ $D(d_{\text{max}}) = 0.999 \quad \text{cGy}$

 $DD(d_{ref})_{TPS} = 99.8$ From TPS dmax= 2.0

*Obtained from annual water tank scan using R₅₀ = 1.029I₅₀ - 0.06 (cm)

TG 51 Calibration Worksheet - 12 MeV Electrons

Dose at dmax and SSD = 100 cm

$$D(d_{\text{max}}) = \frac{D(d_{\text{ref}})}{\% D D (d_{\text{ref}})_{\text{IFS}}}$$
$$D(d_{\text{max}}) = \underbrace{0.994}_{\text{CGy}} cGy$$

 $DD(d_{ref})_{TPS} = 100.2$ From TPS dmax= 2.5

*Obtained from annual water tank scan using R₅₀ = 1.029l₅₀ - 0.06 (cm)

Measurements were done using MapCheck and EPID Portal dosimetry.

All plans are in a single aria paient with MRN of ARIAupgrade_KOC_TB1

<u>EPID</u>

The EPID was calibrated prior to use (normalized to current machine output)

Acceptance is based on the EPID measurements being within tolerance.

- The gamma averaged over all fields must be > 95%
- The gamma for each field must be > 90%

MapCheck

mapcheck measurements were compared with historical data. All mapcheck measurements were found to be consistent with the historical record.

Machine	
Date of measurement	
Physicists	
MapCheck setup	
Portal dosimetry setup	
Data processing	

6X IMRT			
Plan	Field	MapCheck (2%/2mm, global)	Portal Dosimetry (3%/3mm, Iocal)
Lung1	1		

1			٦
1	•	•	
1	-		
•			

H Cancer	Center	
	2	
	3	
	4	
	5	
	1	
	2	
	3	
Lung2	4	
	5	
	6	
	7	
	1	
	2	
Brain1	3	
	4	
	5	
	6	
	1	
	2	
Brain2	3	
	4	
	5	
	6	
GI	1	
	2	

<u> </u>		
	3	
	4	
	5	
	6	
	7	

6X VMAT				
Plan	Field	MapCheck (2%/2mm, global)	Portal Dosimetry (3%/3mm, local)	
	1			
PS_VMAT_6x	2			
	3			
	4			
GI_VMAT_6x	1			
	7			
	1			
HN_VMAT_6x	2			
	3			
	4			
	1			
WA_VMAT_6x	2			
	3			
	4			

	6FFF IMRT				
Plan	Field	MapCheck (2%/2mm, global)	Portal Dosimetry (3%/3mm, local)		
	1				
	2				
	3				
Lung_6fff	4				
2016_011	5				
	6				
	7				
	8				
	1				
	2				
brain_6fff	3				
	4				
	5				
	6				
	1				
	2				
	3				
pancreas_6fff	4				
	5				
	6				
	7				
	8				

	1	
	2	
Paraspin_6fff	3	
	4	
	5	
	6	

6FFF VMAT				
Plan	Field	MapCheck (2%/2mm, global)	Portal Dosimetry (3%/3mm, local)	
	1			
lung_vmat6fff	2			
	3			
	4			
brainVMAT6fff	1			
	7			

\smile		
LTbrainVM6fff	1	
	2	
RTbrainVM6fff	1	
	2	
	1	
PS_VMAT_6fff	2	
	3	
	4	

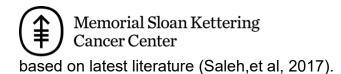

Radiation Survey

Table 2 - Exposure Guidelines

Member of the Public	Occupational
2 mrem in a week to uncontrolled areas (average)	10 mrem in a week
100 mrem in a year	5,000 mrem in a year
2 mrem in any hour	

Assumptions Made

A conservatively high x-ray workload of 1325 Gy/wk at an isocenter located 100 cm from target is assumed. Workload breakdown assumptions are based on conventional 3D, IMRT, and Hypo-RT (25, 300, 35 patients/week respectively). This workload is based on a high volume installation planning to use additional Intensity Modulated Radiation Therapy (IMRT) (Mechalakos, et al, 2002₂; Saleh, et al, 2017₃). The modulation factor is assumed to be 5, utilizing the methodology of Report Number 151 of the National Council on Radiation Protection (NCRP-151)₄, and

- The dose rate is expressed as 14 Gy min-1 for the purpose of evaluating shielding design goals.
- Assuming a 40-hour workweek, weekly x-ray beam on time is therefore assumed to be 1.57 hours for the purpose of this evaluation.
- For the purpose of demonstrating compliance with shielding design goals using
- conservative assumptions, the electron beam workload is conservatively assumed to be shared between the 9 MeV and 12 MeV beams, although electron beams of lower energies may be used.

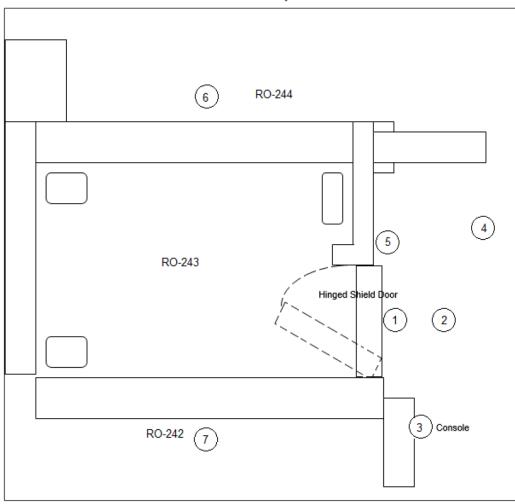


FIGURE 1 - Room Layout

w

Table 5: Survey Results - Total x-ray and electron									
Location	mrem/wk			mrem in any hour			mrem/yr		
Location	x-ray	electron	total	x-ray	electron	total	x-ray	electron	total
Door (contact)	0.58	0.061	0.64	N/A	N/A	N/A	30	3.2	33
Door (1-meter)	0.48	0.032	0.51	N/A	N/A	N/A	25	1.7	27
Control console (operator position)	0.094	0.021	0.12	N/A	N/A	N/A	4.9	1.1	6.0
244 Console	1.4	0.31	1.7	N/A	N/A	N/A	73	16	89
244 Console wall	0.36	0.07	0.43	N/A	N/A	N/A	19	3.6	22
244	0.064	0.0017	0.066	N/A	N/A	N/A	3.3	0.088	3.4
242	0.071	0.0017	0.073	N/A	N/A	N/A	3.7	0.088	3.8
Downstairs	0.094	0.0035	0.10	0.00013	0.0052	0.0053	4.9	0.18	5.1

All exposures well within guidelines, even assuming MSK 80 hr weeks.

MSKCC SBRT E2E Report

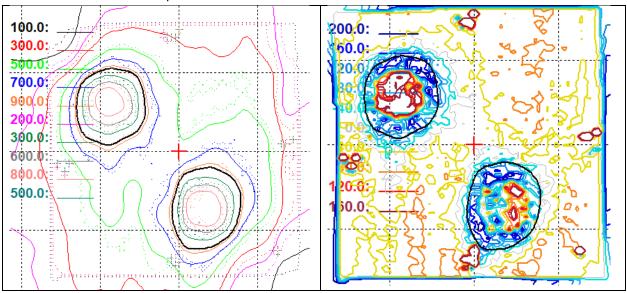
Tolerance: Dose Difference (DD) < 5.0% and Localization <= 1.0 mm

Summary:

The average dose difference is 32 cGy and the location accuracy is acceptable. This end to end test has meet the tolerances of MPPG9a.

Dose Analysis Sagittal plane

TPS (cGy) (max dose)	ROI at 50% Max dose	<tps> (cGy)</tps>	γ (3%, 2mm)	Dose Diff (cGy)	%Dose Diff
-------------------------	---------------------------	-------------------	----------------	--------------------	------------


Sagittal	1965	983	1461	95%	-32	-2.2%
----------	------	-----	------	-----	-----	-------

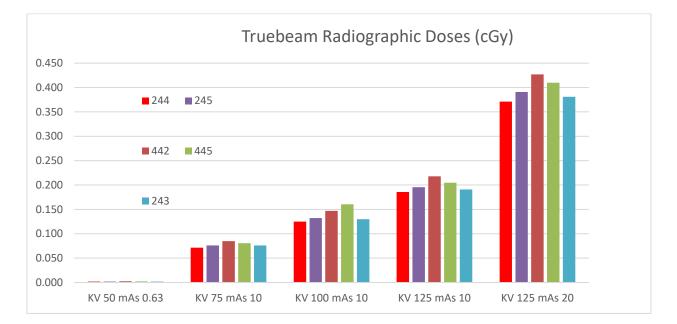
Localization Analysis

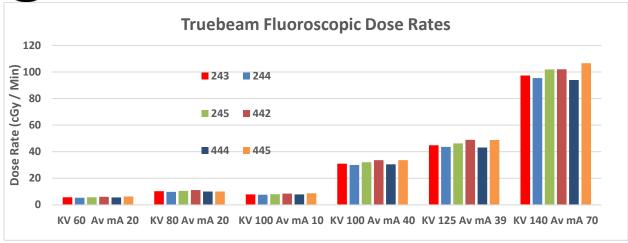
	A-P (mm)	S-I (mm)	L-R (mm)
Sagittal	0.2	1.0	
Coronal		0.4	0.6

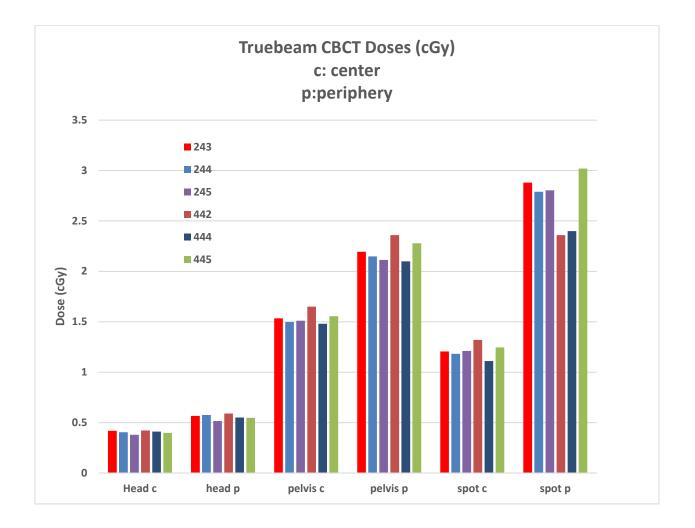
- Dashed line: film measurement
- Solid line: Eclipse

Imaging Geometric Accuracy

Imaging Geom	otry C	24		Maakina	243		Deter	40/05/0040
inaging Geon	ieu y c	×n		Machine:	245		Date:	10/25/2019 Lovelock
							Physicist:	LOVEIOCK
MV (Winston-Lutz) Ar	nalysis							
File	Source		Sphere Posit	tion	Field Center	Position	Sphere - Fiel	d
	Angle			Y (+ Up)	X (+ Rght)	Y (+ Up)	X (+ Rght)	Y (+ Up)
WL-004		0	-0.11	-0.22	-0.11	0.22	0.00	-0.45
WL-000	-	180	0.00	-0.17	-0.22	-0.17	0.22	0.00
WL-003	-	90	0.28	-0.17	0.06	0.11	0.22	-0.28
WL-007		270	-0.34	-0.22	-0.45	0.06	0.11	-0.28
	Field Shi	ft (Is	ocenter wall	()		X (Left-Rgt)	Y (Ant-Post)	Z (Sup-Inf)
						0.22	0.34	0.45
	Sphere F	Posit	tion (Lasers)	with respect	to Rad. Iso.	X (+: Left)	Y (+: Post)	Z (+: Sup.)
	op				(Vec P)	-0.11	0.06	-0.25
	141 (D				V (c Data)	M (, H_)		
	MV Pane		gnment ion of Rad Iso.		X (+ Rght) -0.18	Y (+ Up) 0.06		\frown
	Average	rusil	ion of Rau iso.		-0.10	0.00		
								II units mm ess otherwise
	Source		Sphere Posit					
File	<u> </u>		X (+ Rght)	Y (+ Up)				ess otherwise
File WL-002	Source	0	X (+ Rght) -0.03	Y (+ Up) -0.13		MV K		ess otherwise noted.
File WL-002 WL-006	Source		X (+ Rght) -0.03 0.10	Y (+ Up) -0.13 -0.13		MV K	uni	ess otherwise noted.
File WL-002 WL-006 WL-001	Source	0 180	X (+ Rght) -0.03	Y (+ Up) -0.13		MV K	uni	ess otherwise noted.
File WL-002 WL-006 WL-001	Source	0 180 90	X (+ Rght) -0.03 0.10 0.23	Y (+ Up) -0.13 -0.13 -0.06			Uni	s are in blue
File WL-002 WL-006 WL-001	Source Angle	0 180 90 270	X (+ Rght) -0.03 0.10 0.23 -0.19	Y (+ Up) -0.13 -0.13 -0.06 -0.19	(Vec S)	X (+: Left)	V concordance Y (+: Post)	s are in blue
File WL-002 WL-006 WL-001	Source Angle Sphere w	0 180 90 270	X (+ Rght) -0.03 0.10 0.23	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(Vec S) (S-P)		Uni	s are in blue
File WL-002 WL-006 WL-001	Source Angle Sphere w Rad. Iso. (0 180 90 270 /ith re (as s	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P)	X (+: Left) -0.06 0.05	V concordance Y (+: Post) 0.21	s are in blue Z (+: Sup.) -0.13
File WL-002 WL-006 WL-001	Source Angle Sphere w Rad. Iso. (0 180 90 270 /ith re (as s	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV gnment	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght)	X (+: Left) -0.06 0.05 Y (+ Up)	V concordance Y (+: Post) 0.21	s are in blue Z (+: Sup.) -0.13
File WL-002 WL-006 WL-001	Source Angle Sphere w Rad. Iso. (0 180 90 270 /ith re (as s	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P)	X (+: Left) -0.06 0.05	V concordance Y (+: Post) 0.21	s are in blue Z (+: Sup.) -0.13
File WL-002 WL-006 WL-001 WL-005	Source Angle Sphere w Rad. Iso. (KV Panel Average	0 180 90 270 /ith re (as s (as s	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV gnment	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght)	X (+: Left) -0.06 0.05 Y (+ Up)	V concordance Y (+: Post) 0.21	s are in blue Z (+: Sup.) -0.13
File WL-002 WL-006 WL-001 WL-005 Half Fan Cone Beam File:	Source Angle Sphere w Rad. Iso. 1 KV Panel Average 19-10-16	0 180 90 270 vith re (as s I Alig Posit	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagin een by KV-KV jnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left)	V concordance Y (+: Post) 0.21 0.15 Y (+: Post)	s are in blue Z (+: Sup.) -0.13 0.12 Z (+: Sup.)
File WL-002 WL-006 WL-001 WL-005 Half Fan Cone Beam File: Sphere with respect to HF	Source Angle Sphere w Rad. Iso. (KV Panel Average I Average I 19-10-16 imaging orig	0 180 90 270 vith re (as s I Alig Posit	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagin een by KV-KV jnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02 (Vec Q)	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left) -0.10	V concordance Y (+: Post) 0.21 0.15 Y (+: Post) 0.09	ess otherwise noted. s are in blue Z (+: Sup.) -0.13 0.12 Z (+: Sup.) -0.28
WL-002 WL-006 WL-001 WL-005 Half Fan Cone Beam	Source Angle Sphere w Rad. Iso. (KV Panel Average I Average I 19-10-16 imaging orig	0 180 90 270 vith re (as s I Alig Posit	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagin een by KV-KV jnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left)	V concordance Y (+: Post) 0.21 0.15 Y (+: Post)	s are in blue z (+: Sup.) -0.13 0.12 z (+: Sup.)
File WL-002 WL-006 WL-001 WL-005 Half Fan Cone Beam File: Sphere with respect to HF Rad. Iso. (as seen by HF Cl Full Fan Cone Beam	Source Angle Sphere w Rad. Iso. (KV Panel Average I Average I 19-10-16 imaging origination SCT):	0 180 90 270 vith re (as s (as s I Alig Positi s 	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagin een by KV-KV jnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02 (Vec Q)	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left) -0.10 0.01	V concordance Y (+: Post) 0.21 0.15 Y (+: Post) 0.09	z (+: Sup.) -0.13 0.12 z (+: Sup.) -0.28 -0.03
File WL-002 WL-006 WL-001 WL-005 WL-005 Half Fan Cone Beam File: Sphere with respect to HF Rad. Iso. (as seen by HF Cl Full Fan Cone Beam File	Source Angle Sphere w Rad. Iso. (KV Panel Average I Analysis 19-10-16 imaging orig SCT): Analysis 19-10-16	0 180 90 270 vith re (as s (as s 1 Alig Positi s _12-0 gin:	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV gnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02 (Vec Q) (Q-P)	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left) -0.10 0.01 X (+: Left)	Y (+: Post) 0.21 0.15 Y (+: Post) 0.09 0.04 Y (+: Post)	z (+: Sup.) -0.13 0.12 z (+: Sup.) -0.28 -0.03 z (+: Sup.)
File WL-002 WL-006 WL-001 WL-005	Source Angle Sphere w Rad. Iso. (KV Panel Average I Average I 19-10-16 maging orig 3CT): Analysis 19-10-16 maging orig	0 180 90 270 vith re (as s (as s 1 Alig Positi s _12-0 gin:	X (+ Rght) -0.03 0.10 0.23 -0.19 espect to imagineen by KV-KV gnment ion of Rad Iso.	Y (+ Up) -0.13 -0.13 -0.06 -0.19 ng origin:	(S-P) X (+ Rght) 0.02 (Vec Q)	X (+: Left) -0.06 0.05 Y (+ Up) 0.12 X (+: Left) -0.10 0.01	V concordance Y (+: Post) 0.21 0.15 Y (+: Post) 0.09 0.04	z (+: Sup.) -0.13 0.12 Z (+: Sup.) -0.28 -0.03




KV Image Mechanicals / Safety / Image Quality


Test	Result
KV beam door interlock	Pass
Collision interlocks	Pass
Override of collision interlocks	Pass
Blade positions	Pass
Radiographic contrast resolution	pass
Radiographic high contrast spatial resolution	Pass
Radiographic uniformity	Pass
Fluoro contrast resolution	Pass
Fluoro high contrast spatial resolution	Pass
Fluoro uniformity	Pass
CBCT head contrast resolution	Pass
CBCT head geometric distortion	Pass
CBCT head geometric uniformity	Pass
CBCT head spatial resolution	Pass
CBCT head HU constancy	Pass
CBCT Pelvis contrast resolution	Pass
CBCT Pelvis geometric distortion	Pass
CBCT Pelvis geometric uniformity	Pass
CBCT Pelvis spatial resolution	Pass
CBCT Pelvis HU constancy	Pass
CBCT Spotlight contrast resolution	Pass
CBCT Spotlight geometric distortion	Pass
CBCT Spotlight geometric uniformity	Pass
CBCT Spotlight spatial resolution	Pass
CBCT Pelvis HU constancy	Pass

KV Dosimetry

IROC Electrons:

IROC[®] IMAGING AND RADIATION ONCOLOGY CORE Global Leaders in Clinical Trial Quality Assurance

IROC Houston QA Center MD Anderson Cancer Center 8060 El Rio Street Houston, TX 77054 Tel (713) 745-8989 Fax (713) 794-1364

RESULTS OF OSLD CHECK OF ELECTRON BEAM

Institution: RTF Number: Person irradiating dosimeters: Radiation Machine: Distance from target to surface: Memorial Sloan-Kettering Cancer Center, New York, NY 1823 Robert Febo TrueBeam Serial 4238 (Rm 243) 100.0 cm

OUTPUT VERIFICATION:

Electron Energy	Date of Irradiation	IROC Houston measured dose at dmax:	Institution reported dose at dmax:	Ratio of absorbed dose determined by IROC Houston to that stated by institution: OSLD/INST
6 MeV	11/19/2019	103.1 cGy to water	101.2 cGy to water	1.02
9 MeV	11/19/2019	100.1 cGy to water	101.1 cGy to water	0.99
12 MeV	11/19/2019	100.0 cGy to water	100.7 cGy to water	0.99

Agreement within 5% is considered a satisfactory check.

DEPTH DOSE VERIFICATION:

Electron Energy	Depth of OSL in falloff region	IROC-determined percentage depth-dose	Institution's depth for this depth dose	IROC depth - Institution depth
6 MeV	2.1 cm	66%	2.1 cm	0 mm
9 MeV	3.4 cm	55%	3.5 cm	-1 mm
12 MeV	4.8 cm	54%	4.9 cm	-1 mm

Agreement within 5 mm is considered a satisfactory check.

IROC Photons:

6 MV

OUTPUT VERIFICATION:

Date of	IROC Houston measured	Institution reported dose at	Ratio of absorbed dose determined by IROC Houston
Irradiation	dose at dmax:	dmax:	to that stated by institution: OSLD/INST
19-Nov-2019	101.5 cGy to water	100.4 cGy to water	1.01

Agreement within 5% is considered a satisfactory check.

6FFF

Therapeutic Medical Physics Residency Rotation Curriculum Treatment Planning – Team H

Rotation Director: Michalis Aristophanous Rotation Mentors: Åse Ballangrud-Popovic Rotation Location(s): MSKCC Main Campus

Duration: 3 months full time

Resident Professional Expectations

1. The resident will be proficient in all tasks performed by faculty in team H.

Team H Learning Objectives

		Contact
Techs	OSMS: commissioning and clinical use	GL
	Exactrac: commissioning and clinical use	ÅBP, ML
	SRS/SBRT machine requirements: MPPG9a	GL, ML
	LINAC:	
Cranial SRS and conventional Brain	Beam modelling for small fields	GL, ÅBP
	Spatial accuracy and dose tolerance, End-to-end testing	GL, ÅBP
lal	Immobilization and simulation; evaluate multiple options	ÅBP
tior	Image fusion and contours; MR only planning	ÅBP
ent	Treatment delivery, setup and motion monitoring	ÅBP
2nc	Planning: DCA, VMAT, conventional brain IMRT/VMAT	ÅBP
с р	Plan evaluation; technique, lesion number/distribution, historic plans	ÅBP
an	Rx dose, margins, outcome, previous treatment considerations	ÅBP
RS	Patient specific QA	ÅBP
al S	Plan checking	ÅBP
ani	Non-LINAC:	ÅBP
ບັ	Framed SRS in iPlan	
	Review of SRS on non-LINAC machines: GammaKnife, CyberKnife, ZAP-X	
	Photons:	
	CT simulation, immobilization, positioning	MA
eck	Image fusion and contours- target definition	MA
Z	Treatment planning: IMRT and VMAT	MA
9	Plan evaluation- dose volume constrains	MA
Head & Neck	Rx dose, margins, outcomes: standard, HYPO, QUADSHOTS	MA
-	Plan checking	MA
	Protons	?
	ECHO	LH, YZ
al	CT simulation, immobilization, positioning	JM?
pin	Images and contours	JM?
Paraspinal	Treatment planning: ECHO vs VMAT	YZ
Ра	Plan evaluation; ECHO vs Eclipse VMAT	YZ
-	Rx dose, margins, outcomes	JM?

\sim		
	Plan checking	YZ
	Photons: supine and prone	CDB/AK
CSI	Use test cases in Development system	
Ŭ	Protons	?
Projects	 Cross planning system dose summation: 1. patient treated both on LINAC and MR-LINAC 2. patient treated both at MSK with photons and at proton center 	ÅBP, MA

Cross Team Learning

Task	Deception	Requirement	Completion
Calcs	None planned cases	1 st calc	Completed 1 st calc sing-off
		2 nd calc x?	Pending 2 nd check
Previous	Prepare special physis	H-team plans:	
treatment	consult for cases with	3 for each type (SRS/spi)	
review/Gap	previous treatment		
Planning	Team H plans	2 plans/week -> 32	
Plan check	Check of all team H type	Observe 1 plan check for	
	plans	each plan type-> 3	
		2 plans/week x16 = 32	
Chart rounds	Attend weekly chart	Attend 1/week -> 16	
	check with radiation	Brain chart rounds	
	oncology	SRS tumor board	
		H&N chart rounds	
		METS chart rounds	
		METS volume review	
EOT	Observe EOT	4 plans/week = 64	
Weeklies	Observe weeklies	4 plans/week = 64	

Required Readings/Training

- 1. Radiation Oncology by Cox and Ang, chapters 8, 9, 33
- 2. Treatment planning in Radiation Oncology by Khan, chapters 21, 22, 23, 28
- 3. AAPM TG-29 and TG-30
- 4. Radiation Oncology by Cox and Ang, chapters 5-7, 10-14, 34, 35, 37 (suggested)
- 5. *OSMS: Book chapter (not yet published):* Chapter 20. Image Guidance for Frameless Radiosurgery Including Surface Mapping. Guang Li¹, Josh Yamada², and Ase Ballangrud¹
- 6. Exactrac
- 7. MPPG9a
- 8. Additional readings as assigned by mentor

Key Topics and Tasks

1. See above list

- 1. Oral Exam
 - a. score ≥3 on 5-point scale
- 2. Written exam
 - a. Score ≥80%

Therapeutic Medical Physics Residency Rotation Curriculum Motion Management

Rotation Director: Ellen Yorke, Lakshmi Santanam

Rotation Mentors: Linda Hong, Jeho Jeong, Ellen Yorke, Wei Lu, Sharif Elguindi, Grace Tang, Dosimetry Core faculty

Rotation Location(s): MSKCC Main Campus and 61st Street MSK building

Duration: 3 Weeks

Resident Professional Expectations

- 1. The resident will master and become independent for review of SBRT plans and setups.
- 2. Resident will also be able to perform Gator duties like binning, Gating setups, Align RT, DIBH

Learning Objectives

- 1. The resident will be able to demonstrate knowledge of motion management strategies in radiation therapy.
- 2. The resident will be able to conduct quality assurance activities related to motion management devices.

Observations:

Week 1- 3: Observe 4DCT QA on CT Sims (Flexible depending on QA schedule) Week 1- 3: Observe Monthly, Qurterly or Annual Motion Managment QA on LINACS (Flexible- QA schedule)

Required Readings/Training

- 1. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. *Med Phys.* 2006;33(10):3874-3900.
- 2. COMP report: CPQR technical quality control guidelines for CT simulators. P.Despres, S.Gaede
- 3. Ford EC, Mageras GS, Yorke E et al., Respiration-correlated spiral CT: A method of measuring respiratoryinduced anatomic motion for radiation treatment planning. <u>*MedPhys.*</u> 2003;30(1):88-97.
- 4. Vedam SS, Keall PJ, Kini VR, etal: Acquiring a four dimensional computed tomography dataset using an external respiratory signal. *PhysMedBiol*. 2003; 48:45-62.
- 5. Keall P, 4-dimensional computed tomography imaging and treatment planning. *Semin Radiat Oncol.* 2004 Jan;14(1):81-90.
- 6. Hua Li, C.Noel, J Garcia-ramirez, clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy. *Med Phys.* 2012 Feb;39(2):922-32.
- 7. Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. *Int J Radiat Oncol Biol Phys.* 2007;68(2):531-540.
- 8. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. *Int J Radiat Oncol Biol Phys.* 2016;94(3):478-492.
- 9. Hunt MA, Sonnick M, Pham H, et al. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery. *J Appl Clin Med Phys.* 2016;17(2):473-486.

- 10. Yorke E, Xiong Y, Han Q, et al. Kilovoltage imaging of implanted fiducials to monitor intrafraction motion with abdominal compression during stereotactic body radiation therapy for gastrointestinal tumors. *Int J Radiat Oncol Biol Phys.* 2016;95(3):1042-1049.
- 11. Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. *Int J Radiat Oncol Biol Phys.* 2007;69(1):276-285.
- 12. Goharian M, Khan RFH Measurement of time delay for a prospectively gated CT simulator. *Med Phys*. 2010 Apr-Jun; 35(2): 123–127.
- 13. Kubo.H, Wang L Compatibility of varian 2100c gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27(8):1732-1738
- 14. Varian RPM manual
- 15. AlignRT manual

- 1. Mentor sign off
 - a. Aspect of this rotation will be further tested during Team R Oral exam

Therapeutic Medical Physics Residency Rotation Curriculum Treatment Planning – Team R

Rotation Director: Ellen Yorke, Lakshmi Santanam

Rotation Mentors: Linda Hong(Breast), Jeho Jeong(Lung), Ellen Yorke(Lung), Wei Lu(Abdomen), Sharif Elguindi(Abdomen), Grace Tang (Breast), Lakshmi Santanam (4DCT, Gating) **Rotation Location(s):** MSKCC Main Campus and 61st Street MSK building

Duration: 3 months full time

Resident Professional Expectations

The resident will be trained in treatment planning. During the initial period, the resident will learn image acquisition (by a short simulation rotation), registration and fusion (MR/PET, 4D) and contouring. This will be followed by Eclipse training for isodose computations. The resident will master treatment planning for breast, thorax, Abdomen sites. Included will be an understanding of, irregular field and heterogeneity calculations and compensation techniques. They will also learn to perform IMRT and VMAT plans. During this rotation, physicists and dosimetrists(planners) will closely supervise the physics resident. Upon completing the planning rotation the resident will spend another 1-week rotation on the treatment machines to observe SBRT setups. This could be spread out during the 12weeks. Residents will by the end of 12 weeks, have observed the entire patient path from Simulation, planning, treatment delivery for all 3 sites.

Rotations:
Week 1: Simulation (4DCT, PET/CT)/ MIM Contouring
Week 2-3: Breast Planning
Week 3-5: Lung /SBRT Planning
Week 6-7 : Abdomen Planning

Assigned Readings	
TG 101	
TG-66,	
TG 76	
All reading material listed below	

Site Reports and Comprehensions:

Week 3: Breast Planning Report for 3D, VMAT Week 5: Lung /SBRT Planning : Report for SBRT Planning Week 7 : Abdomen Planning : Report for abdomen ablative planning

Required Readings/Training

- 1. COMP report: CPQR technical quality control guidelines for CT simulators. P.Despres, S.Gaede
- 2. Stereotactic body radiation therapy: The report of AAPM Task Group 101
- 3. AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT.
- 4. ACR-ASTRO: <u>https://www.acr.org/-/media/ACR/Files/Practice-Parameters/SBRT-RO.pdf</u>
- 5. AAPM Task Group #155, "Small Fields and NonEquilibrium Condition Photon Beam Dosimetry"
- 6. Langen K, Jones D. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001;50(1):265-278.
- 7. Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. *Int J Radiat Oncol Biol Phys.* 2007;69(1):276-285.
- 8. Goharian M, Khan RFH Measurement of time delay for a prospectively gated CT simulator. *Med Phys.* 2010 Apr-Jun; 35(2): 123–127.

- 9. Kubo.H, Wang L Compatibility of varian 2100c gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27(8):1732-1738
- M. Fuss et al., "Stereotactic body radiation therapy: An ablative treatment option for primary and secondary liver tumors", Annals of Surgical Oncology, 11 (2) 130- 138 (2004).
 K.K. Herfarth et al., "Stereotactic single-dose radiation therapy of liver tumors: Results of a phase I/II trial", Journal of Clinical Oncology, 19 (1) 164-170 (2001).
- 11. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiotherapy and Oncology 124(2017)11-17
- 12. Timmerman et al, Stereotactic Body Radiation Therapy for Operable Early-Stage Lung Cancer: Findings From the NRG Oncology RTOG 0618 Trial. JAMA Oncol 2018(Sep1;4(9)1263-1266
- 13. Pollom et al., Normal Tissue Constraints for Abdominal and Thoracic Stereotactic Body Radiotherapy. Semin Radiat Oncol 2017 27(3):197-208
- 14. Licheng Kuo, et al A VMAT planning technique for locally advanced breast cancer patients with expander or implant reconstructions requiring comprehensive postmastectomy radiation therapy. Medical Dosimetry 2019 44: 150-154.
- 15. Linda Hong, et al Electron postmastectomy chest wall plus comprehensive nodal irradiation technique using Electron Monte Carlo dose algorithm. Dosimetry 2018 43: 230-236.
- 16. L. Hong, et al INTENSITY-MODULATED TANGENTIAL BEAM IRRADIATION OF THE INTACT BREAST. Int. J. Radiation Oncology Biol. Phys., 1999, Vol. 44, No. 5, pp. 1155–1164.
- 17. Chen-Shou Chui, et al. INTENSITY-MODULATED RADIOTHERAPY TECHNIQUE FOR THREE-FIELD BREAST TREATMENT. Int. J. Radiation Oncology Biol. Phys., 2005, Vol. 62, No. 4, pp. 1217–1223.
- 18. Crane C, O'reilly E Ablative radiotherapy dsoes for loclly advacned pancreatic cancer, Cancer 23(6)Nov 2017. (review artricle) 350-354.
- 19. Crane C, Koay EJ Solutions that enable ablatvie radiotherpy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion mangement, and CT imgae guidance review article. Cancer July(2016)1974-1986.
- 20. Eclipse Algorithm reference guide
- 21. AAPM #017 TBI
- 22. Quantitative analyses of normal tisue effects in the clinic. Int. J. Radiation Oncology Biol. Phys 2010, 76(3) S1-S160

Key Topics and Tasks

- 1. Complete site-specific reports after completion of each site planning rotation.
- 2. Meet with the assigned faculty to review site specific planning techniques.

Final Evaluation

- 1. Oral Exam
 - a. score ≥3 on 5-point scale

or

- 2. Written exam
 - a. Score ≥80%

Therapeutic Medical physics Residency

Rotation Curriculum

Treatment Planning – Team G External Beam

Rotation Director: Antonio Damato

Rotation Mentor: David Aramburu Núñez,

Rotation Location(s): MSKCC Main Campus

Duration: 12 weeks full time

Resident Professional Expectations

- 1. The resident will exhibit professional standards of MSKCC
- 2. The resident will complete reading assignments prior to weekly meetings with mentor

Learning Objectives

- 1. The resident will be familiar with simulations and treatment floor setups for prostate patients
- The resident will be familiar with MSK clinical workflow and general planning procedures for MRCAT and non-MRCAT prostate patients.
- The resident will be able to perform independently MRCAT fusions and pass its sign off competency.
- 4. The resident will be able to perform independently prostate hypo and conventional planning.
- 5. The resident will be able to understand why different fractionations and dose constraints used for different prostate patients and toxicities related to the treatment.
- 6. The resident will be familiar with simulations and treatment floor setups for GU/GYN/PELVIS patients
- The resident will be familiar with MSK clinical workflow and general planning procedures for GU/GYN/PELVIS patients.
- The resident will be able to understand why Simultaneous integrated boost (SIB) or Cone Down (CD) schemes are selected for specific GYN patients and toxicities related to the treatment.
- 9. The resident will be able to perform independently GU/GYN/PELVIS planning.
- 10. The resident will be familiar with MSK clinical workflow and general planning procedures for extremity cases.
- 11. The resident will be familiar with simulations and treatment floor setups for extremity cases.

- 12. The resident will be able to perform independently planning for extremity cases.
- The resident will understand the advantages and consequences of using different energies and treatment types for specific sites.
- 14. The resident will be able to answer any questions related to the plans by the MD or licensed medical physicist.
- 15. The resident will attend to Chart Rounds and will be able to answer any questions by the MD.

Required Reading/Training

- 1. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\prostate
- 2. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\GI-GYN
- 3. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\Extremity
- 4. Report No. 101 Stereotactic body radiation therapy: The report of AAPM Task Group 101 (2010)
- 5. MRI for Radiotherapy Planning, Delivery, and Response Assessment Editors: Liney, Gary, van der Heide, Uulke (Eds.) (<u>https://link.springer.com/book/10.1007%2F978-3-030-14442-5</u>)

Key Topics and Tasks

- 1. Observe 3 simulations of each: Prostate CT and Prostate MRCAT
- Perform MRCAT Setup for Post-op (at least 1), Post- brachy (at least 2), Intact prostate (at least 2).
- 3. Pass MRCAT Sign off Competency
- 4. Perform 5 Hypo and 5 conventional Prostate planning (at least 2 MVKV, at least 1 ECHO)
- 5. Competency in Hypo and Conventional Prostate Planning.
- 6. Observe 3 simulations for GU/GYN/PELVIS.
- 7. Perform 10 conventional GU/GYN/PELVIS planning. (at least 1 Bladder, at least 2 3DCRT, at least 2 IMRT, if not possible training cases will be available).
- 8. Observe 5 simulations for GU/GYN/PELVIS.
- 9. Perform 10 plans for extremity cases (if not possible, training cases will be available)
- 10. Attend 5 Chart Rounds (GU/GYN/SARCOMA)
- 11. Attend Team G monthly prostate meetings.
- 12. Attend New planner meetings.
- 13. Attend General Treatment planning meetings.

- 1. Oral Exam
- a. Passing \geq 3 average score out of 5

Therapeutic Medical Physics Residency Rotation Curriculum Treatment Planning – Team G Brachytherapy

Rotation Director: Antonio Damoto Rotation Mentors: Gilad Cohen Rotation Location(s): MSKCC Main Campus

Duration: 12 Weeks full time

Resident Professional Expectations

The resident attend QA procedures and clinical cases, as directed by the mentor, and keep track of his/her progress. The mentor will indicate relevant reading in line with clinical cases.

Every two weeks, the resident will meet with the mentor to evaluate the residents' progress, by means of an oral quiz.

Learning Objectives

While the resident will be exposed to procedure as they are performed at MSK, emphasis will also be given to the understanding of basic principles, and methodology. The learning objectives include:

- Ability to perform QA tasks independently
- Ability to perform clinical procedure (under supervision as required by regulations)
- Ability to apply learned techniques in other clinics with different platforms and implantation procedures

Required Readings/Training

- 1. Brachytherapy physics; AAPM summer school 1994
- 2. Brachytherapy physics; AAPM/ABS summer school 2005
- 3. MSKCC brachytherapy service Policy and Procedures (MSKCC staff)
- 4. Relevant publications (e.g. AAPM TG reports, ABS, and ICRU guidelines)

Key Topics and Tasks

Clinical Rotation – Brachytherapy	Date	Clinical Rotation
Learning exercises: (to be done if new equipment is not purchased during the resident's training period.)		
Review purchase, commissioning and acceptance testing of		
the brachytherapy treatment planning system and remote		
Participate in planning and treatment for:		
Prostate LDR		
Eye plaques		
Cervix HDR		
Prostate HDR		
Vaginal/Endometrial HDR		
IORT		
Other procedures as they are scheduled		
Handling of sealed radioactive sources (min # of		
Activities of each type required)		
Ordering / Source type:		
I-125, Pd-103 (5)		
Ir-192 HDR (none required standing order)		
Receiving/Source type		
All of the above (2)		
Calibration/Source type		
I-125, Pd-103, Cs-131 (5)		

102 102 (2)	
Ir-192 HDR (3)	
Preparation for procedure / source type	
Eye plaques (2)	
Other permanent implants (as available)	
Storage - inventory-wipe test	
NA	
Shipment / source type:	
Ir-192 HDR (2)	
Disposal (waste storage) / source type:	
I-125, Pd-103, Cs-131 (2)	
Treatment planning (min # plans of each type	
completed)	
LDR prostate (5)	
LDR temporary implant (pending clinical schedule)	
Eye plaque (2)	
HDR Prostate (5)	
Interstitial HDR implant (pending clinical schedule)	
Intra-operative HDR implants (3)	
HDR gynecological implants (5)	
Treatment plan QA (min # for each plan type)	
LDR prostate (5)	
LDR temporary implant (pending clinical schedule)	
Eye plaque (2)	
HDR Prostate (5)	
Interstitial HDR implant (pending clinical schedule)	
Intra-operative HDR implants (3)	
HDR gynecological implants (5)	
HDR Quality Assurance	
Emergency response training (complete at least 1 session)	
Pre-treatment operational and safety checks (complete	
at least 5 check sessions)	
Participate in at least 2 source changes and subsequent	
QA/PM	
Treatment delivery (min # of each)	
Prostate HDR implants (2)	
Intra-operative HDR implants (2)	
Intraluminal HDR implants (2)	
Intracavitary HDR implants (2)	
treatment delivery (min # of each)	
Permanent LDR prostate (5)	
LDR temporary implant (if scheduled)	
LDR Eye plaque (2)	
Post implant evaluation and review of permanent	
implants (min # of ea)	
Prostate implants (5)	
Other permanent implants (pending clinical schedule)	

- 1. Oral Exam
 - a. score ≥3 on 5-point scale
- 2. Written exam
 - a. Score ≥80%

Therapeutic Medical Physics Residency Rotation Curriculum Chart Check and Review

Rotation Director: Laura Cervino Rotation Mentors: Cesar Della Biancia Rotation Location(s): MSKCC Main Campus

Duration: 6 Weeks

Resident Professional Expectations

- 1. The resident will exhibit professional standards of MSKCC
- 2. The resident will demonstrate punctuality.
- 3. The resident will be present for all assignments
 - a. Should a resident not be able to attend assignment enough notification with faculty should be given
- 4. The resident will communicate effectively with faculty, staff and physicians.

Learning Objectives

- 1. The resident will be able to independently review a treatment plan chart
- 2. The resident will be able to independently review weekly treatment chart audits
- 3. The resident will be able to independently complete end of treatment chart review
- 4. The resident will be able to discus the applications of checklists in chart review
- 5. The resident will be able to demonstrate understanding and ability in SPOC role
- 6. The resident will be able to assist as on-call physicist

Required Readings/Training

- 1. Report of the Task Group #275, Chart review
- Medical Physics Practice Guideline 4.a: Development, implementation, use and maintenance of safety checklists published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 16, Number 3 (2015). [ISBN: 978-1-936366-46-0]
- 3. AAPM Report No. 46 (TG 40) "Compressive QA for Radiation Oncology". https://www.aapm.org/pubs/reports/RPT_46.PDF

Key Topics and Tasks

- 1. Complete 5-10 chart check observations
- 2. Complete 10 independent check checks for presentation and sign off by faculty.
- 3. Complete weekly chart review as assigned
- 4. Complete End of Treatment chart check as assigned

- 1. Oral Exam
 - a. Passing score ≥3 on 5 Pt scale
- 2. Oral Exam
 - a. score \geq 3 on 5-point scale
- 3. Written exam
 - a. Score ≥80%

4. Completion of required number of plan checks

Therapeutic Medical Physics Residency Rotation Curriculum Regional Clinic

Rotation Director: As Assigned Rotation Mentors: As Assigned Rotation Location(s): As Assigned

Duration: 6 Weeks

Resident Professional Expectations

- 1. The resident will perform duties and act in expected professional manner as learned during orientation rotation.
- 2. The resident will comport themselves with any additional requirements as outlined by their outpatient rotation mentor.

Learning Objectives

1. The resident will be able to synthesize what was learned during their specialized main campus rotations (e.g. dosimetry, brachytherapy, external beam planning) into a comprehensive understanding of the role of a physicist at a small to medium sized (3-4 linacs) practice, where the physicist is generally responsible for all aspects of clinical physics on a day-to-day basis.

To perform clinical physics functions, mainly machine QA, initial, weekly, and end-of treatment chart checks, brachytherapy (if available), and being the first line of contact for machine or patient-related issues on the linac or in the simulator as independently as possible within the bounds of NYC/NYS or NJ practice guidelines.

Required Readings/Training

- 1. MPPG 10a
- 2. Report of the Task Group #275

Key Topics and Tasks

- 1. Under the supervision of a (NYS defined) PMP:
 - a. Complete 1 monthly linac QA for every month on the rotation
 - b. Complete 1 CT simulator QA for every month on the rotation
 - c. Complete initial, weekly, and EOT physics chart checks with a frequency equal to that of other physicists in the region.
 - d. Serve as senior physicist on-call (SPOC) and first line of contact for linac/simulator calls to physics
 - e. If brachytherapy available at the site,
 - i. Perform 1 source exchange (if occurs during rotation)
 - ii. Perform IVRT planning, delivery, daily HDR QA
 - f. The resident will be able to perform patient specific dosimetry in vivo measurement

- 1. Oral Exam
 - a. score ≥3 on 5-point scale

Therapeutic Medical Physics Residency Rotation Curriculum MR-Linac

Rotation Director: James Mechalakos Rotation Mentors: Neelam Tyagi, Ergys Subashi Rotation Location(s): MSKCC Koch Center

Duration: 4 Weeks

Resident Professional Expectations

- 1. The resident will perform duties and act in expected professional manner as learned during orientation rotation.
- 2. The resident will comport themselves with any additional requirements as outlined by their outpatient rotation mentor.

Learning Objectives

- 1. The resident will be able to demonstrate knowledge of MR Safety
- 2. The resident will be able to demonstrate knowledge of MR-Linac QA processes
- 3. The resident will be able to discuss adaptive radiotherapy and its applications
- 4. The resident will be able to discuss Synthetic CT used in planning
- 5. The resident will be able to demonstrate basic Mosaiq and Monaco skills

Required Readings/Training

- 1. Report of the Task Group #275
- C Kontaxis, G H Bol, J J W Lagendijk and B W Raaymakers, "A new methodology for inter- and intrafraction plan adaptation for the MR-linac". Physics in Medicine & Biology, Volume 60, Number 19:7485-97
- 3. K Smit, B van Asselen, J G M Kok, A H L Aalbers, J J W Lagendijk and B W Raaymakers, " Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading". Physics in Medicine & Biology, Volume 58, Number 17: 5945-57
- C Kontaxis, G H Bol, J J W Lagendijk and B W Raaymakers, "Towards adaptive IMRT sequencing for the MR-linac". Physics in Medicine & Biology, Volume 60, Number 6:2493-2509
- 5. D Winkel et al. "Adaptive Radiotherapy: The Elekta Unity MR-Linac Concept". Clin and Trans Rad Oncol V18, Pg. 54-59.
- K Smit, B van Asselen, J G M Kok, A H L Aalbers, J J W Lagendijk and B W Raaymakers, " Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading". Physics in Medicine & Biology, Volume 58, Number 17:5945-57
- 7. X. Allen Li (Ed), "Adaptive Radiotherapy". CRC Press Francis & Taylor, Boca Raton, FL 2011
- 8. Additional readings as assigned

Key Topics and Tasks

- 1. Complete monthly MR-Linac QA
- 2. Complete an MR-Linac treatment plan in Monco
- 3. Complete transfer of pan to Mosaiq

- 1. Oral Exam
 - **a.** >3 average score on 5 pt scale.

Therapeutic Medical Physics Residency Rotation Curriculum Proton Therapy

Rotation Director: Haibo Lin, Ph.D

Rotation Mentors: Haibo Lin Ph.D, Minglei Kang Ph.D, Pingfang Tsai Ph.D, Weijun Xiong Ph.D, Qing Chen M.S, Francis Yu M.S, Lei Hu Ph.D, Anna Zhai M.S **Rotation Location(s):** New York Proton Center

Duration: 8 Weeks

Resident Professional Expectations

1. The therapeutic medical physics residents in the department of medical physics at Memorial Sloan Kettering Cancer Center will be expected to achieve the following competencies associated with proton therapy.

Learning Objectives

- 1. The resident will be able to demonstrate knowledge of basic physics of proton therapy including interactions of protons with material, Bragg peak, etc
- 2. To learn the clinical rationale of proton therapy
- 3. To understand the major proton machine components such as cyclotron for proton acceleration, energy selection system, beamline for beam delivery, gantry, snout, nozzle and associated accessories.
- 4. To learn different proton delivery methods such as passive scattering and active scanning techniques, their pros and cons.
- 5. To Understand the root of uncertainties associated with proton therapy, especially for pencil beam scanning technique.
- To learn quality assurance (QA) instruments used for proton therapy such as ion chambers, Multi-layer Ionization Chambers (MLICs), detector arrays, film dosimetry, scintillator detector.
- 7. To learn the TRS-398 protocol for absolute dose calibration protocol of proton beam
- 8. To learn NYPC proton machine QA protocols for daily, monthly and annual checks
- 9. To learn NYPC patient specific QA procedure for different treatment techniques e.g. Single Field Optimization (SFO) and Multi-field Optimization (MFO).
- 10. To learn basic treatment planning for proton therapy including SOF and MFO for various disease sites.
- 11. To learn how to evaluate a proton plan quality for different treatment sites.
- 12. To learn CT and MRI simulations for proton therapy and associated patient setup & immobilization for proton therapy
- 13. To learn basic protocol for CT HU proton stopping power calibration
- 14. To understand the shielding requirements for proton therapy facilities
- 15. To participate ProBeam system commissioning (before center open) including beam data collection, TPS configuration, validation of TPS configuration, validation of CT calibration and end-to-end test.

Required Readings/Training Required Readings:

- ACR-ASTRO practice guideline for the performance of proton beam radiation therapy. American College of Radiology, 2013. Available at: <u>http://www.acr.org/w/media/7BEBF7E77E1141578</u> <u>CB8722F997BDE9B.pdf</u>.
- (TRS) no. 398. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: International Atomic Energy Agency Technical report series; 2000.
- *3. Prescribing, Recording and Reporting Proton-Beam Therapy.* ICRU report 78. Oxford: Oxford University Press; 2007. Available at AAPM web site.
- 4. Proton Beam Therapy, Kooy and Adams, Ch 18 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.
- Role of Protons Versus Photons in Modern Radiotherapy: Clinical Perspective, Yip, Wand and DeLaney, Ch 19 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.
- 6. Intensity Modulated Proton Therapy, Lomax Ch 10 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.

Suggested Readings:

- 1. Radiation Oncology: A physicists-eye view. Goitein, M. 2008. New York: Springer. Chapters 10 & 11.
- 2. Proton and Charged Particle Radiotherapy. DeLaney and Kooy. Lippincott, Williams and Wilkins (2007)
- 3. Proton Therapy Physics, 2nd ed. H. Paganetti, 2018
- 4. Eclipse treatment planning algorithm: proton therapy
- Radiation safety issues relevant to proton therapy and radioisotope production medical cyclotrons Mukherjee, B. 2012, Radiation Protection and Environment, Vol. 35, Issue 3&4, p126-134.
- Radiation Therapy with Light Ions. Vatnitsky, S.M. and M.F. Moyers. 2013,. In The Modern Technology of Radiation Oncology: Vol. III, ed. J. VanDyk, 183-222. Madison: Medical Physics Publishing. (see Pat McDermott)

Key Topics and Tasks

- 1. Clinical Activity 1: ProBeam Daily QA
 - a. Observe and perform the machine daily QA. Attach a copy of daily QA report.
- 2. Clinical Activity 2: ProBeam Monthly QA
 - a. Observe and perform the monthly QA. Attach a copy of monthly QA report.
- 3. Clinical Activity 3: Patient Specific QA
 - a. Observe and perform patient specific QA.
- 4. Clinical Activity 4: CT Monthly QA

Memorial Sloan Kettering

- Cancer Center
- a. Observe and perform the CT monthly QA. Attach a copy of monthly QA report.
- 5. Clinical Activity 5: Imaging transfer and registration
 - a. Observe and Perform CT imaging transfer and imaging registration.
- 6. Clinical Activity 6: Daily Physics support early shift
 - a. Observe and shadow early shift Physics of the Day (POD) for clinical supports.
- 7. Clinical Activity 7: Daily Physics support late shift
 - a. Observe and shadow late shift Physics of the Day (POD) for clinical supports.
- 8. Clinical Activity 8: Physics chart checks
 - a. Observe and perform physics chart checks.
- 9. Clinical Activity 9: Proton simulation observation
 - a. Observe proton patient simulation for various disease sites.
- 10. Clinical Activity 10: Proton treatment observation
 - a. Observe proton treatment for various disease sites.
- 11. Clinical Activity 11: Proton treatment planning
 - a. observe and perform proton treatment planning for different treatment sites.
- 12. Clinical Activity 12: Proton beam calibration TRS 398
 - a. Perform proton beam absolute dose calibration using IAEA TRS-398 protocol

NYPC Proton Therapy Rotation Sign Off Sheet

Name of trainee:_____

Your signature indicates that you have read the reference

Required Reading

Reference	Signature	Date
ACR-ASTRO practice guideline		
(TRS) # 398. Absorbed dose determination		
in external beam radiotherapy		
Prescribing, Recording and Reporting		
Proton-Beam Therapy ICRU #78		
Proton Beam Therapy by Kooy and Adams:		
chapter 18 treatment planning		
Role of Protons Versus Photons in Modern		
Radiotherapy: Clinical Perspective: chapter		
19 treatment planning		
Intensity Modulated Proton Therapy:		
chapter 10 Treatment planning		

Proton Therapy Rotation Sign Off Sheet (2 of #)

Name:

Clinical Activity 1: ProBeam Daily QA

The resident has observed the daily ProBeam machine QA

Medical Physicist Signature #1:_____ Date:_____ Date:_____

(Memorial Sloan Kettering Cancer Center	
The resident has observed the daily ProBeam machine QA	
Medical Physicist Signature #2:	Date:
The resident has <i>performed</i> daily ProBeam machine QA under my	y supervision
Medical Physicist Signature:	Date:
Clinical Activity 2: ProBeam Monthly QA	
The resident has observed the monthly ProBeam machine QA	
Medical Physicist Signature:	Date:
The resident has observed the monthly ProBeam machine QA	
Medical Physicist Signature:	Date:
The resident has <i>performed</i> the Monthly ProBeam machine QA u	nder my supervision
Medical Physicist Signature:	Date:
Clinical Activity 3: Patient Specific QA	
The resident has observed the patient specific QA	
Medical Physicist Signature:	Date:
The resident has observed the patient specific QA	
Medical Physicist Signature:	Date:
The resident has <i>performed</i> the patient specific QA under my sup	pervision
Medical Physicist Signature:	Date:

Clinical Activity 4: CT Monthly QA

The resident has observed the CT monthly machine QA	
Medical Physicist Signature:	Date:
The resident has observed the CT monthly machine QA	
Medical Physicist Signature:	Date:
The resident has performed the CT Monthly machine QA under my su	upervision
Medical Physicist Signature:	Date:

Clinical Activity 5: Imaging transfer and registration

Observe and Perform the transfer of the CT imaging data set from CT console to Eclipse/Velocity and perform imaging registration.

Signature/Date	
Signature/Date	

Clinical Activity 6: Daily Physics support – early shift

Observe and shadow early shift Physics of the Day (POD) for clinical support.

Oversee the machine performance, communicate with physician, therapist and dosimetrist for problems/issues and provide clinical supports in plan review, QA check, chart check .etc. Perform the machine morning QA.

Signature/Date	
Signature/Date	

Signature/Date	
Signature/Date	
Signature/Date	
Signature/Date	
Signature/Date	

Clinical Activity 7: Daily Physics support – late shift

Observe and shadow late shift Physics of the Day (POD) for clinical support.

Oversee machine performance, communicate with physician, therapist and dosimetrist about the problems and provide clinical support in plan review, QA check, chart check .etc. Perform the machine QA and patient specific QA after patient treatment.

Signature/Date	
Signature/Date	

Clinical Activity 8: Physics chart checks

Observe and perform physics chart checks with licensed Medical Physicist.

Signature/Date	
Signature/Date	

Clinical Activity 9: Proton simulation observation

Observe proton patient simulation for various disease sites.

Pediatric vs adult treatment; CNS, H&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

Signature/Date	Disease site

Clinical Activity 10: Proton treatment observation

Observe proton treatment for various disease sites.

Pediatric vs adult treatment; CNS, H&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

Signature/Date	Disease site

Clinical Activity 11: Proton treatment planning

observe and perform proton treatment planning for different treatment sites.

Pediatric vs adult treatment; CNS, H&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

Signature/Date/observation	Disease site	Signature/Date/planning

Clinical Activity 12: Proton beam calibration – TRS 398

Perform proton beam absolute dose calibration using IAEA TRS-398 protocol.

Signature/Date	

Therapeutic Medical Physics Residency Rotation Curriculum Supervised Independent Practice

Rotation Director: As assigned Rotation Mentors: As assigned Rotation Location(s): As Assigned

Duration: 8 Weeks

Residents will be assigned to a section/team and perform clinical duties as assigned within their scope of permit.

Resident Professional Expectations

- 1. The resident will act as a member of the assigned team completing all assignments in a timely manner.
- 2. The resident is expected to act independently within the scope and limits of their permit and section directors' assignments.

Learning Objectives

- 1. The resident will be able to demonstrate knowledge and ability to perform standard medical physics duties at the level of junior physicist.
- 2. Deficiencies identified from earlier rotations will be addressed and corrected.
- 3. The resident will develop confidence in clinical problem solving.
- 4. The resident will show competence in acting as an independent practitioner of therapeutics medical physics.

Required Readings/Training

1. As assigned by the rotation mentor or section chief.

Key Topics and Tasks

1. Assigned task per the clinical service.

- 1. Oral Exam (comprehensive)
 - a. Average score ≥3 on 5-point scale

Therapeutic Medical Physics Residency Rotation Curriculum Elective

Rotation Director: Christopher J. Watchman, PhD, DABR **Rotation Mentors:** as assigned per the specifics of the elective rotation **Rotation Location(s):** As Assigned

Duration: 4 Weeks

Resident Professional Expectations

- 1. The resident will choose an elective and coordinate with the assigned mentor.
- 2. The resident will complete all outstanding work related to clinical assignments, development projects and program requirements.
- 3. The resident will provide the program director with all completed work and forms.
- 4. The resident will leave with the program director, mentor and/or other faculty needed documentation and work product developed during their residency.

Learning Objectives

1. The resident will learn to complete and closeout employment with an employer.

Required Readings/Training

1. As assigned by mentor or director

Key Topics and Tasks

1. TBD based on resident's elective