# Therapeutic Medical Physics Residency <br> Rotation Curriculum 

## Orientation and Professional Curriculum

Rotation Director: Watchman
Rotation Mentors: Watchman
Rotation Location(s): MSKCC Main Campus
Duration: 2 Weeks

## Learning Objectives

1. The resident will be able to describe expectations required for clinical practice including
a. Basic safety, patient care
2. The resident will demonstrate knowledge of the six core competencies
3. The resident will be able to describe what a professional medical physicist is and the expectations of one.
4. The resident will be able to discuss ethical obligations of a medical physicist and be able to discuss solutions to ethical scenarios
5. The resident will be able to discuss the qualities of leadership and different leadership models
6. The resident will be able to discuss fundamental financial concepts in radiation oncology

## Key Topics

1. Orientation to Clinical Practice
a. Expectations
2. Professional Curriculum
a. Core Competencies
i. Patient Care
ii. Medical Knowledge
iii. Practice-Based Learning and Improvement
iv. Interpersonal and Communication Skills
v. Professionalism
vi. System-Based Practice
b. Leadership
c. Ethics
d. Business and Finance
i. Billing-CPT
ii. Budgeting
iii. SWOT Analysis
iv. Alternative Payment Model

## Required Readings

1. RSNA/AAPM Ethics modules
2. Read Assigned Leadership Book
3. AAPM Medical Physics Practice Guideline 10.a.: Scope of practice for clinical medical physics published in the Journal of Applied Clinical Medical Physics (JACMP). (2018).
4. AAPM Medical Physics Practice Guideline 3.a: Levels of supervision for medical physicists in clinical training published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 16, Number 3 (2015). [ISBN: 978-1-936366-45-3]
5. Ehsan, S et al. "Redefining and Reinvigorating the Role of Physics in Clinical Medicine: A Report from the AAPM Medical Physics 3.0 Ad Ho Committee." Med Phys 45 (9) e783-89, 2018
6. Additional readings as assigned

## Tasks/Checklist Requirements/ Competencies

1. Complete all MSKCC on-boarding curriculum
a. If required $(0+2)$
2. Complete RSNA Modules
3. Complete Professionalism assignments
4. Meet with mentor as assigned and be prepared for the meeting

## Evaluation Scheme:

## Weekly Evaluation

1. Written weekly evaluations by mentor with resident achieving a marginal or greater score

## Final Evaluation

1. Sign off by mentor

# Therapeutic Medical Physics Residency <br> Rotation Curriculum 

Radiation Safety Curriculum
Rotation Director: Lawrence Dauer, PhD, CHP
Rotation Mentors: Brian Quinn, Bae Chu
Rotation Location(s): MSKCC Main Campus / Manhattan Campuses

## Duration: 8 Weeks

## Resident Professional Expectations

1. The resident will demonstrate a commitment to attainment of radiation safety knowledge and identify personal strengths and weaknesses in the attainment of radiation safety knowledge and, if indicated, demonstrate the ability to address weaknesses.
2. The resident will demonstrate responsible behaviors consistent with the highest ethical standards: honesty, respect, confidentiality, reliability, dependability, civility and punctuality.

## Learning Objectives

1. The resident will be able to complete and discuss radiation surveys in a variety of contexts.
2. The resident will be able to complete and discuss patient dose monitoring.
3. The resident will be able to develop a radiation safety program.
4. The resident will be able to use and discuss the different aspects of radiation safety equipment.
5. The resident will be able to discuss and design laboratory radiation safety programs.
6. The resident will be able to complete external and internal dosimetry assessments for both clinical and occupational scenarios.
7. The resident will be able to demonstrate the ability to develop radiation shielding using NCRP methods.
8. The resident will be able to discuss and implement radioactive waste management methods.
9. The resident will be familiar with environmental radiation protection practice.
10. The resident will be able to develop and implement radiation safety training programs.
11. The resident will be able to demonstrate knowledge of federal, state and city laws/regulations related to the safe use of radiation producing machines and radioactive material.

## Key Topics and Tasks

1. Radiation safety surveys: Appropriate selection of radiation instrumentation including energy response, efficiency, sensitivity and geometry. Performing radiation measurements and evaluation of radiation measurements with regard to purpose of survey and regulatory requirements. Radiation measurements in diagnostic and therapeutic radiation settings. Surveys for removable contamination. Radiation safety features of equipment and treatment room.
2. Patient dose monitoring: In-air measurements of exposure and exposure rates from equipment and measurements with phantoms using ionization chambers, patient dose measurement, calculation of skin entrance dose, internal organ dose, effective dose equivalent, risk estimation, evaluation of potential for deterministic effects, calibration and quality assurance of dosimeters and automated dosimetry systems.
3. Additional experiences: Design of radiation safety program, presentation of radiation safety in-service education, shielding design, consultation regarding radiation safety, patient doses
and image quality improvement.
4. Clinical radiation safety: Observation of inpatient therapy measurements/patient education. Observe brachytherapy implants (temporary/permanent) measurement/patient education. Review patient instruction booklets.
5. Radiation safety instrumentation - hands-on understanding: Understand operational differences/pros/cons for portable equipment. Tour the installed waste monitors. Perform wipe tests/leak tests.
6. Laboratory radiation safety: Assist in research laboratory radiation safety audits. Review the authorized user permitting process and inventory control.
7. External dosimetry system: Discuss monitoring program objectives and administration. Identify and discuss occupational dose limits. Review dosimetry reports (SDE, LDE, DDE, ALARA levels).
8. Shielding design: Understand NCRP methodology. Identify important points in Linac/PET shielding applications. Review ongoing shielding design packages and installations (depending on current construction projects); review design of existing facilities. Understand contribution to shielding requirements of head leakage, workload determination, broad beam transmission measurements, interpretation of regulatory requirements.
9. Radioactive waste management: Tour the decay-in-storage area. Review shipping manifests. Review DOT shipping course materials.
10. Environmental protection: Discuss regulatory limits on releases (air, water, etc.). Understand typical background levels.
11. Training: Discuss clinical desk in-service topics - nurses, doctors, and patients. Review laboratory desk training package - researchers.

## Required Readings/Training

1. Khan -Chapters 15 and 16
2. NCRP Reports 116, 147, 151, 155.
3. ICRP Report 103, 118
4. Health Physics Journal Articles as assigned
5. CFR and State Regulations as assigned
6. Additional reading as determined by the rotation mentor

## Tasks/Checklist

| Topic | Radiation Safety Section Contact | Notes |
| :---: | :---: | :---: |
| Clinical Desk |  | Check in with clinical team daily until all required cases are observed. <br> Accompany clinical team in clinic. |
| Management of Therapy Patients | Bae Chu |  |
| Observe 2 Inpatient therapy measurement/patient education (as available) | Medical Health Physics Clinical Team: <br> Bae, Kassia, Brian S, Joaquin |  |
| Observe 2 Outpatient therapy measurement/patient education |  |  |
| Review Radioactive Precautions on Patient Eduction web pages: <br> Search "LDR", "Radioactive", etc | https://www.mskcc.org/cancer-care/patient-education |  |
| Observe 3 Y90 Spheres Case | Medical Health Physics Clinical Team |  |
| Observe IORT Case (as available) |  |  |
| Radiation Safety Instrumentation |  | Schedule with indicated contact |
| Hands On Operation and Theory | Dan Chiappetta |  |
| Perform a Wipetest/leaktest | Brian Serencsits |  |
| Laboratory |  | Schedule with indicated contact |
| Assist a Research Laboratory Audit |  |  |
| Review the PI permitting process | Brian Serencsits |  |
| External Dosimetry |  | Schedule with indicated contact |
| Discuss Monitoring Program Objectives and Administration | Daniel Miodownik |  |
| Identify and Discuss Occupational Limits |  |  |
| Review Landauer Reports (SDE, LDE, DDE, ALARA Levels) |  |  |


| Topic | Radiation Safety Section Contact | Notes |
| :---: | :---: | :---: |
| Regulatory and Licensing |  | Schedule with indicated contact |
| Regulatory Requirements | Matt Williamson |  |
| Shielding Design (especially NCRP 151) |  | Schedule with indicated contact |
| NCRP methodology (new and old) | Larry Dauer |  |
| Identify Important Points in Diagnostic/LINAC/PET Shielding Applications |  |  |
| Review Ongoing Shielding Design Packages and Installations (if applicable) |  |  |
| Radioactive Waste Management |  | Schedule with indicated contact |
| Tour the Decay in Storage area | Bae Chu |  |
| Review Shipping Manifest |  |  |
| Review Shipping Course Materials |  |  |
| Environmental | ection |  |
| Discuss Regulation of environmental releases (air, water, etc.) | Brian Quinn | Schedule with indicated contact |
| Trainin |  |  |
| Discuss Clinical Desk Inservice topics - nurses, doctors, patients | Bae Chu <br> Daniel Miodownik | Schedule with indicated contact |


| Topic | Radiation Safety Section Contact | Notes |
| :---: | :---: | :---: |
| Review Laboratory Desk Training package - researchers | Brian Serencsits <br> Dan Chiappetta |  |
| Literature Review: Resident folder in H:\Public |  | Resources available on network drive. |
| Khan - Radiation Safety | Larry Dauer |  |
| $\begin{aligned} & \text { NCRP -116, 147, 151; ICRP - 103, } \\ & 118 \end{aligned}$ |  |  |
| Health Physics Society Journal |  |  |
| Dose Quantities and Estimation |  |  |
| ICRP Dose and Risk Quantities/Units |  |  |
| Internal Dosimetry Approaches |  |  |

## Final Evaluation

1. Multiple choice exam is given to identify areas of improvement before final evaluation
2. Oral exam and evaluation, mentor team has a checklist of required knowledge
3. Sign off by rotation director


## $\uparrow$ Memorial Sloan Kettering丰 Cancer Center




# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Dosimetry 

Rotation Director: Michael Lovelock
Rotation Mentors: as assigned
Rotation Location(s): MSKCC Main Campus / Manhattan Campuses
Duration: Ongoing through year 2

## Resident Professional Expectations

1. The resident will demonstrate punctuality.
2. The resident will be present for all assignments
a. Should a resident not be able to attend assignment enough notification with faculty should be given
3. The resident will communicate effectively with faculty, staff and physicians.
4. The resident will demonstrate professional curtesy with all oncology and physics team members.
a. This will include use of equipment and return of facility to clinical readiness
5. The resident will support the radiation therapists.

## Learning Objectives

1. The resident will be able to independently conduct daily, monthly and annual linac QA.
2. The resident will be able to develop a quality assurance program for all equipment used in clinical and quality assurance activities.
3. The resident will be able to conduct quality assurance activities in a large practice and small practice environment.
4. The resident will be able to discuss and use all quality assurance tools covered in this rotation.
5. The resident will develop treatment machine skills in treatment, physics and service modes.

## Required Readings/Training

1. Report of the Task Group \#51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)
2. Report of the Task Group \#53 Quality Assurance for Clinical Radiotherapy Treatment Planning (Reprinted from Medical Physics, Vol. 25, Issue 10)
3. Report of the Task Group \#62 Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy
4. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics, Vol. 30, Issue 8
5. Dosimetry Task Group \#70 Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25 Medical Physics, Vol 36, Issue 7
6. Report of the Task Group \#74 Report of AAPM Therapy Physics Committee Task Group 74: In- air output ratio, $S_{c}$, for megavoltage photon beams, Medical Physics, Vol 36, Issue 11
7. Dosimetry Task Group \#70 Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25, Medical Physics, Vol 36, Issue 7
8. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Medical Physics, Vol 35, Issue 9
9. Report of Task Group 142 : Quality assurance of medical accelerators Medical Physics, Vol 36, Issue 9.
10. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
11. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 18, Number 4 (2017).
12. Others as assigned.

## Key Topics and Tasks

1. Complete assignments for sign off in document below.

## MSKCC Physics Residency: Radiation Therapy Rotation

Dosimetry Group Progress Checklist

|  | Start date |
| :--- | :--- | :--- |
| Resident: | $8 / 13 / 2018$ |

## Notes

1. Tasks can be competed at the earliest opportunity, prior to the milestone date. Tasks do not have to be completed in sequence.
2. There are sets of questions for each of the milestone dates. Short, concise responses are required. Email your answers to your current mentor and to Michael Lovelock. Your mentor will review your responses with you. Your responses form part of your Dosimetry Group record.
3. You are required to perform one or more end to end tests using an anthropomorphic phantom to quantify dosimetric and geometric accuracy of dose delivery. (See AAPM MPPG 9a). At the 12 month milestone, schedule with you mentor the setup and CT scan of the phantom. Over the next few weeks you need to setup the phantom in the CT simulation suite, scan ther phantom, plan the the dose distribution, deliver the treatment, and then using film dosimetry, analyse the results, and write a short report suitable for departmental review.
4. There will be two oral sessions with members of the Dosimetry Group to review your progress. These will be scheduled after the 12 and 21 month milestones

|  | Milestone Date | Physicist Initial | Signoff Date |
| :--- | ---: | ---: | ---: |
| Tasks to be Completed within 6 months: | 2/13/2019 |  |  |
| Shadow therapists for morning QA (at least 5 sessions on different machines) |  |  |  |
| Perform monthly QA for the CT simulation suite. Operate CT scanner for phantom <br> scans. |  |  |  |
| Perform monthly linac QA inclusive of imaging systems |  |  |  |
| Perform patient specifc QA using EPID |  |  |  |
| Perform patient specifc QA using mapcheck |  |  |  |


| Tasks to be Completed within 12 months: | 8/13/2019 |  |
| :--- | :---: | :---: |
| Perform Daily QA of Calypso |  |  |
| Perform Daily QA of ExacTrac |  |  |
| Perform Daily QA of AlignRT |  |  |


| Perform TBI/TSET QA |  |
| :--- | :--- |
| Perfrom monthy and annual QA of a kV therapy unit |  |
| Perform radiochromic fim analysis |  |
| Assist in Annual QA and associated data analysis of a Linac including imaging, TG51 <br> procedure including handcalculations for photons and electrons |  |
| Under the supervision of a qualified medical physicist, able to calibrate the morning QA <br> device |  |
| Run the automatic QA process on a TrueBeam (MPC). |  |
| Perform an ISOCAL calibration or verification on a TrueBeam |  |
| Schedule with your mentor one or more end-to-end tests (localization and dosimetry) <br> of anthropomorphic phantom(s) |  |
| Calibrate OSLDs |  |


| Tasks to be Completed within 18 months: | $\mathbf{2 / 1 3 / 2 0 2 0}$ |  |
| :--- | :--- | :--- |
| Independently perform the Annual QA of a CT simulation suite |  |  |
| Under the supervision of a qualified medical physicist, able to use the Profiler |  |  |


| Tasks to be Completed within 21 months: | $\mathbf{5 / 1 3 / 2 0 2 0}$ |  |
| :--- | ---: | :--- |
| Independently perform annual QA, including dosimetry of the Linac imaging systems |  |  |
| Complete end-to-end test of the anthropomorhpic phantom and submit report |  |  |

## Final Evaluation

1. Written exam (timed closed book)
a. Oral if written final exam is $<80 \%$
i. Oral exam score $\geq 3$ on 5 point scale

# Therapeutic Medical Physics Residency <br> Rotation Curriculum Imaging 

Rotation Director: Lawrence Rothenberg
Rotation Mentors: as assigned
Rotation Location(s): MSKCC Main Campus and other locations as assigned

## Duration: Ongoing for 1 year

## Resident Professional Expectations

1. The resident will exhibit professional standards of MSKCC
2. The resident will complete reading and imaging QA assignments on time and as assigned
3. The resident will proactively coordinate training sessions with imaging faculty to ensure all obligations are met in conjunction with their other rotations

## Learning Objectives

1. The resident will be able to develop an imaging quality assurance program.
2. The resident will be able to conduct imaging quality assurance activities in a large practice and small practice environment.
3. The resident will be able to discuss and use all imaging quality assurance tools covered in this rotation.

## Required Readings/Training

1. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
2. AAPM Medical Physics Practice Guideline 2.a: Commissioning and quality assurance of X-raybased image-guided radiotherapy systems published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 15, Number 1 (2014). [ISBN: 978-1-936366-31-6]
3. ACR Guidance Document on MR Safe Practices: 2013. Journal of Magnetic Resonance Imaging 37:501-530 (2013).
4. Phantom Test Guidance. ACR MRI Accreditation Program. American College of Radiology.

## Key Topics and Tasks

1. Review appropriate AAPM Task Group Reports of relevant Diagnostic Imaging Devices
2. Complete Annual Compliance Tests on
a. 2 or more CT scanners
b. 2 or more ultrasound units
c. 2 or more mobile C -arm fluoroscopy units
d. At least 1 MRI scanner
e. At least 1 PET/CT scanner

Final Evaluation

1. Mentor sign off on task list

| THERAPY PHYSICS RESIDENCY PROGRAM FACULTY EVALUATION OF RESIDENT - IMAGING ROTATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resident name |  |  |  |  |
| Rotation name | Computed Tomography |  |  |  |
| Inclusive dates of rotation |  |  |  |  |
| Faculty name |  |  |  |  |
| Evaluation Criteria | Not Completed | Marginally Completed | Fully Completed | Explanatory Notes |
| Patient care | (residents should provide information that is appropriate, accurate and relevant to diagnosis of health problems) |  |  |  |
| 1. Observes and understands annual compliance testing of a computed tomography scanner. |  |  |  |  |
| 2. Observes and understands annual compliance testing of a second computed tomography scanner. |  |  |  |  |
| 3. Observes and understands annual compliance testing of additional computed tomography scanners. |  |  |  |  |
| 4. Understands calculation of CTDI for computed tomographic examinations. |  |  |  |  |
| Medical knowledge | (residents should be knowledgeable, scholarly, and committed to lifelong learning) |  |  |  |
| 5. Explains the complete computed tomographic imaging chain from production of X-rays to image reconstruction. |  |  |  |  |
| 6. Explains the physical meaning of Hounsfield Units. |  |  |  |  |
| 7. Explains how specifics of imaging protocol affect patient dose and diagnostic benefits of examination. |  |  |  |  |
| Practice-based learning and improvement | (residents should investigate and evaluate patient care practices, appraise and assimilate scientific evidence and improve patient care practices ) |  |  |  |
| 8. Assists with analysis of results of testing and observes unexpected findings including image artifacts. |  |  |  |  |
| 9. Assists with investigation of equipment performance and image quality problems. |  |  |  |  |
| 10. Recognizes and corrects personal errors. |  |  |  |  |
| Interpersonal and communication skills | (residents should demonstrate effective information exchange with physicians, technologists, service personnel, and professional associates) |  |  |  |
| 11. Works effectively with others as a member of a health care team. |  |  |  |  |


| 12. Assists with production of written reports |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 13. Listens effectively and follows directions |  |  |  |  |



| technology, 3D image acquisition, and <br> broadband technology. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Practice-based learning and <br> improvement | (residents should investigate and evaluate patient care practices, <br> appraise and assimilate scientific evidence and improve patient care <br> practices) |  |  |  |
| 11. Observes analysis of results of testing <br> and recognition of unexpected findings <br> including image artifacts. |  |  |  |  |
| 12. Observes equipment performance <br> and image quality problem evaluation. |  |  |  |  |
| 13. Recognizes and corrects personal <br> errors. |  |  |  |  |
| Interpersonal and communication <br> skills | (residents should demonstrate effective information exchange with <br> physicians, technologists, service personnel, and professional <br> associates) |  |  |  |
| 14. Works effectively with others as a <br> member of a health care team. |  |  |  |  |
| 15. Assists with production of written <br> reports that are accurate, concise, and <br> grammatically correct. |  |  |  |  |
| 16. Listens effectively and follows <br> directions. |  |  |  |  |


| THERAPY PHYSICS RESIDENCY PROGRAM FACULTY EVALUATION OF RESIDENT - IMAGING ROTATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resident name |  |  |  |  |
| Rotation name | FLUOROSCOPY |  |  |  |
| Inclusive dates of rotation |  |  |  |  |
| Faculty name |  |  |  |  |
| Evaluation Criteria | Not Completed | Marginally Completed | Fully Completed | Explanatory Notes |
| Patient care | (residents should provide information that is appropriate, accurate and relevant to diagnosis of health problems) |  |  |  |
| 1. Observes annual compliance testing of a mobile fluoroscopic system. |  |  |  |  |
| 2 Observes annual compliance testing of a second mobile fluoroscopic system. |  |  |  |  |
| 3. Observes operation of fluoroscopic systems with appropriate regard for radiation safety. |  |  |  |  |
| 4. Determines entrance exposure rate for fluoroscopic examinations. |  |  |  |  |
| 5. Estimates patient ionizing radiation dose and risk for fluoroscopic examinations. |  |  |  |  |
| Medical knowledge | (residents should be knowledgeable, scholarly, and committed to lifelong learning) |  |  |  |
| 6. Explains the complete fluoroscopic imaging chain from production of $X$-rays to image formation. |  |  |  |  |
| 7. Explains how operator choices affect patient dose and image quality. |  |  |  |  |
| 8. Explains methods of exposure control in fluoroscopic systems that use image intensifiers and digital receptors. |  |  |  |  |
| Practice-based learning and improvement | (residents should investigate and evaluate patient care practices, appraise and assimilate scientific evidence and improve patient care practices) |  |  |  |
| 9. Assists with analysis of results of testing and observes unexpected findings. |  |  |  |  |
| 10. Observes Investigation of equipment performance and image quality problems. |  |  |  |  |
| 11. Recognizes and corrects personal errors. |  |  |  |  |
| Interpersonal and communication skills | (residents should demonstrate effective information exchange with physicians, technologists, service personnel, and professional associates) |  |  |  |
| 12. Works effectively with others as a member of a health care team. |  |  |  |  |
| 13. Assists with production of written reports that are accurate, concise, and grammatically correct. |  |  |  |  |

14. Listens effectively and follows directions.

| THERAPY PHYSICS RESIDENCY PROGRAM <br> FACULTY EVALUATION OF RESIDENT - IMAGING ROTATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resident name |  |  |  |  |
| Rotation name | NUCLEAR MEDICINE - PET, SPECT, GAMMA CAMERA |  |  |  |
| Inclusive dates of rotation |  |  |  |  |
| Faculty name |  |  |  |  |
| Evaluation Criteria | Not Completed | Marginally Completed | Fully Completed | Explanatory Notes |
| Patient care | (residents should provide information that is appropriate, accurate and relevant to diagnosis of health problems) |  |  |  |
| 1. Assists with performance of annual compliance testing of a nuclear medicine gamma camera. |  |  |  |  |
| 2. Assists with performance orf annual compliance testing of a positron emission tomography scanner. |  |  |  |  |
| 3.Assists with performance of QC tests and calibrations of nuclear medicine imaging systems, dose calibrators, and counting systems. |  |  |  |  |
| 4. Estimates patient and conceptus ionizing radiation doses and risk for nuclear medicine examinations. |  |  |  |  |
| 5. Is familiar with radiopharmacy and radiation safety and protection procedures and associated regulations. |  |  |  |  |
| 6. Computes exposure factors related to radiation safety of release of a radioactive patient. |  |  |  |  |
| Medical knowledge | (residents should be knowledgeable, scholarly, and committed to lifelong learning) |  |  |  |
| 7. Explains the complete nuclear medicine imaging chain from the ionizing radiation source to image reconstruction. |  |  |  |  |
| 8. Understands the use and characteristics of radionuclides for nuclear medicine imaging and therapy. |  |  |  |  |
| 9. Explains how uptake and clearance of radionuclides affects patient dose and benefits of examination. |  |  |  |  |
| Practice-based learning and improvement | (residents should investigate and evaluate patient care practices, appraise and assimilate scientific evidence and improve patient care practices) |  |  |  |
| 10. Assists with analysis of results of testing and recognition of unexpected findings. |  |  |  |  |
| 11. Assists with investigation of equipment performance and image quality problems. |  |  |  |  |
| 12. Recognizes and corrects personal errors. |  |  |  |  |



| THERAPY PHYSICS RESIDENCY PROGRAM FACULTY EVALUATION OF RESIDENT - IMAGING ROTATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Resident name |  |  |  |  |
| Rotation name | MAGNETIC RESONANCE IMAGING |  |  |  |
| Inclusive dates of rotation |  |  |  |  |
| Faculty name |  |  |  |  |
| Evaluation Criteria | Not Completed | Marginally Completed | Fully Completed | Explanatory Notes |
| Patient care | (residents should provide information that is appropriate, accurate and relevant to diagnosis of health problems) |  |  |  |
| 1. Assists with annual testing of a magnetic resonance imaging system. <br> - Observes and understands Annual Evaluations and Quality Control Testing of an MRI System including RF Coil Evaluations. |  |  |  |  |
| 2. Assists with daily quality control tests of a magnetic resonance imaging system. |  |  |  |  |
| 4. Assists with quality control tests on RF coils. |  |  |  |  |
| 5. Analyzes phantom images with all other requirements of ACR MR accreditation program. |  |  |  |  |
| a) Learn how to complete ACR Data Form for Weekly (Daily) MRI Equipment Quality Control. <br> b) Understand the meaning of data and parameters measured and entered on ACR Form during Weekly (Daily) QC MRI Testing. <br> c) To be able to complete ACR MRI Accreditation Program Visual Checklist Form during observation of Annual Evaluations. |  |  |  |  |
| 6. Practices MR safety. <br> - Comply with MSKCC MRI Safety <br> Training and with any other MRI Safety requirement before accessing an MRI Suite for the first time. |  |  |  |  |
| 7. Reviews plans for siting of a magnetic resonance imaging system. |  |  |  |  |
| 8. Uses information technology to retrieve and store patient demographic, examination, and image information. |  |  |  |  |
| Attend MRI Clinical Observation Sessions at sites available at the time of scheduling |  |  |  |  |


| Medical knowledge | (residents <br> should be <br> knowledgeable, <br> scholarly, and <br> committed to <br> lifelong <br> learning) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## $\uparrow$ Memorial Sloan Kettering <br> 手 <br> Cancer Center

|  | out <br> responsibilities, <br> adher to ethical <br> principles and <br> show sensitivity <br> to a diverse <br> patient <br> population) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Radiation Oncology Informatics 

Rotation Director: Watchman
Rotation Mentors: Watchman
Rotation Location(s): MSKCC Main Campus
Duration: 4 Weeks full time
Clinical assignment when opportunity is available

## Resident Professional Expectations

1. The resident will exhibit professional standards of MSKCC
2. The resident will complete reading assignments prior to weekly meetings with mentor

## Learning Objectives

1. The resident will be able to discuss imaging informatics standards.
2. The resident will be able to discuss DICOM-RT Standards.
3. The resident will be able to discuss and work with Record and Verify systems.
4. The resident will be able to develop and run imaging workstation quality assurance.
5. The resident will be able to discuss and implement treatment record design and maintenance.
6. The resident will understand the roles of the different members of the medical/radiation oncology informatics team.

## Required Readings/Training

1. Starkschall, G and Siochi, A. Informatics in Radiation Oncology. CRC Press 2013, ISBN: 9781439825822
2. RA Soichi et al. AAPM Report 201. "Information Technology Resource Management in Radiation Oncology". OURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009. https://doi.org/10.1120/jacmp.v10i4.3116
3. Assessment of Display Performance for Medical Imaging Systems: Executive Summary of AAPM TG18 Report. https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1861159
4. https://www.aapm.org/IHERO/
5. https://www.dicomstandard.org/
6. M Law, B Lui. "DICOM-RT and its Utilization in Radiation Therapy". Radiographics Vol. 29 No. 3 Pg. 655-667.
7. Bushberg, JT et al. "Chapter 5: Medical Imaging Informatics" The Essential Physics of Medical Imaging. $3^{\text {rd }}$ Edition, Lippincott Williams \& Watkins ©2012

## Key Topics and Tasks

1. PACS systems and their integration
2. HL7
3. DICOM standards
4. DICOM in radiation therapy (DICOM-RT)
5. Information acquisition from PACS/images
6. Quality/maintenance of imaging workstations
7. Evaluation of viewing conditions
8. Image registration, fusion, segmentation, processing
9. Quantitative analysis
10. Record and verify systems
11. Treatment record design/maintenance
12. IHE - Radiation Oncology (IHE-RO)
13. Network integration/management, and roles of physics and information technology staff

In addition to the Radiation Oncology specific informatics discussions the residents will meet with or have lectures from the following:

- PACS and RIS systems and their integration (Radiology Workflow) Brenda Maxworthy
- What is HL7 (Health Level Seven International) (Daniel LaFontaine)
- DICOM standards (Brad Beattie)
- Information acquisition from PACS/images (Daniel LaFontaine)
- Informatics variations among modalities (Daniel LaFontaine)
- Dose reporting features - Dose watch (Usman Mahmood)
- Use of IHE (Integrating Healthcare Enerprise) radiology profiles (Brenda Maxworthy)
- Open source software resources (Krishna Juluru)
- How do radiologists read scans (Krishna Juluru)
- Quality/maintenance of imaging workstations (Andreas Ruuge)
- Evaluation of viewing conditions (Andreas Ruuge)
- Image registration, fusion, segmentation, processing (Aditya Apte)
- Quantitative analysis (Amita Dave)
- Kinetic modeling/computer analysis (Brad Beattie)
- Radiomics / Texture Analysis (Aditya Apte)
- Deep Learning (Harini Veeraraghavan)
- Artificial Intelligence (Anyi Li)

These meetings/lectures will be given annually and the resident will provide documentation of attendance.

## Final Evaluation

1. Oral Exam
a. Oral exam score $\geq 3$ on 5 -point scale

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Commissioning 

Rotation Director: Michael Lovelock
Rotation Mentors: S. Gary Lim
Rotation Location(s): Location TBD based on machine location
Duration: 4 Weeks full time
Additional assignments given when available
Resident Professional Expectations

1. The resident will demonstrate punctuality.
2. The resident will be present for all assignments
a. Should a resident not be able to attend assignment enough notification with faculty should be given
3. The resident will communicate effectively with faculty, staff and physicians.
4. The resident will demonstrate professional curtesy with all oncology and physics team members.
a. This will include use of equipment and return of facility to clinical readiness
5. The resident will support the radiation therapists.

## Learning Objectives

1. The resident will understand and be able to acquire needed beam data.
2. The resident will be able to manage beam data.
3. The resident will understand process of beam modelling.
4. The resident will be able to evaluate image import and quality in the commissioned system.
5. The resident will be able to discuss and implement the process of commissioning.

## Required Readings/Training

1. Report of Task Group 142 : Quality assurance of medical accelerators Medical Physics, Vol 36, Issue 9.
2. Report of Task Group 100 of the AAPM: Application of Risk Analysis Methods to Radiation Therapy Quality Management Programs. Medical Physics, Vol 43(7) July 2016.
3. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 18, Number 4 (2017).
4. AAPM Medical Physics Practice Guideline 2.a: Commissioning and quality assurance of X-raybased image-guided radiotherapy systems published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 15, Number 1 (2014). [ISBN: 978-1-936366-31-6]
5. Report of Task Group\#119 IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119, Medical Physics, Vol 32, Issue 11
6. Report of the Task Group \#53 Quality Assurance for Clinical Radiotherapy Treatment Planning (Reprinted from Medical Physics, Vol. 25, Issue 10)
7. Report of the Task Group \#51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)
8. Report of the Task Group \#51, Protocol for Clinical Dosimetry of High-Energy Photon and Electron Beams (Reprinted from Medical Physics, Vol. 26, Issue 9)

Memorial Sloan Kettering
Cancer Center

## Key Topics and Tasks

1. Complete the commissioning report and include all data
a. See report after evaluation

## Final Evaluation

1. Oral Exam
a. Passing $\geq 3$ on a 5 point scale.

## Linear accelerator commissioning report

Machine name:

## SN:

Machine type: Varian
Energies:
Photons:
Electrons:

Acceptance Date:
Clinical release date:

## Commissioning Personnel:

## Contents:

1. Clinical Release Form (Signatures) 3
2. Acceptance Certificate
$\uparrow$ Memorial Sloan Kettering
Cancer Center
3. Water tank measurements ..... 5
4. Annual QA report ..... 14
5. Machine output (TG51) ..... 22
6. Preclinical plan QA ..... 27
7. Radiation Survey ..... 31
8. SRS End to End test ..... 33
9. Imaging Geometrical Accuracy ..... 35
10. KV Mechanicals / Safety / Image Quality ..... 36
11. KV dosimetry ..... 37
12. IROC Output Reports ..... 39

# Release of a New Treatment Machine 

Department of Medical Physics

Name of Machine:
Serial Number:
Site

## Request for Clinical Release

Requested and Certified by:
Signature:

## Approval for Release

Dosimetry Approval
Signature:

Treatment Planning Approval:
Signature:

Regional Lead Approval:
Signature:

Date of Release for Clinical Service:
SRS Clinical Release:

Description:

## Acceptance Certificate

## Water Tank measurements

PDDs
Beam Quality Photons: PDD at $\mathrm{d}=\mathbf{1 0} \mathrm{cm}, \mathbf{2 0} \mathrm{cm}$

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| Water tank |  |
| Field detector |  |
| Reference detector |  |
| SSD |  |
| Data processing |  |
| Reference data |  |


| Photons (Tolerance 1\% - TG142) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Energy | Field Size (cm) | \%DD (10 cm) | \%DD (20 cm) | \% Difference from 245-TB3 |  |
|  |  |  |  | \%DD (10 cm) | \%DD (20 cm) |
| 6 MV | $3 \times 3$ |  |  |  |  |
|  | $10 \times 10$ |  |  |  |  |
|  | $30 \times 30$ |  |  |  |  |
| 6FFF | $3 \times 3$ |  |  |  |  |
|  | $10 \times 10$ |  |  |  |  |
|  | $30 \times 30$ |  |  |  |  |

## Beam Quality Electrons R50


$25 \times 25$

## Profiles

Measurement data extracted from OmniPro Accept/myQA Accept using the profile analysis template "Varian" for photons and electrons.

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| Water tank |  |
| Field detector |  |
| Reference detector |  |
| SSD |  |
| Data processing |  |
| Reference data |  |

Predefined parameters are:

- Center
- Penumbra
- Field width
- Flatness: defined as Variation over mean (80\%). It's calculates as $F=100^{*} \mid d_{\max }-d_{\min } / /\left(d_{\max }+d_{\text {min }}\right)$.
- Symmetry: defined as Point difference: max difference in dose between points on equal distance from central axis within flattened area:
Symmetry $=100^{*} \max \left(\mid\right.$ Point $_{L}-$ Point $\left._{L} \mid\right) \mid / D_{\text {cax }}$
The flattened area is defined as $80 \%$ of FW .

| Energy | dmax (cm) | Center | Gun | Target | Right | Left | Asymmetry (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Radial | Trans |
| 6x | 1.5 |  |  |  |  |  |  |  |
| 6 fff | 1.5 |  |  |  |  |  |  |  |


| Symmetrized Photon Profile Flatness. Tolerance 1\% TG142 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Energ <br> y | Field Size (cm) | Depth (cm) |  |  |  | \% Difference <br> (Machine - 245) |
| 6 MV | $3 \times 3$ | 1.4 | Inline |  |  |  |
|  |  |  | Crosslin e |  |  |  |
|  |  | 10 | Inline |  |  |  |
|  |  |  | Crosslin e |  | 6.11 |  |
|  | $10 \times 10$ | 1.4 | Inline | 0.75 | 0.65 | -0.1 |
|  |  |  | Crosslin e |  |  |  |
|  |  | 10 | Inline |  |  |  |
|  |  |  | Crosslin e |  |  |  |
|  | $30 \times 30$ | 1.4 | Inline |  |  |  |
|  |  |  | Crosslin e |  |  |  |
|  |  | 10 | Inline |  |  |  |
|  |  |  | Crosslin e |  |  |  |



| Electron Symmetry. QA3 used for measurement. Tolerance 1\% TG142 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Energy | dmax (cm) | Center | Gun | Target | Right | Left | Asymmetry (\%) |

Memorial Sloan Kettering Cancer Center

|  |  |  |  |  |  |  | Radial | Trans |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 e | 1.5 |  |  |  |  |  |  |  |
| 9 e | 2.0 |  |  |  |  |  |  |  |
| 12 e | 2.5 |  |  |  |  |  |  |  |

## Output Factors

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| Water tank/solid water |  |
| Detector (SN) |  |
| Electrometer |  |
| SSD |  |
| Electrometer voltage bias |  |
| Data processing |  |
| Reference data |  |


| Photons. Tolerance 2\% < 4x4, 1\% > 4x4. TG142 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Energy | Field Size <br> $(\mathrm{cm})$ | 245 TB3 | Measurement |  | \% Diff <br> (Machine/245) |
|  | MV | $3 \times 3$ | 0.877 |  |  |
|  | Output factor |  |  |  |  |
|  | $10 \times 10$ | 1.000 |  |  |  |
|  | $30 \times 30$ | 1.100 |  |  |  |
|  | $3 \times 3$ | 0.895 |  |  |  |
|  | $10 \times 10$ | 1.000 |  |  |  |
|  | $30 \times 30$ | 1.072 |  |  |  |

Cone Factors

| Electrons. Tolerance +/- 2\%. TG142 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Energy | Field Size (cm) | 245 TB3 | Measurement |  | \% Diff (Machine/245) |
|  |  |  | Raw reading | Output factor |  |
| 6 MeV | $6 \times 6$ | 0.937 |  |  |  |
|  | $10 \times 10$ | 1.000 |  |  |  |
|  | $15 \times 15$ | 1.003 |  |  |  |
|  | $20 \times 20$ | 1.046 |  |  |  |
|  | $25 \times 25$ | 1.072 |  |  |  |
| 9 MeV | $6 \times 6$ | 0.982 |  |  |  |
|  | $10 \times 10$ | 1.000 |  |  |  |
|  | $15 \times 15$ | 0.996 |  |  |  |
|  | $20 \times 20$ | 1.009 |  |  |  |
|  | $25 \times 25$ | 1.008 |  |  |  |
| 12 MeV | $6 \times 6$ | 0.959 |  |  |  |
|  | $10 \times 10$ | 1.000 |  |  |  |
|  | $15 \times 15$ | 1.003 |  |  |  |
|  | $20 \times 20$ | 1.002 |  |  |  |
|  | $25 \times 25$ | 0.990 |  |  |  |

Memorial Sloan Kettering Cancer Center

Measurement data extracted from OmniPro Accpet/myQA Accept
using the depth dose analysis template "AAPM TG-21" for photons and
"AAPM TG-25" for electrons.

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| Water tank |  |
| Field detector |  |
| Reference detector |  |
| Setup |  |
| Data processing |  |
| Reference data |  |


| Photon PDD. Tolerance: 10 cm and 20 cm : 1\% TG142 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MLC (cm) X, Y | Jaws (cm)$X, Y$ | \%DD (10 cm) | \%DD (20 cm) | \% Difference (Machine - 244) |  |
|  |  |  |  |  | \%DD (10 cm) | \%DD (20 cm) |
| 6 MV | $0.5 \times 1.0$ | $1.2 \times 1.2$ |  |  |  |  |
|  | $1 \times 1$ | $1.2 \times 1.2$ |  |  |  |  |
|  | $2 \times 2$ | $2.2 \times 2.2$ |  |  |  |  |
|  | $3 \times 3$ | $3.2 \times 3.2$ |  |  |  |  |
| 6 FFF | $0.5 \times 1.0$ | $1.2 \times 1.2$ |  |  |  |  |
|  | $1 \times 1$ | $1.2 \times 1.2$ |  |  |  |  |
|  | $2 \times 2$ | $2.2 \times 2.2$ |  |  |  |  |
|  | $3 \times 3$ | $3.2 \times 3.2$ |  |  |  |  |

## Profiles - SRS

Measurement data extracted from OmniPro Accpet/myQA Accept using the profile analysis template "Varian" for photons.

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| Water tank |  |
| Field detector |  |
| Reference detector |  |
| Setup |  |
| Data processing |  |
| Reference data |  |


| Symmetry 3\% (MPPG9a) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Energ y | $\begin{gathered} \mathrm{MLC}(\mathrm{~cm}) \\ \mathrm{X}, \mathrm{Y} \end{gathered}$ | $\begin{gathered} \text { Jaws (cm) } \\ X, Y \end{gathered}$ | $\begin{gathered} \text { Dept } \\ \mathrm{h} \\ (\mathrm{~cm}) \end{gathered}$ |  |  | Difference (Machine-444) |
| 6X | $1 \times 1$ | $1.2 \times 1.2$ | 1.4 | Inline |  |  |
|  |  |  |  | Crossline |  |  |
|  |  |  | 10 | Inline |  |  |
|  |  |  |  | Crossline |  |  |



Dynamic Wedges

| Ratio of Wedge Profiles: machine \# to <br> Corresponding point calculated in Eclipse Tol 2\%. TG142 |  |  |  |
| :---: | :---: | :---: | :---: |
| Field size (cm) | (X,Y) | 45 deg IN | 45 deg OUT |
| $4 \times 4$ | CAX |  |  |
| $10 \times 10$ | CAX |  |  |
|  | $(\mathrm{x}, \mathrm{y})=0,3$ |  |  |
|  | $(\mathrm{x}, \mathrm{y})=3,0$ |  |  |
|  | $(x, y)=0,-3$ |  |  |
|  | $(x, y)=3,-3$ |  |  |
|  | $(\mathrm{x}, \mathrm{y})=3,3$ |  |  |
| $20 \times 20$ | CAX |  |  |
|  | $(\mathrm{x}, \mathrm{y})=0,7$ |  |  |
|  | $(\mathrm{x}, \mathrm{y})=7,0$ |  |  |
|  | $(x, y)=0,-7$ |  |  |


| $(x, y)=7,-7$ |  |  |
| :--- | :--- | :--- |
| $(x, y)=7,7$ |  |  |

Ratio (\%) of Wedge Factors: 243 / Eclipse (Tolerance 2\%. TG142)

| Wedge: | 10 deg <br> IN | 15 deg <br> IN | 20 deg <br> IN | 25 deg <br> IN | 30 deg <br> IN | 45 deg <br> IN | 60 deg <br> IN | 45 deg <br> $\mathrm{IN}, 50$ <br> MU | 45 deg <br> $\mathrm{IN}, 200$ <br> MU | 45 deg <br> OUT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAX |  |  |  |  |  |  |  |  |  |  |

## Annual QA Report



## (1) Memorial Sloan Kettering丰 Cancer Center



## $\uparrow$ Memorial Sloan Kettering丰 Cancer Center

## 8. Gantry Angle Indicator Date: 11/18/2019

Physicist: SL $\qquad$
Place a level on the interface mount or on the accessory mount and obtain the true angle for the four orthogonal gantry angles. Check the digital readout.
Note: For machines which treat patients at extended distances, e.g. 130 cm, a $0.5^{\circ}$ gantry misalignment will appear as a 0.26 cm translation of the isocenter ( $30 \mathrm{~cm} \times$ tan $0.5^{\circ}$ ). The calibration of the gantry angle at $0^{\circ}$ and $180^{\circ}$ should be more stringent, when possible, for these machines.


Align the graph paper following the same setup procedure as for the ceiling/sagittal lasers. Adjust the collimator angle such that the MLC is parallel to the graph paper. This is the effective $0^{\circ}$ collimator angle. Record the digital indicator reading. Rotate the collimator angle so that the MLC is aligned to the graph paper at $90^{\circ}$ and $270^{\circ}$. Record the digital indicator readings.




11a. Field size defined at 100 cm SAD by light field (MLC) Date: 11/29/2019

Tolerance : 1 mm

Load the "Leafcal2.mlc" file and start the autocycle mode. Record the leaf positions observed on the graph paper. Note: If leaf positions exceed tolerance, reintialize and recheck. If this does not correct the problem, verify that the gap and offset calibration values in the configuration file have not changed.

For TB: To reocrd the control parameters, in Service mode, select "MLC" tab. Select "Initialization" and then select "Calibrate". The values will appear in the pop-up window. For C-series: The control parameters are located in files on the MLC workstation computer C:\Program Files (x86) \Varian\Oncology\Clinac\Controller\SysOffsets.txt

| Setting (cm) | Carriage A | Carriage B | A leaves | B leaves | Control parameters (cm) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | TrueBeam |  | C-series |  |  |
| 12.0 | 12.0 | 12.0 | 12.1 | 12.0 | A start | 0.054 | LfGpErr |  |  |
| 8.0 | 8.0 | 8.0 | 8.1 | 8.0 | A stop | 0.069 | CntLnOfs |  |  |
| 4.0 | 4.1 | 4.0 | 4.1 | 4.0 | B start | -0.004 | Skew |  |  |
| 0.5 | 0.6 | 0.5 |  |  | B stop | -0.019 |  |  |  |
| -4.0 | -4.0 | -4.0 |  |  |  |  |  |  |  |
| -8.0 | -8.0 | -8.0 |  |  | Reference: Control parameters (cm) |  |  |  |  |
| 12.0 | -11.9 | -12.0 |  |  | TrueBeam |  | C-series |  |  |
| -16.0 | -15.9 | -15.9 |  |  | A start |  | LfGpErr |  |  |
|  |  |  |  |  | A stop |  | CntLnOfs |  |  |
|  |  |  |  |  | B start |  | Skew |  |  |
|  |  |  |  |  | B stop |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 11b. Picket fence with gantry rotation |  |  |  |  |  |  |  |  |  |
| Date: 10/31/2019 |  |  | Physicist: SL/TL |  | Tolerance : $1 \mathrm{~mm}(0.5 \mathrm{~mm})$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Secure a piece a film on the block tray with 2 mm copper plate for buildup. Mount the block tray to the gantry. Deliver the plan "AbuttFld_film" using the Aria QA patient. |  |  |  |  |  |  |  |  |  |
| Four bands are delivered at gantry $0^{\circ}$, while one band is delivered at each of the following gantry angles: $90^{\circ}, 180^{\circ}$, and $270^{\circ}$. |  |  |  |  |  |  |  |  |  |
| Observe any deviation of the leaves and the carriages between the bands. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Deviation: | $<0.5$ | mm |  |  |  |  |  |  |  |

## $\uparrow$ Memorial Sloan Kettering Cancer Center



## $\uparrow$ Memorial Sloan Kettering丰 Cancer Center



## $\uparrow$ Memorial Sloan Kettering Cancer Center



## $\uparrow$ Memorial Sloan Kettering Cancer Center

27a. Enhanced dynamic wedge: Wedge factors and profiles vs field sizes


| 27b. Enhanced dynamic wedge: Wedge factors for all angles |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date: | 11/29/2019 | Physicist: SL |  |  | Tolerance: 2\% |  |  |  |  |
| Same setup as 27a. |  |  |  |  |  |  |  |  |  |
|  | CAX | Open field | $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ |
| IN |  | 89.720 | 85.450 | 83.250 | 81.020 | 78.800 | 76.600 | 69.070 | 59.070 |
| 6X | OUT |  | 85.420 | 83.190 | 81.000 | 78.850 | 76.570 | 69.070 | 58.970 |
|  | WF(IN) |  | 0.952 | 0.928 | 0.903 | 0.878 | 0.854 | 0.770 | 0.658 |
|  | WF(OUT) |  | 0.952 | 0.927 | 0.903 | 0.879 | 0.853 | 0.770 | 0.657 |
|  | WF(TPS) |  | 0.949 | 0.925 | 0.901 | 0.877 | 0.852 | 0.768 | 0.657 |
|  | WF(IN)/WF(TPS) (\%) |  | 0.36 | 0.31 | 0.23 | 0.15 | 0.21 | 0.24 | 0.21 |
|  | WF(OUT)/WF(TPS) (\%) |  | 0.32 | 0.24 | 0.20 | 0.21 | 0.17 | 0.24 | 0.04 |


| MyQA input |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ |
| 6 x | WF(IN) (\%) | 95.2 | 92.8 | 90.3 | 87.8 | 85.4 | 77.0 | 65.8 |
|  | WF(OUT) (\%) | 95.2 | 92.7 | 90.3 | 87.9 | 85.3 | 77.0 | 65.7 |

## 28. Output vs Field size <br> Date:

$\qquad$ Tolerance: $2 \%$ for $F S<4 \times 4$; $1 \%$ for $F S \geq 4 \times 4$ from baseline (photon baseline are from Eclipse v13 AAA calculations and electron baselines are from input data to TPS)

Radiation dose is measured with the cc04 ion chamber on the central axis at 5 cm depth for photons and dmax for electrons for the range of clinically used field sizes. The measurements are normalized to a $10 \times 10$ field. These values are compared with the baseline. For electrons, also record the collimator sizes.


## $\uparrow$ Memorial Sloan Kettering Cancer Center

## 29a. Flatness and Symmetry with ion chamber



| Energy | dmax (cm) | Center | Gun | Target | Right | Left | Asymmetry (\%) |  | Unflatness (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Radial | Trans | Radial | Trans |
| 6x | 1.5 | 22.50 | 23.29 | 23.29 | 23.35 | 23.25 | 0.0 | 0.4 | 3.5 | 3.6 |
| 6 fff | 1.5 | 21.50 | 19.55 | 19.41 | 19.50 | 19.40 | 0.7 | 0.5 | -9.4 | -9.5 |
| 6 e | 1.5 | 23.39 | 23.26 | 23.21 | 23.32 | 23.28 | 0.2 | 0.2 | -0.7 | -0.4 |
| 9 e | 2.0 | 22.59 | 23.27 | 23.38 | 23.34 | 23.27 | -0.5 | 0.3 | 3.3 | 3.2 |
| 12e | 2.5 | 22.46 | 23.05 | 23.14 | 23.06 | 23.12 | -0.4 | -0.3 | 2.8 | 2.8 |




## $\uparrow$ Memorial Sloan Kettering <br> Cancer Center



## TG 51 Calibration Worksheet - 6MV Photons

| Room 243TB6 |  | Energy | 6 Date \#\#\#\#\#\#\#\# |  |  | Initial TL/ML/SL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature= | $22{ }^{\circ} \mathrm{C}$ | +273.2= | 295.2 K | Pressure= | 772.3 |  |
| Chamber= | 2 (198) | $\mathrm{N}_{\mathrm{D}, \mathrm{w}}=$ | 4.859 c | /10nC | $\mathrm{r}_{\text {cav }}=$ | 0.305 cm |
| Electrometer= | $\max 1284$ | $\mathbf{P}_{\text {elec }}=$ | 1 |  |  |  |
| Field Size = <br> Eff. Depth = | $\begin{aligned} & 10 \mathrm{~cm}^{2} \\ & 0.6 \mathrm{r}_{\mathrm{cav}}= \end{aligned}$ | $\begin{gathered} M U= \\ 10.18 \end{gathered}$ |  | $\overline{S S D=} 100 \mathrm{~cm}$ <br> suming cylindrical | $\begin{array}{r} \mathrm{d}= \\ \text { amber) } \end{array}$ |  |

## 1. Beam Quality, $\mathbf{k}_{\Omega}$

$$
\begin{aligned}
& \% \mathrm{DD}(10)_{\mathrm{x}}{ }^{*}=\underline{ } \\
& \text { A } 1.0146 \\
& \text { B } \quad 0.777 \\
& \text { C }-1.666
\end{aligned}
$$

3. P

$$
P_{I O N}=\frac{1-\left(\frac{V_{H}}{V_{L}}\right)}{\left(\frac{M_{H}}{M_{L}}\right)-\left(\frac{V_{H}}{V_{L}}\right)}
$$

|  | $\mathbf{M}_{\mathbf{H}}$ | $\mathbf{M}_{\mathrm{L}}$ |
| :--- | ---: | ---: |
| M1 | 13.46 | 13.41 |
| M2 | 13.45 | 13.41 |
| M3 |  |  |
| <M> | 13.455 | 13.41 |


| $V_{H}$ | 300 V |
| :--- | :--- |
| $\mathrm{~V}_{\mathrm{L}}$ | 150 V |

$P_{\text {ION }}=$
1.003
4. P Pol

$$
P_{P O L}=\frac{\left|M_{+}-M_{-}\right|}{2 M}
$$

|  | M $_{+}$ | M. |
| :--- | ---: | ---: |
| M1 | 13.46 | 13.47 |
| M2 | 13.45 | 13.47 |
| M3 |  |  |
| $\langle$ M $\rangle$ | 13.46 | 13.47 |


| $\mathrm{V}_{+}$ |
| :--- | :--- |
| $\mathrm{V}_{-}-300 \mathrm{~V}$ |

$\mathrm{P}_{\mathrm{POL}}=\quad 1.001$
5. $P_{r p}$

$$
\overrightarrow{P_{r p}=} \quad 1.000
$$

Dose at 10 cm

$$
D(10, S S D)=k_{q} N_{D, W}^{60} \mathrm{Co} P_{i o n} P_{T P} P_{\text {elec }} P_{p o l} P_{r p} M
$$

$$
D(10)=\quad 0.641 \mathrm{cGy}
$$

Dose at dmax and SAD $=100 \mathrm{~cm}$

$$
\begin{aligned}
& D\left(d_{\max }\right)=\frac{D(10)}{\% D D(10)_{T P S}}\left(\frac{100+d_{\max }}{100}\right)^{2} \\
& D\left(d_{\max }\right)=0.994 \mathrm{cGy}
\end{aligned}
$$

## TG 51 Calibration Worksheet - 6FFF Photons

| Room 243TB6 | Energy | 6FFF | Date \#\#\#\#\#\#\#\# |  | Initial $\underline{\text { TL/ML/SL }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature $=\ldots 22{ }^{\circ} \mathrm{C}$ | +273.2= | 295.2 K | Pressure= | 772.3 |  |
| Chamber= A12 (198) | $\mathrm{N}_{\mathrm{D}, \mathrm{w}}=$ | 4.859 | 10 nC | $\mathrm{r}_{\text {cav }}=$ | 0.305 cm |
| Electrometer= $\quad \max 1284$ | $\mathrm{P}_{\text {elec }}=$ | 1 |  |  |  |
| $\begin{aligned} & \text { Field Size }=10 \times 10 \mathrm{~cm}^{2} \\ & \text { Eff. Depth }=\mathrm{d}+0.6 \mathrm{r}_{\mathrm{cav}}= \end{aligned}$ | $\begin{gathered} M U= \\ 10.18 \end{gathered}$ |  | $\overline{S S D=} 100 \mathrm{~cm}$ <br> suming cylindrical | $\begin{array}{r} \mathrm{d}= \\ \text { amber) } \end{array}$ |  |

## 1. Beam Quality, $\mathbf{k}_{\mathrm{Q}}$

$$
\begin{array}{ll}
\% \mathrm{DD}(10)_{\mathrm{x}}^{* *}=\frac{64.17}{} & \mathrm{~A} 1.0146 \\
\mathbf{k}_{\mathrm{Q}}=\frac{\mathrm{B} \quad 0.777}{0.99301} & \\
\begin{array}{l}
\mathbf{k}_{q}=A+B \times 10^{-3} \times \% d d(10)_{x}+C \times 10^{-5} \times\left(\% d d(10)_{x}\right)^{2} \\
P_{T P}
\end{array}=\frac{T}{P} \cdot \frac{760}{295.2} \quad \mathbf{P}_{\mathrm{TP}}= & 0.984
\end{array}
$$

3. $P^{10 N}$

$$
P_{\mathrm{ION}}=\frac{1-\left(\frac{V_{H}}{V_{L}}\right)}{\left(\frac{M_{H}}{M_{L}}\right)-\left(\frac{V_{H}}{V_{L}}\right)}
$$

|  | $\mathbf{M}_{\mathbf{H}}$ | $\mathbf{M}_{\mathbf{L}}$ |
| :--- | ---: | ---: |
| M1 | 12.67 | 12.58 |
| M2 | 12.66 | 12.58 |
| M3 | 12.66 |  |
| $\langle\mathrm{M}\rangle$ | 12.66 | 12.58 |


$P_{\text {ION }}=$

$$
1.007
$$

4. $\mathrm{P}_{\mathrm{POL}}$

$$
\begin{array}{r}
P_{\text {POL }}=\frac{\left|M_{+}-M_{-}\right|}{2 M} \\
1.000
\end{array}
$$

|  | $\mathbf{M}_{+}$ | $\mathbf{M}_{-}$ |
| :--- | ---: | ---: |
| M1 | 12.67 | 13.47 |
| M2 | 12.66 | 13.47 |
| M3 | 12.66 |  |
| $\langle$ M $>$ | 12.66 | 13.47 |

$\mathrm{V}_{+} \quad 300 \mathrm{~V}$
$\mathrm{P}_{\mathrm{POL}}=$
5. $P_{r p}$
$P_{r p}=\quad 1.002$
Dose at 10 cm

$$
D(10, S S D)=k_{q} N_{D, W}^{60} C o P_{i o n} P_{T P} P_{\text {elec }} P_{p o l} P_{r p} M
$$

$$
D(10)=\quad 0.609 \mathrm{cGy}
$$

Dose at dmax and SAD $=100 \mathrm{~cm}$
$D\left(d_{\max }\right)=\frac{D(10)}{\% D D(10)_{T P S}}\left(\frac{100+d_{\max }}{100}\right)^{2} \quad \begin{aligned} \% D D(10)_{\text {TPS }} & =\frac{63.1}{} \text { From TPS }\end{aligned}$
$D\left(d_{\text {max }}\right)=0.992 c G y$
ir lower beam which is obtained from annual water tank oton beam above 10MV and FFF beams

## TG 51 Calibration Worksheet - 6 MeV Electrons


3. PION
$\mathrm{P}_{\text {ION }}=$
1.0135
4. Prol

$$
P_{P O L}=\frac{\left|M_{+}-M\right|}{2 M}
$$

|  | $\mathbf{M}_{+}$ | $\mathbf{M}_{.}$ |
| :--- | ---: | ---: |
| M1 | 22.02 | 22 |
| M2 | 22.00 | 22.01 |
| M3 |  |  |
| $\langle M\rangle$ | 22.01 | 22.01 |


| $\mathrm{V}_{+}$ |
| :--- |
| $\mathrm{V}_{-} \quad-300 \mathrm{~V}$ |

$\mathrm{P}_{\mathrm{POL}}=$ $\qquad$
Dose at 10 cm

$$
D\left(d_{r e f}\right)=k_{R_{50}}^{\prime} k_{e c a l} P_{g r}^{Q} N_{D, w}^{60} C o P_{E L E C} P_{P O L} P_{I O N} P_{T P} M
$$

$D\left(d_{\text {ref }}\right)=$ $\qquad$ cGy

Dose at dmax and SSD $=100 \mathrm{~cm}$

$$
\begin{gathered}
D\left(d_{\max }\right)=\frac{D\left(d_{r g}\right)}{\mathbf{o} / \mathbf{o D D}\left(d_{r g}\right)_{T P S}} \\
D\left(d_{\max }\right)={ }^{1.004 \quad \mathrm{cGy}}
\end{gathered}
$$

$$
\% D D\left(d_{\text {ref }}\right)_{\text {TPS }}=
$$

$\qquad$ 99.0 From TPS

[^0]
## TG 51 Calibration Worksheet - 9 MeV Electrons

## Room 243TB6



$$
\mathrm{d}_{\mathrm{ref}}=0.6 \mathrm{R}_{50}-0.1=
$$

$\qquad$ cm
(cylindrical chamber)

1. Beam Quality, $k_{R 50}, P^{Q}{ }_{\text {or }}$
$\mathbf{k}_{\text {ecal }}=\mathbf{0 . 9 0 6}$ Table III of TG51

$$
\mathbf{k}_{\text {R } 50}^{\prime}=\quad 1.017
$$

$$
k_{R_{50}}^{\prime}=0.9905+0.0710 \cdot e^{\frac{-R_{50}}{3.67}}
$$

$$
P_{g r}^{Q}=\frac{M\left(d_{r e f}+0.5 r_{c a v}\right)}{M\left(d_{r e f}\right)} \quad
$$

$\qquad$
2. $P_{\text {IP }}$
${\underset{T P}{ } \text { 2. }_{\text {IP }}} \frac{T}{P} \cdot \frac{760}{295.2}$
$\mathrm{P}_{\mathrm{TP}}=$ $\qquad$
3. PIon

$$
P_{I O N}=\frac{1-\left(\frac{V_{H}}{V_{L}}\right)}{\left(\frac{M_{H}}{M_{L}}\right)-\left(\frac{V_{H}}{V_{L}}\right)}
$$

|  | $\mathbf{M}_{\boldsymbol{H}}$ | $\mathbf{M}_{\mathbf{L}}$ |
| :--- | ---: | ---: |
| M1 | 22.33 | 22.03 |
| M2 | 22.33 | 22.04 |
| M3 |  |  |
| $\langle\mathrm{M}\rangle$ | 22.33 | 22.04 |


| $V_{H}$ | 300 V |
| :--- | :--- |
| $\mathrm{~V}_{\mathrm{L}}$ | 150 V |

$\mathrm{P}_{\text {ION }}=$

$$
1.0136
$$

$$
P_{P O L}=\frac{\left|M_{+}-M_{-}\right|}{2 M}
$$

|  | $\mathbf{M}_{+}$ | M. |
| :--- | ---: | ---: |
| M1 | 22.33 | 22.35 |
| M2 | 22.33 | 22.36 |
| M3 |  |  |
| $\langle$ M $\rangle$ | 22.33 | 22.36 |

$\begin{array}{lr}V_{+} & 300 \mathrm{~V} \\ \mathrm{~V}_{-} & -300 \mathrm{~V}\end{array}$
$\mathrm{P}_{\mathrm{POL}}=$ $\qquad$
Dose at 10 cm

$$
\begin{gathered}
D\left(d_{\text {ref }}\right)=k_{R_{50}}^{\prime} k_{e c a l} P_{g r}^{Q} N_{D, w}^{60} C o P_{E L E C} P_{P O L} P_{I O N} P_{T P} M \\
\mathrm{D}\left(\mathrm{~d}_{\text {ref }}\right)=\quad 0.998 \quad \mathrm{cGy}
\end{gathered}
$$

Dose at dmax and SSD $=100 \mathrm{~cm}$

$$
\begin{gathered}
D\left(d_{\max }\right)=\frac{D\left(d_{r e f}\right)}{\mathbf{o} / \mathbf{D} D\left(d_{r e f}\right)_{T P S}} \\
D\left(d_{\max }\right)=\quad 0.999 \quad \mathrm{cGy}
\end{gathered}
$$

[^1]
## TG 51 Calibration Worksheet - 12 MeV Electrons

## Room 243TB6

Energy $\qquad$
Date $\qquad$ Initial TL/ML/SL


$$
d_{\mathrm{ref}}=0.6 \mathrm{R}_{50}-0.1=
$$

$\qquad$ cm
Eff. $d_{\text {ref }}=d_{\text {ref }}+0.5 r_{\text {cav }}=$ cm

1. Beam Quality, $k_{R 50,} P^{Q}{ }_{g r}$
$\mathbf{k}_{\text {ecal }}=\ldots \quad 0.906 \quad$ Table III of TG51
$k^{\prime}{ }_{\mathrm{R} 50}=$ $\qquad$

$$
k_{R_{50}}^{\prime}=0.9905+0.0710 \cdot e^{\frac{-R_{50}}{3.67}}
$$

$$
P_{g r}^{Q}=\frac{M\left(d_{r e f}+0.5 r_{c a v}\right)}{M\left(d_{r e f}\right)}
$$

|  | $\mathbf{M}\left(\mathbf{d}_{\text {ref }}+0.5 \mathbf{r}_{\text {cav }}\right)$ | $\mathbf{M}\left(\mathbf{d}_{\text {ref }}\right)$ |
| :--- | ---: | ---: |
| M1 | 22.48 | 22.53 |
| M2 | 22.47 | 22.52 |
| M3 |  |  |
| $\langle M>$ | 22.48 | 22.53 |

$$
\mathrm{P}_{\mathrm{gr}}=\frac{0.998}{}
$$

## $\frac{\text { 2. }^{\text {P }}}{P_{T P}}=\frac{T}{P} \cdot \frac{760}{295.2}$

$P_{\text {TP }}=$ $\qquad$
3. PION

$$
P_{I O N}=\frac{1-\left(\frac{V_{H}}{V_{L}}\right)}{\left(\frac{M_{H}}{M_{L}}\right)-\left(\frac{V_{H}}{V_{L}}\right)}
$$

|  | $\mathbf{M}_{\mathrm{H}}$ | $\mathbf{M}_{\mathrm{L}}$ |
| :--- | ---: | ---: |
| M1 | 22.53 | 22.22 |
| M2 | 22.52 | 22.22 |
| M3 |  |  |
| $\langle\mathrm{M}\rangle$ | 22.53 | 22.22 |


| $V_{H}$ | 300 |
| :--- | :--- |
| $V_{L}$ |  |

$P_{\text {ION }}=$
1.0139
4. $\mathrm{P}_{\mathrm{POL}}$

$$
P_{P O L}=\frac{\left|M_{+}-M_{-}\right|}{2 M}
$$

|  | $\mathbf{M}_{+}$ | M. |
| :--- | ---: | ---: |
| M1 | 22.53 | 22.53 |
| M2 | 22.52 | 22.53 |
| M3 |  |  |
| $\langle M\rangle$ | 22.53 | 22.53 |

$\begin{array}{lr}\mathrm{V}_{+} & 300 \mathrm{~V} \\ \mathrm{~V}_{-} & -300 \mathrm{~V}\end{array}$
$\mathrm{P}_{\mathrm{POL}}=$ $\qquad$
Dose at 10 cm

$$
\begin{gathered}
D\left(d_{\text {ref }}\right)=k_{R_{50}}^{\prime} k_{e c a l} P_{g r}^{Q} N_{D, w}^{60} C o P_{E L E C} P_{P O L} P_{I O N} P_{T P} M \\
\mathrm{D}\left(\mathrm{~d}_{\text {ref }}\right)=\quad 0.996 \quad \mathrm{cGy}
\end{gathered}
$$

Dose at dmax and SSD $=100 \mathrm{~cm}$

$$
\begin{gathered}
D\left(d_{\max }\right)=\frac{D\left(d_{r e f}\right)}{\mathbf{o} / \mathbf{D}\left(d_{r e f}\right)_{T P S}} \\
D\left(d_{\max }\right)=\quad 0.994 \quad \mathrm{cGy}
\end{gathered}
$$

[^2]Measurements were done using MapCheck and EPID Portal dosimetry

All plans are in a single aria paient with MRN of ARIAupgrade_KOC_TB1

## EPID

The EPID was calibrated prior to use (normalized to current machine output)

Acceptance is based on the EPID measurements being within tolerance.

- The gamma averaged over all fields must be $>95 \%$
- The gamma for each field must be $>90 \%$


## MapCheck

mapcheck measurements were compared with historical data. All mapcheck measurements were found to be consistent with the historical record.

| Machine |  |
| :---: | :--- |
| Date of measurement |  |
| Physicists |  |
| MapCheck setup |  |
| Portal dosimetry setup |  |
| Data processing |  |


| 6X IMRT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Plan | Field | MapCheck <br> $(2 \% / 2 \mathrm{~mm}$, global) | Portal <br> Dosimetry <br> $(3 \% / 3 \mathrm{~mm}$, <br> local) |  |
| Lung1 | 1 |  |  |  |



| 3 |  |
| :---: | :---: |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |


| 6X VMAT |  |  |  |
| :---: | :---: | :---: | :---: |
| Plan | Field | MapCheck (2\%/2mm, global) | Portal Dosimetry (3\%/3mm, local) |
| PS_VMAT_6x | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
| GI_VMAT_6x | 1 |  |  |
|  | 7 |  |  |
| HN_VMAT_6x | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
| WA_VMAT_6x | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |


| 6FFF IMRT |  |  |  |
| :---: | :---: | :---: | :---: |
| Plan | Field | MapCheck (2\%/2mm, global) | Portal Dosimetry (3\%/3mm, local) |
| Lung_6fff | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
|  | 5 |  |  |
|  | 6 |  |  |
|  | 7 |  |  |
|  | 8 |  |  |
| brain_6fff | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
|  | 5 |  |  |
|  | 6 |  |  |
| pancreas_6fff | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
|  | 5 |  |  |
|  | 6 |  |  |
|  | 7 |  |  |
|  | 8 |  |  |


| Memorial Sloan Kettering <br> Cancer Center    <br>  1   <br>  2   <br>  3   <br>  4   |
| :--- |


| 6FFF VMAT |  |  |  |
| :---: | :---: | :---: | :---: |
| Plan | Field | MapCheck (2\%/2mm, global) | Portal Dosimetry (3\%/3mm, local) |
|  | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 4 |  |  |
| brainVMAT6fff | 1 |  |  |



## Radiation Survey

Table 2 - Exposure Guidelines

| Member of the Public | Occupational |
| :--- | :--- |
| 2 mrem in a week to uncontrolled areas (average) | 10 mrem in a week |
| 100 mrem in a year | 5,000 mrem in a year |
| 2 mrem in any hour |  |

## Assumptions Made

A conservatively high x-ray workload of $1325 \mathrm{~Gy} / \mathrm{wk}$ at an isocenter located 100 cm from target is assumed. Workload breakdown assumptions are based on conventional 3D, IMRT, and Hypo-RT (25, 300, 35 patients/week respectively). This workload is based on a high volume installation planning to use additional Intensity Modulated Radiation Therapy (IMRT) (Mechalakos, et al, 20022; Saleh, et al, 20173).

The modulation factor is assumed to be 5, utilizing the methodology of Report Number 151 of the National Council on Radiation Protection (NCRP-151)4, and
based on latest literature (Saleh,et al, 2017).

- The dose rate is expressed as 14 Gy min-1 for the purpose of evaluating shielding design goals.
- Assuming a 40-hour workweek, weekly x-ray beam on time is therefore assumed to be 1.57 hours for the purpose of this evaluation.
- For the purpose of demonstrating compliance with shielding design goals using
- conservative assumptions, the electron beam workload is conservatively assumed to be shared between the 9 MeV and 12 MeV beams, although electron beams of lower energies may be used.

FIGURE 1 - Room Layout


W

| Location | Table 5: Survey Results - Total x-ray and electron |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mrem/wk |  |  | mrem in any hour |  |  | mrem/yr |  |  |
|  | x-ray | electron | total | x-ray | electron | total | x-ray | electron | total |
| Door (contact) | 0.58 | 0.061 | 0.64 | N/A | N/A | N/A | 30 | 3.2 | 33 |
| Door (1-meter) | 0.48 | 0.032 | 0.51 | N/A | N/A | N/A | 25 | 1.7 | 27 |
| Control console (operator position) | 0.094 | 0.021 | 0.12 | N/A | N/A | N/A | 4.9 | 1.1 | 6.0 |
| 244 Console | 1.4 | 0.31 | 1.7 | N/A | N/A | N/A | 73 | 16 | 89 |
| 244 Console wall | 0.36 | 0.07 | 0.43 | N/A | N/A | N/A | 19 | 3.6 | 22 |
| 244 | 0.064 | 0.0017 | 0.066 | N/A | N/A | N/A | 3.3 | 0.088 | 3.4 |
| 242 | 0.071 | 0.0017 | 0.073 | N/A | N/A | N/A | 3.7 | 0.088 | 3.8 |
| Downstairs | 0.094 | 0.0035 | 0.10 | 0.00013 | 0.0052 | 0.0053 | 4.9 | 0.18 | 5.1 |

All exposures well within guidelines, even assuming MSK 80 hr weeks.

## MSKCC SBRT E2E Report

Tolerance: Dose Difference (DD) < 5.0\% and Localization <= 1.0 mm

## Summary:

The average dose difference is 32 cGy and the location accuracy is acceptable. This end to end test has meet the tolerances of MPPG9a.

Dose Analysis Sagittal plane

|  | TPS (cGy) <br> (max dose) | ROI at <br> $50 \%$ Max <br> dose | <TPS> (cGy) | $\gamma$ <br> $(3 \%, 2 \mathrm{~mm})$ | Dose Diff <br> (cGy) | \%Dose Diff |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |



Localization Analysis

|  | A-P $(\mathbf{m m})$ | S-I (mm) | L-R (mm) |
| :--- | :--- | :--- | :--- |
| Sagittal | 0.2 | 1.0 |  |
| Coronal |  | 0.4 | 0.6 |

Film Distribution (Sagittal plane)

- Dashed line: film measurement
- Solid line: Eclipse



## Imaging Geometric Accuracy

| Imaging Geometry QA | Machine: | 243 |
| :--- | :--- | :--- | :--- |

MV (Winston-Lutz) Analysis

| File | Source Angle | Sphere Position <br> $X(+$ Rght $\quad Y(+U p)$ |  | Field Center Position$X(+ \text { Rght }) \quad Y(+U p)$ |  | Sphere - Field |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WL-004 | 0 | -0.11 | -0.22 | -0.11 | 0.22 | 0.00 | -0.45 |
| WL-000 | 180 | 0.00 | -0.17 | -0.22 | -0.17 | 0.22 | 0.00 |
| WL-003 | 90 | 0.28 | -0.17 | 0.06 | 0.11 | 0.22 | -0.28 |
| WL-007 | 270 | -0.34 | -0.22 | -0.45 | 0.06 | 0.11 | -0.28 |



| Sphere Position (Lasers) with respect to Rad. Iso. | X (+: Left) | Y (+: Post) | Z (+: Sup.) |
| ---: | ---: | ---: | ---: |
| (Vec P) | -0.11 | 0.06 | -0.25 |


| MV Panel Alignment | X (+ Rght) | Y (+ Up) |
| :--- | ---: | ---: |
| Average Position of Rad Iso. | -0.18 | 0.06 |

KV 2D (Radiographic) Analysis

| File | Source |
| :--- | :--- | :--- | :--- |
| Angle |  |


|  | X (+: Left) | Y (+: Post) | Z (+: Sup.) |
| ---: | ---: | ---: | ---: |
| (Vec S) | -0.06 | 0.21 | -0.13 |
| $(S-P)$ | 0.05 | 0.15 | 0.12 |


| KV Panel Alignment | X (+ Rght) | Y (+ Up) |
| :--- | ---: | ---: |
| Average Position of Rad Iso. | 0.02 |  |

## Half Fan Cone Beam Analysis

| File: $19-10-16 \_12-08-57$ |  | $X(+:$ Left) | $Y(+:$ Post) | Z ( + : Sup.) |
| :--- | ---: | ---: | ---: | ---: |
| Sphere with respect to HF imaging origin: | $($ Vec Q) | -0.10 | 0.09 | -0.28 |
| Rad. Iso. (as seen by HF CBCT): | $(Q-P)$ | 0.01 | 0.04 | -0.03 |

## Full Fan Cone Beam Analysis

| File 19-10-16_12-16-25 |  | X (+: Left) | Y (+: Post) | Z (+: Sup.) |
| :---: | :---: | :---: | :---: | :---: |
| Sphere with respect to FF imaging origin: | (Vec R) | -0.25 | 0.09 | -0.15 |
| Rad. Iso. (as seen by FF CBCT): | (R-P) | -0.14 | 0.03 | 0.10 |

## KV Image Mechanicals / Safety / Image Quality

| Test | Result |
| :--- | :--- |
| KV beam door interlock | Pass |
| Collision interlocks | Pass |
| Override of collision interlocks | Pass |
| Blade positions | Pass |
| Radiographic contrast resolution | Pass |
| Radiographic high contrast spatial resolution | Pass |
| Radiographic uniformity | Pass |
| Fluoro contrast resolution | Pass |
| Fluoro high contrast spatial resolution | Pass |
| Fluoro uniformity | Pass |
| CBCT head contrast resolution | Pass |
| CBCT head geometric distortion | Pass |
| CBCT head geometric uniformity | Pass |
| CBCT head spatial resolution | Pass |
| CBCT head HU constancy | Pass |
| CBCT Pelvis contrast resolution | Pass |
| CBCT Pelvis geometric distortion | Pass |
| CBCT Pelvis geometric uniformity | Pass |
| CBCT Pelvis spatial resolution | Pass |
| CBCT Pelvis HU constancy | Pass |
| CBCT Spotlight contrast resolution | Pass |
| CBCT Spotlight geometric distortion | Pass |
| CBCT Spotlight geometric uniformity | Pass |
| CBCT Spotlight spatial resolution | Pass |
| CBCT Pelvis HU constancy |  |

KV Dosimetry




## IROC Electrons:

<br>IMAGING AND RADIATION ONCOLOGY CORE<br>Global Leaders in Clinical Trial Quality Assurance

IROC Houston QA Center MD Anderson Cancer Center
8060 El Rio Street
Houston, TX 77054
Tel (713) 745-8989
Fax (713) 794-1364

## RESULTS OF OSLD CHECK OF ELECTRON BEAM

| Institution: | v9.2 | Memorial Sloan-Kettering Cancer Center, New York, NY |
| :--- | :--- | :--- |
| RTF Number: |  | 1823 |
| Person irradiating dosimeters: |  | Robert Febo |
| Radiation Machine: | TrueBeam Serial $4238(\mathrm{Rm} 243)$ |  |
| Distance from target to surface: |  | 100.0 cm |

oUTPUT VERIFICATION:

| Electron <br> Energy | Date of <br> Inadiation | IROC Houston measured <br> dose at dmax: | Institution reported <br> dose at dmax: | Ratio of absorbed dose determined by IROC <br> Houston to that stated by institution: OSLD/INST |
| :--- | :---: | :---: | :---: | :---: |
| 6 MeV | $11 / 19 / 2019$ | 103.1 cGy to water | 101.2 cGy to water | 1.02 |
| 9 MeV | $11 / 19 / 2019$ | 100.1 cGy to water | 101.1 cGy to water | 0.99 |
| 12 MeV | $11 / 19 / 2019$ | 100.0 cGy to water | 100.7 cGy to water | 0.99 |

Agreement within $5 \%$ is considered a satisfactory check.
DEPTH DOSE VERIFICATION:

| Electron <br> Energy | Depth of OSL in <br> falloff region | IROC-determined <br> percentage depth-dose | Institution's depth for <br> this depth dose | IROC depth - Institution depth |
| :--- | :---: | :---: | :---: | :---: |
| 6 MeV | 2.1 cm | $66 \%$ | 2.1 cm | 0 mm |
| 9 MeV | 3.4 cm | $55 \%$ | 3.5 cm | -1 mm |
| 12 MeV | 4.8 cm | $54 \%$ | 4.9 cm | -1 mm |

Agreement within 5 mm is considered a satisfactory check.

## IROC Photons:

## 6 MV

OUTPUT VERIFICATION:

| Date of <br> Inadiation | IROC Houston measured <br> dose at dmax: | Institution reported dose at <br> dmax: | Ratio of absorbed dose determined by IROC Houston <br> to that stated by institution: OSLD/INST |
| :---: | :---: | :---: | :---: |
| $19-$ Nov-2019 | 101.5 cGy to water | 100.4 cGy to water | 1.01 |

[^3]
## 6FFF

## Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Treatment Planning - Team H

Rotation Director: Michalis Aristophanous
Rotation Mentors: Åse Ballangrud-Popovic
Rotation Location(s): MSKCC Main Campus
Duration: 3 months full time

## Resident Professional Expectations

1. The resident will be proficient in all tasks performed by faculty in team H .

Team H Learning Objectives

|  |  | Contact |
| :---: | :---: | :---: |
| $\stackrel{\text { n }}{\substack{\text { ¢ }}}$ | OSMS: commissioning and clinical use | GL |
|  | Exactrac: commissioning and clinical use | ÅBP, ML |
|  | SRS/SBRT machine requirements: MPPG9a | GL, ML |
|  | LINAC: |  |
|  | Beam modelling for small fields | GL, ÅBP |
|  | Spatial accuracy and dose tolerance, End-to-end testing | GL, ÅBP |
|  | Immobilization and simulation; evaluate multiple options | ÅBP |
|  | Image fusion and contours; MR only planning | ÅBP |
|  | Treatment delivery, setup and motion monitoring | ÅBP |
|  | Planning: DCA, VMAT, conventional brain IMRT/VMAT | ÅBP |
|  | Plan evaluation; technique, lesion number/distribution, historic plans | ÅBP |
|  | Rx dose, margins, outcome, previous treatment considerations | ÅBP |
|  | Patient specific QA | ÅBP |
|  | Plan checking | ÅBP |
|  | Non-LINAC: <br> Framed SRS in iPlan <br> Review of SRS on non-LINAC machines: GammaKnife, CyberKnife, ZAP-X | ÅBP |
|  | Photons: |  |
|  | CT simulation, immobilization, positioning | MA |
|  | Image fusion and contours- target definition | MA |
|  | Treatment planning: IMRT and VMAT | MA |
|  | Plan evaluation- dose volume constrains | MA |
|  | Rx dose, margins, outcomes: standard, HYPO, QUADSHOTS | MA |
|  | Plan checking | MA |
|  | Protons | ? |
|  | ECHO | LH, YZ |
|  | CT simulation, immobilization, positioning | JM? |
|  | Images and contours | JM? |
|  | Treatment planning: ECHO vs VMAT | YZ |
|  | Plan evaluation; ECHO vs Eclipse VMAT | YZ |
|  | Rx dose, margins, outcomes | JM? |


|  | Plan checking | YZ |
| :---: | :---: | :---: |
| $\bar{ర}$ | Photons: supine and prone Use test cases in Development system | CDB/AK |
|  | Protons | ? |
| - | Cross planning system dose summation: <br> 1. patient treated both on LINAC and MR-LINAC <br> 2. patient treated both at MSK with photons and at proton center | ÅBP, MA |

## Cross Team Learning

| Task | Deception | Requirement | Completion |
| :--- | :--- | :--- | :--- |
| Calcs | None planned cases | $1^{\text {st }}$ calc <br> $2^{\text {nd }}$ calc x? | Completed 1 1 $^{\text {st }}$ calc sing-off <br> Pending 2 ${ }^{\text {ch }}$ check |
| Previous <br> treatment <br> review/Gap | Prepare special physis <br> consult for cases with <br> previous treatment | H-team plans: <br> 3 for each type (SRS/spi) |  |
| Planning | Team H plans | 2 plans/week -> 32 |  |
| Plan check | Check of all team H type <br> plans | Observe 1 plan check for <br> each plan type-> 3 <br> 2 plans/week x16 = 32 |  |
| Chart rounds | Attend weekly chart <br> check with radiation <br> oncology | Attend 1/week -> 16 <br> Brain chart rounds <br> SRS tumor board <br> H\&N chart rounds <br> METS chart rounds <br> METS volume review |  |
| EOT | Observe EOT | 4 plans/week =64 |  |
| Weeklies | Observe weeklies | 4 plans/week =64 |  |

## Required Readings/Training

1. Radiation Oncology by Cox and Ang, chapters 8, 9, 33
2. Treatment planning in Radiation Oncology by Khan, chapters 21, 22, 23, 28
3. AAPM TG-29 and TG-30
4. Radiation Oncology by Cox and Ang, chapters 5-7, 10-14, 34, 35,37 (suggested)
5. OSMS: Book chapter (not yet published): Chapter 20. Image Guidance for Frameless Radiosurgery Including Surface Mapping. Guang Li¹, Josh Yamada ${ }^{2}$, and Ase Ballangrud ${ }^{1}$
6. Exactrac
7. MPPG9a
8. Additional readings as assigned by mentor

## Key Topics and Tasks

1. See above list

## Final Evaluation

1. Oral Exam
a. score $\geq 3$ on 5 -point scale
2. Written exam
a. Score $\geq 80 \%$

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Motion Management 

Rotation Director: Ellen Yorke, Lakshmi Santanam
Rotation Mentors: Linda Hong, Jeho Jeong, Ellen Yorke, Wei Lu, Sharif Elguindi, Grace Tang, Dosimetry Core faculty
Rotation Location(s): MSKCC Main Campus and $61^{\text {st }}$ Street MSK building

## Duration: 3 Weeks

## Resident Professional Expectations

1. The resident will master and become independent for review of SBRT plans and setups.
2. Resident will also be able to perform Gator duties like binning, Gating setups, Align RT, DIBH

## Learning Objectives

1. The resident will be able to demonstrate knowledge of motion management strategies in radiation therapy.
2. The resident will be able to conduct quality assurance activities related to motion management devices.

## Observations:

Week 1- 3: Observe 4DCT QA on CT Sims ( Flexible depending on
QA schedule)
Week 1- 3: Observe Monthly, Qurterly or Annual Motion Managment
QA on LINACS ( Flexible- QA schedule)

## Required Readings/Training

1. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874-3900.
2. COMP report: CPQR technical quality control guidelines for CT simulators. P.Despres, S.Gaede
3. Ford EC,Mageras GS, Yorke E et al.,Respiration-correlated spiral CT: A method of measuring respiratoryinduced anatomic motion for radiation treatment planning. MedPhys. 2003;30(1):88-97.
4. Vedam SS, Keall PJ, Kini VR,etal: Acquiring a four dimensional computed tomography dataset using an external respiratory signal.PhysMedBiol.2003; 48:45-62.
5. Keall P, 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol. 2004 Jan;14(1):81-90.
6. Hua Li, C.Noel, J Garcia-ramirez, clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy. Med Phys. 2012 Feb;39(2):922-32.
7. Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68(2):531-540.
8. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys. 2016;94(3):478-492.
9. Hunt MA, Sonnick M, Pham H, et al. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery. J Appl Clin Med Phys. 2016;17(2):473-486.

## $\uparrow$ Memorial Sloan Kettering Cancer Center

10. Yorke E, Xiong Y, Han Q, et al. Kilovoltage imaging of implanted fiducials to monitor intrafraction motion with abdominal compression during stereotactic body radiation therapy for gastrointestinal tumors. Int J Radiat Oncol Biol Phys. 2016;95(3):1042-1049.
11. Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):276-285
12. Goharian M, Khan RFH Measurement of time delay for a prospectively gated CT simulator. Med Phys. 2010 Apr-Jun; 35(2): 123-127
13. Kubo.H, Wang LCompatibility of varian 2100c gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27(8):1732-1738
14. Varian RPM manual
15. AlignRT manual

## Final Evaluation

1. Mentor sign off
a. Aspect of this rotation will be further tested during Team R Oral exam

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Treatment Planning - Team R 

Rotation Director: Ellen Yorke, Lakshmi Santanam
Rotation Mentors: Linda Hong( Breast), Jeho Jeong( Lung), Ellen Yorke( Lung), Wei Lu( Abdomen), Sharif Elguindi( Abdomen), Grace Tang ( Breast), Lakshmi Santanam ( 4DCT, Gating)
Rotation Location(s): MSKCC Main Campus and $61{ }^{\text {st }}$ Street MSK building

Duration: 3 months full time

## Resident Professional Expectations

The resident will be trained in treatment planning. During the initial period, the resident will learn image acquisition (by a short simulation rotation), registration and fusion (MR/PET, 4D) and contouring. This will be followed by Eclipse training for isodose computations. The resident will master treatment planning for breast, thorax, Abdomen sites. Included will be an understanding of, irregular field and heterogeneity calculations and compensation techniques. They will also learn to perform IMRT and VMAT plans. During this rotation, physicists and dosimetrists( planners) will closely supervise the physics resident. Upon completing the planning rotation the resident will spend another 1 -week rotation on the treatment machines to observe SBRT setups. This could be spread out during the 12 weeks. Residents will by the end of 12 weeks, have observed the entire patient path from Simulation, planning, treatment delivery for all 3 sites.

| Rotations: |
| :--- |
| Week 1: Simulation (4DCT, PET/CT)/ MIM Contouring |
| Week 2-3: Breast Planning |
| Week 3-5: Lung /SBRT Planning |
| Week 6-7 : Abdomen Planning |


| Assigned Readings |
| :--- |
| TG 101 |
| TG-66, |
| TG 76 |
| All reading material listed below |

## Site Reports and Comprehensions:

Week 3: Breast Planning Report for 3D, VMAT
Week 5: Lung /SBRT Planning : Report for SBRT Planning
Week 7 : Abdomen Planning : Report for abdomen ablative planning

## Required Readings/Training

1. COMP report: CPQR technical quality control guidelines for CT simulators. P.Despres, S.Gaede
2. Stereotactic body radiation therapy: The report of AAPM Task Group 101
3. AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT.
4. ACR-ASTRO: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/SBRT-RO.pdf
5. AAPM Task Group \#155, "Small Fields and NonEquilibrium Condition Photon Beam Dosimetry"
6. Langen K, Jones D. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001;50(1):265-278.
7. Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):276-285.
8. Goharian M, Khan RFH Measurement of time delay for a prospectively gated CT simulator. Med Phys. 2010 Apr-Jun; 35(2): 123-127.

## $\uparrow$ Memorial Sloan Kettering <br> 丰 Cancer Center

9. Kubo.H, Wang L Compatibility of varian 2100c gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27(8):1732-1738
10. M. Fuss et al., "Stereotactic body radiation therapy: An ablative treatment option for primary and secondary liver tumors", Annals of Surgical Oncology, 11 (2) 130-138 (2004). • K.K. Herfarth et al., "Stereotactic single-dose radiation therapy of liver tumors: Results of a phase I/II trial", Journal of Clinical Oncology, 19 (1) 164-170 (2001).
11. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiotherapy and Oncology 124(2017)11-17
12. Timmerman et al, Stereotactic Body Radiation Therapy for Operable Early-Stage Lung Cancer: Findings From the NRG Oncology RTOG 0618 Trial. JAMA Oncol 2018(Sep1;4(9)1263-1266
13. Pollom et al., Normal Tissue Constraints for Abdominal and Thoracic Stereotactic Body Radiotherapy. Semin Radiat Oncol 2017 27(3):197-208
14. Licheng Kuo, et al A VMAT planning technique for locally advanced breast cancer patients with expander or implant reconstructions requiring comprehensive postmastectomy radiation therapy. Medical Dosimetry 2019 44: 150-154.
15. Linda Hong, et al Electron postmastectomy chest wall plus comprehensive nodal irradiation technique using Electron Monte Carlo dose algorithm. Dosimetry 2018 43: 230-236.
16. L. Hong, et al INTENSITY-MODULATED TANGENTIAL BEAM IRRADIATION OF THE INTACT BREAST. Int. J. Radiation Oncology Biol. Phys., 1999, Vol. 44, No. 5, pp. 1155-1164.
17. Chen-Shou Chui, et al. INTENSITY-MODULATED RADIOTHERAPY TECHNIQUE FOR THREE-FIELD BREAST TREATMENT. Int. J. Radiation Oncology Biol. Phys., 2005, Vol. 62, No. 4, pp. 1217-1223.
18. Crane C, O'reilly E Ablative radiotherapy dsoes for loclly advacned pancreatic cancer, Cancer 23(6)Nov 2017. ( review artricle) 350-354.
19. Crane C, Koay EJ Solutions that enable ablatvie radiotherpy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion mangement, and CT imgae guidance - review article. Cancer July(2016)1974-1986.
20. Eclipse Algorithm reference guide
21. AAPM \#017 - TBI
22. Quantitative analyses of normal tisue effects in the clinic. Int. J. Radiation Oncology Biol. Phys 2010, 76(3) S1-S160

## Key Topics and Tasks

1. Complete site-specific reports after completion of each site planning rotation.
2. Meet with the assigned faculty to review site specific planning techniques.

## Final Evaluation

1. Oral Exam
a. score $\geq 3$ on 5-point scale
or
2. Written exam
a. Score $\geq 80 \%$

# Therapeutic Medical physics Residency 

Rotation Curriculum
Treatment Planning - Team G External Beam

Rotation Director: Antonio Damato<br>Rotation Mentor: David Aramburu Núñez,<br>Rotation Location(s): MSKCC Main Campus<br>Duration: 12 weeks full time

## Resident Professional Expectations

1. The resident will exhibit professional standards of MSKCC
2. The resident will complete reading assignments prior to weekly meetings with mentor

## Learning Objectives

1. The resident will be familiar with simulations and treatment floor setups for prostate patients
2. The resident will be familiar with MSK clinical workflow and general planning procedures for MRCAT and non-MRCAT prostate patients.
3. The resident will be able to perform independently MRCAT fusions and pass its sign off competency.
4. The resident will be able to perform independently prostate hypo and conventional planning.
5. The resident will be able to understand why different fractionations and dose constraints used for different prostate patients and toxicities related to the treatment.
6. The resident will be familiar with simulations and treatment floor setups for GU/GYN/PELVIS patients
7. The resident will be familiar with MSK clinical workflow and general planning procedures for GU/GYN/PELVIS patients.
8. The resident will be able to understand why Simultaneous integrated boost (SIB) or Cone Down (CD) schemes are selected for specific GYN patients and toxicities related to the treatment.
9. The resident will be able to perform independently GU/GYN/PELVIS planning.
10. The resident will be familiar with MSK clinical workflow and general planning procedures for extremity cases.
11. The resident will be familiar with simulations and treatment floor setups for extremity cases.
12. The resident will be able to perform independently planning for extremity cases.
13. The resident will understand the advantages and consequences of using different energies and treatment types for specific sites.
14. The resident will be able to answer any questions related to the plans by the MD or licensed medical physicist.
15. The resident will attend to Chart Rounds and will be able to answer any questions by the MD.

## Required Reading/Training

1. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\prostate
2. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\GI-GYN
3. H:\Medical Physics\Treatment Planning\EBTP INFO\aaaTREATMENT PLANNING PROCEDURES\PROCEDURES-ECLIPSE SITE SPECIFIC\Extremity
4. Report No. 101 - Stereotactic body radiation therapy: The report of AAPM Task Group 101 (2010)
5. MRI for Radiotherapy Planning, Delivery, and Response Assessment Editors: Liney, Gary, van der Heide, Uulke (Eds.) (https://link.springer.com/book/10.1007\%2F978-3-030-14442-5)

## Key Topics and Tasks

1. Observe 3 simulations of each: Prostate CT and Prostate MRCAT
2. Perform MRCAT Setup for Post-op (at least 1), Post- brachy (at least 2), Intact prostate (at least 2).
3. Pass MRCAT Sign off Competency
4. Perform 5 Hypo and 5 conventional Prostate planning (at least 2 MVKV, at least 1 ECHO)
5. Competency in Hypo and Conventional Prostate Planning.
6. Observe 3 simulations for GU/GYN/PELVIS.
7. Perform 10 conventional GU/GYN/PELVIS planning. (at least 1 Bladder, at least 2 3DCRT, at least 2 IMRT, if not possible training cases will be available).
8. Observe 5 simulations for GU/GYN/PELVIS.
9. Perform 10 plans for extremity cases (if not possible, training cases will be available)
10. Attend 5 Chart Rounds (GU/GYN/SARCOMA)
11. Attend Team G monthly prostate meetings.
12. Attend New planner meetings.
13. Attend General Treatment planning meetings.

## Final Evaluation

1. Oral Exam
a. Passing $\geq 3$ average score out of 5

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Treatment Planning - Team G Brachytherapy 

Rotation Director: Antonio Damoto
Rotation Mentors: Gilad Cohen
Rotation Location(s): MSKCC Main Campus
Duration: 12 Weeks full time

## Resident Professional Expectations

The resident attend QA procedures and clinical cases, as directed by the mentor, and keep track of his/her progress. The mentor will indicate relevant reading in line with clinical cases.

Every two weeks, the resident will meet with the mentor to evaluate the residents' progress, by means of an oral quiz.

## Learning Objectives

While the resident will be exposed to procedure as they are performed at MSK, emphasis will also be given to the understanding of basic principles, and methodology. The learning objectives include:

- Ability to perform QA tasks independently
- Ability to perform clinical procedure (under supervision as required by regulations)
- Ability to apply learned techniques in other clinics with different platforms and implantation procedures


## Required Readings/Training

1. Brachytherapy physics; AAPM summer school 1994
2. Brachytherapy physics; AAPM/ABS summer school 2005
3. MSKCC brachytherapy service Policy and Procedures (MSKCC staff)
4. Relevant publications (e.g. AAPM TG reports, ABS, and ICRU guidelines)

## Key Topics and Tasks

| Clinical Rotation - Brachytherapy | Date | Clinical Rotation |
| :--- | :--- | :--- |
| Learning exercises: (to be done if new equipment is not <br> purchased during the resident's training period.) |  |  |
| Review purchase, commissioning and acceptance testing of <br> the brachytherapy treatment planning system and remote |  |  |
| Participate in planning and treatment for: |  |  |
| Prostate LDR |  |  |
| Eye plaques |  |  |
| Cervix HDR |  |  |
| Prostate HDR |  |  |
| Vaginal/Endometrial HDR |  |  |
| IORT |  |  |
| Other procedures as they are scheduled |  |  |
| Handling of sealed radioactive sources (min \# of |  |  |
| Activities of each type required) |  |  |
| Ordering / Source type: |  |  |
| I-125, Pd-103 (5) |  |  |
| Ir-192 HDR (none required standing order) |  |  |
| Receiving/Source type |  |  |
| All of the above (2) |  |  |
| Calibration/Source type |  |  |
| I-125, Pd-103, Cs-131 (5) |  |  |


| Ir-192 HDR (3) |  |  |
| :--- | :--- | :--- |
| Preparation for procedure / source type |  |  |
| Eye plaques (2) |  |  |
| Other permanent implants (as available) |  |  |
| Storage - inventory-wipe test |  |  |
| NA |  |  |
| Shipment / source type: |  |  |
| Ir-192 HDR (2) |  |  |
| Disposal (waste storage) / source type: |  |  |
| I-125, Pd-103, Cs-131 (2) |  |  |
| Treatment planning (min \# plans of each type <br> completed) |  |  |
| LDR prostate (5) |  |  |
| LDR temporary implant (pending clinical schedule) |  |  |
| Eye plaque (2) |  |  |
| HDR Prostate (5) |  |  |
| Interstitial HDR implant (pending clinical schedule) |  |  |
| Intra-operative HDR implants (3) |  |  |
| HDR gynecological implants (5) |  |  |
| Treatment plan QA (min \# for each plan type) |  |  |
| LDR prostate (5) |  |  |
| LDR temporary implant (pending clinical schedule) |  |  |
| Eye plaque (2) |  |  |
| HDR Prostate (5) |  |  |
| Interstitial HDR implant (pending clinical schedule) |  |  |
| Intra-operative HDR implants (3) |  |  |
| HDR gynecological implants (5) |  |  |
| HDR Quality Assurance |  |  |
| Emergency response training (complete at least 1 session) |  |  |
| Pre-treatment operational and safety checks (complete |  |  |
| at least 5 check sessions) |  |  |
| Participate in at least 2 source changes and subsequent |  |  |
| Qrostate implants (5) |  |  |
| Other permanent implants (pending clinical schedule) |  |  |
| QA/PM |  |  |
| Treatment delivery (min \# of each) |  |  |
| Prostate HDR implants (2) |  |  |
| Intra-operative HDR implants (2) |  |  |
| Intraluminal HDR implants (2) |  |  |
| Intracavitary HDR implants (2) |  |  |
| treatment delivery (min \# of each) |  |  |
| Permanent LDR prostate (5) |  |  |
| LDR temporary implant (if scheduled) |  |  |
| Postaque (2) |  |  |

## Final Evaluation

1. Oral Exam
a. score $\geq 3$ on 5 -point scale
2. Written exam
a. Score $\geq 80 \%$

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Chart Check and Review 

Rotation Director: Laura Cervino
Rotation Mentors: Cesar Della Biancia
Rotation Location(s): MSKCC Main Campus
Duration: 6 Weeks

## Resident Professional Expectations

1. The resident will exhibit professional standards of MSKCC
2. The resident will demonstrate punctuality.
3. The resident will be present for all assignments
a. Should a resident not be able to attend assignment enough notification with faculty should be given
4. The resident will communicate effectively with faculty, staff and physicians.

## Learning Objectives

1. The resident will be able to independently review a treatment plan chart
2. The resident will be able to independently review weekly treatment chart audits
3. The resident will be able to independently complete end of treatment chart review
4. The resident will be able to discus the applications of checklists in chart review
5. The resident will be able to demonstrate understanding and ability in SPOC role
6. The resident will be able to assist as on-call physicist

## Required Readings/Training

1. Report of the Task Group \#275, Chart review
2. Medical Physics Practice Guideline 4.a: Development, implementation, use and maintenance of safety checklists published in the Journal of Applied Clinical Medical Physics (JACMP). Volume 16, Number 3 (2015). [ISBN: 978-1-936366-46-0]
3. AAPM Report No. 46 (TG 40) "Compressive QA for Radiation Oncology". https://www.aapm.org/pubs/reports/RPT 46.PDF

## Key Topics and Tasks

1. Complete 5-10 chart check observations
2. Complete 10 independent check checks for presentation and sign off by faculty.
3. Complete weekly chart review as assigned
4. Complete End of Treatment chart check as assigned

## Final Evaluation

1. Oral Exam
a. Passing score $\geq 3$ on 5 Pt scale
2. Oral Exam
a. score $\geq 3$ on 5-point scale
3. Written exam
a. Score $\geq 80 \%$
4. Completion of required number of plan checks

# Therapeutic Medical Physics Residency <br> Rotation Curriculum Regional Clinic 

Rotation Director: As Assigned
Rotation Mentors: As Assigned
Rotation Location(s): As Assigned
Duration: 6 Weeks

## Resident Professional Expectations

1. The resident will perform duties and act in expected professional manner as learned during orientation rotation.
2. The resident will comport themselves with any additional requirements as outlined by their outpatient rotation mentor.

## Learning Objectives

1. The resident will be able to synthesize what was learned during their specialized main campus rotations (e.g. dosimetry, brachytherapy, external beam planning) into a comprehensive understanding of the role of a physicist at a small to medium sized ( $3-4$ linacs) practice, where the physicist is generally responsible for all aspects of clinical physics on a day-to-day basis.
To perform clinical physics functions, mainly machine QA, initial, weekly, and end-of treatment chart checks, brachytherapy (if available), and being the first line of contact for machine or patient-related issues on the linac or in the simulator as independently as possible within the bounds of NYC/NYS or NJ practice guidelines.

## Required Readings/Training

1. MPPG 10a
2. Report of the Task Group \#275

## Key Topics and Tasks

1. Under the supervision of a (NYS defined) PMP:
a. Complete 1 monthly linac QA for every month on the rotation
b. Complete 1 CT simulator QA for every month on the rotation
c. Complete initial, weekly, and EOT physics chart checks with a frequency equal to that of other physicists in the region.
d. Serve as senior physicist on-call (SPOC) and first line of contact for linac/simulator calls to physics
e. If brachytherapy available at the site,
i. Perform 1 source exchange (if occurs during rotation)
ii. Perform IVRT planning, delivery, daily HDR QA
f. The resident will be able to perform patient specific dosimetry in vivo measurement

## Final Evaluation

1. Oral Exam
a. score $\geq 3$ on 5 -point scale

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> MR-Linac 

Rotation Director: James Mechalakos
Rotation Mentors: Neelam Tyagi, Ergys Subashi
Rotation Location(s): MSKCC Koch Center
Duration: 4 Weeks

## Resident Professional Expectations

1. The resident will perform duties and act in expected professional manner as learned during orientation rotation.
2. The resident will comport themselves with any additional requirements as outlined by their outpatient rotation mentor.

## Learning Objectives

1. The resident will be able to demonstrate knowledge of MR Safety
2. The resident will be able to demonstrate knowledge of MR-Linac QA processes
3. The resident will be able to discuss adaptive radiotherapy and its applications
4. The resident will be able to discuss Synthetic CT used in planning
5. The resident will be able to demonstrate basic Mosaiq and Monaco skills

## Required Readings/Training

1. Report of the Task Group \#275
2. C Kontaxis, G H Bol, J J W Lagendijk and B W Raaymakers, "A new methodology for inter- and intrafraction plan adaptation for the MR-linac". Physics in Medicine \& Biology, Volume 60, Number 19:7485-97
3. K Smit, B van Asselen, J G M Kok, A H L Aalbers, J J W Lagendijk and B W Raaymakers, " Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading". Physics in Medicine \& Biology, Volume 58, Number 17: 5945-57
4. C Kontaxis, G H Bol, J J W Lagendijk and B W Raaymakers, "Towards adaptive IMRT sequencing for the MR-linac". Physics in Medicine \& Biology, Volume 60, Number 6:24932509
5. D Winkel et al. "Adaptive Radiotherapy: The Elekta Unity MR-Linac Concept". Clin and Trans Rad Oncol V18, Pg. 54-59.
6. K Smit, B van Asselen, J G M Kok, A H L Aalbers, J J W Lagendijk and B W Raaymakers, " Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading". Physics in Medicine \& Biology, Volume 58, Number 17:5945-57
7. X. Allen Li (Ed), "Adaptive Radiotherapy". CRC Press Francis \& Taylor, Boca Raton, FL 2011
8. Additional readings as assigned

## Key Topics and Tasks

1. Complete monthly MR-Linac QA
2. Complete an MR-Linac treatment plan in Monco
3. Complete transfer of pan to Mosaiq

## T Memorial Sloan Kettering <br> \# Cancer Center

## Final Evaluation

1. Oral Exam
a. $\quad>3$ average score on 5 pt scale.

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Proton Therapy 

Rotation Director: Haibo Lin, Ph.D
Rotation Mentors: Haibo Lin Ph.D, Minglei Kang Ph.D, Pingfang Tsai Ph.D, Weijun Xiong Ph.D, Qing Chen M.S, Francis Yu M.S, Lei Hu Ph.D, Anna Zhai M.S

Rotation Location(s): New York Proton Center
Duration: 8 Weeks

## Resident Professional Expectations

1. The therapeutic medical physics residents in the department of medical physics at Memorial Sloan Kettering Cancer Center will be expected to achieve the following competencies associated with proton therapy.

## Learning Objectives

1. The resident will be able to demonstrate knowledge of basic physics of proton therapy including interactions of protons with material, Bragg peak, etc
2. To learn the clinical rationale of proton therapy
3. To understand the major proton machine components such as cyclotron for proton acceleration, energy selection system, beamline for beam delivery, gantry, snout, nozzle and associated accessories.
4. To learn different proton delivery methods such as passive scattering and active scanning techniques, their pros and cons.
5. To Understand the root of uncertainties associated with proton therapy, especially for pencil beam scanning technique.
6. To learn quality assurance ( $Q A$ ) instruments used for proton therapy such as ion chambers, Multi-layer Ionization Chambers (MLICs), detector arrays, film dosimetry, scintillator detector.
7. To learn the TRS-398 protocol for absolute dose calibration protocol of proton beam
8. To learn NYPC proton machine QA protocols for daily, monthly and annual checks
9. To learn NYPC patient specific QA procedure for different treatment techniques e.g. Single Field Optimization (SFO) and Multi-field Optimization (MFO).
10. To learn basic treatment planning for proton therapy including SOF and MFO for various disease sites.
11. To learn how to evaluate a proton plan quality for different treatment sites.
12. To learn CT and MRI simulations for proton therapy and associated patient setup \& immobilization for proton therapy
13. To learn basic protocol for CT HU - proton stopping power calibration
14. To understand the shielding requirements for proton therapy facilities
15. To participate ProBeam system commissioning (before center open) including beam data collection, TPS configuration, validation of TPS configuration, validation of CT calibration and end-to-end test.
16. ACR-ASTRO practice guideline for the performance of proton beam radiation therapy. American College of Radiology, 2013. Available at: http://www.acr.org/w/media/7BEBF7E77E1141578 CB8722F997BDE9B.pdf.
17. (TRS) no. 398. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: International Atomic Energy Agency Technical report series; 2000.
18. Prescribing, Recording and Reporting Proton-Beam Therapy. ICRU report 78. Oxford: Oxford University Press; 2007. Available at AAPM web site.
19. Proton Beam Therapy, Kooy and Adams, Ch 18 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.
20. Role of Protons Versus Photons in Modern Radiotherapy: Clinical Perspective, Yip, Wand and DeLaney, Ch 19 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.
21. Intensity Modulated Proton Therapy, Lomax Ch 10 in Treatment Planning in Radiation Oncology, ed. Khan, Gibbons and Sperduto, 2016.

## Suggested Readings:

1. Radiation Oncology: A physicists-eye view. Goitein, M. 2008. New York: Springer. Chapters 10 \& 11.
2. Proton and Charged Particle Radiotherapy. DeLaney and Kooy. Lippincott, Williams and Wilkins (2007)
3. Proton Therapy Physics, $2^{\text {nd }}$ ed. H. Paganetti, 2018
4. Eclipse treatment planning algorithm: proton therapy
5. Radiation safety issues relevant to proton therapy and radioisotope production medical cyclotrons Mukherjee, B. 2012, Radiation Protection and Environment, Vol. 35, Issue 3\&4, p126134.
6. Radiation Therapy with Light lons. Vatnitsky, S.M. and M.F. Moyers. 2013,. In The Modern Technology of Radiation Oncology: Vol. III, ed. J. VanDyk, 183-222. Madison: Medical Physics Publishing. (see Pat McDermott)

## Key Topics and Tasks

1. Clinical Activity 1: ProBeam Daily QA
a. Observe and perform the machine daily QA. Attach a copy of daily QA report.
2. Clinical Activity 2: ProBeam Monthly QA
a. Observe and perform the monthly QA. Attach a copy of monthly QA report.
3. Clinical Activity 3: Patient Specific QA
a. Observe and perform patient specific QA.
4. Clinical Activity 4: CT Monthly QA
a. Observe and perform the CT monthly QA. Attach a copy of monthly QA report.
5. Clinical Activity 5: Imaging transfer and registration
a. Observe and Perform CT imaging transfer and imaging registration.
6. Clinical Activity 6: Daily Physics support - early shift
a. Observe and shadow early shift Physics of the Day (POD) for clinical supports.
7. Clinical Activity 7: Daily Physics support - late shift
a. Observe and shadow late shift Physics of the Day (POD) for clinical supports.
8. Clinical Activity 8: Physics chart checks
a. Observe and perform physics chart checks.
9. Clinical Activity 9: Proton simulation observation
a. Observe proton patient simulation for various disease sites.
10. Clinical Activity 10: Proton treatment observation
a. Observe proton treatment for various disease sites.
11. Clinical Activity 11: Proton treatment planning
a. observe and perform proton treatment planning for different treatment sites.
12. Clinical Activity 12: Proton beam calibration - TRS 398
a. Perform proton beam absolute dose calibration using IAEA TRS-398 protocol

## NYPC Proton Therapy Rotation Sign Off Sheet

Name of trainee: $\qquad$

Your signature indicates that you have read the reference

## Required Reading

| Reference | Signature | Date |
| :--- | :--- | :--- |
| ACR-ASTRO practice guideline |  |  |
| (TRS) \# 398. Absorbed dose determination <br> in external beam radiotherapy |  |  |
| Prescribing, Recording and Reporting <br> Proton-Beam Therapy ICRU \#78 |  |  |
| Proton Beam Therapy by Kooy and Adams: <br> chapter 18 treatment planning |  |  |
| Role of Protons Versus Photons in Modern <br> Radiotherapy: Clinical Perspective: chapter <br> 19 treatment planning |  |  |
| Intensity Modulated Proton Therapy: <br> chapter 10 Treatment planning |  |  |
|  |  |  |
|  |  |  |

## Proton Therapy Rotation Sign Off Sheet (2 of \#)

Name: $\qquad$

## Clinical Activity 1: ProBeam Daily QA

The resident has observed the daily ProBeam machine QA
$\qquad$ Date: $\qquad$

The resident has observed the daily ProBeam machine QA
Medical Physicist Signature \#2: $\qquad$ Date: $\qquad$

The resident has performed daily ProBeam machine QA under my supervision Medical Physicist Signature: $\qquad$ Date: $\qquad$

## Clinical Activity 2: ProBeam Monthly QA

The resident has observed the monthly ProBeam machine QA Medical Physicist Signature: $\qquad$ Date: $\qquad$

The resident has observed the monthly ProBeam machine QA Medical Physicist Signature: $\qquad$ Date: $\qquad$

The resident has performed the Monthly ProBeam machine QA under my supervision Medical Physicist Signature: $\qquad$ Date: $\qquad$

Clinical Activity 3: Patient Specific QA
The resident has observed the patient specific QA
Medical Physicist Signature: $\qquad$ Date: $\qquad$
The resident has observed the patient specific QA
Medical Physicist Signature: $\qquad$ Date: $\qquad$

The resident has performed the patient specific QA under my supervision Medical Physicist Signature: $\qquad$ Date: $\qquad$

## Clinical Activity 4: CT Monthly QA

The resident has observed the CT monthly machine QA

Medical Physicist Signature: $\qquad$ Date: $\qquad$

The resident has observed the CT monthly machine QA Medical Physicist Signature: $\qquad$ Date: $\qquad$

The resident has performed the CT Monthly machine QA under my supervision Medical Physicist Signature: $\qquad$ Date: $\qquad$

## Clinical Activity 5: Imaging transfer and registration

Observe and Perform the transfer of the CT imaging data set from CT console to Eclipse/Velocity and perform imaging registration.

| Signature/Date |  |
| :--- | :--- |
| Signature/Date |  |

## Clinical Activity 6: Daily Physics support - early shift

Observe and shadow early shift Physics of the Day (POD) for clinical support.
Oversee the machine performance, communicate with physician, therapist and dosimetrist for problems/issues and provide clinical supports in plan review, QA check, chart check .etc. Perform the machine morning QA.

| Signature/Date |  |
| :--- | :--- |
| Signature/Date |  |


| $\boldsymbol{1}$ Memorial Sloan Kettering |
| :--- | :--- |
| Mer |
| Cancer Center |$|$| Signature/Date |  |
| :--- | :--- |
| Signature/Date |  |
| Signature/Date |  |
| Signature/Date |  |
| Signature/Date |  |

## Clinical Activity 7: Daily Physics support - late shift

Observe and shadow late shift Physics of the Day (POD) for clinical support.
Oversee machine performance, communicate with physician, therapist and dosimetrist about the problems and provide clinical support in plan review, QA check, chart check .etc. Perform the machine QA and patient specific QA after patient treatment.

| Signature/Date |  |
| :--- | :--- |
| Signature/Date |  |

## Clinical Activity 8: Physics chart checks

Observe and perform physics chart checks with licensed Medical Physicist.

| Signature/Date |  |
| :--- | :--- |
| Signature/Date |  |

## Clinical Activity 9: Proton simulation observation

Observe proton patient simulation for various disease sites

Pediatric vs adult treatment; CNS, H\&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

| Signature/Date | Disease site |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Clinical Activity 10: Proton treatment observation

Observe proton treatment for various disease sites.

Pediatric vs adult treatment; CNS, H\&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

| Signature/Date | Disease site |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Clinical Activity 11: Proton treatment planning

observe and perform proton treatment planning for different treatment sites.

Memorial Sloan Kettering Cancer Center

Pediatric vs adult treatment; CNS, H\&N, Brain, Prostate, CSI, Lung, breast Abdomen region.

| Signature/Date/observation | Disease site | Signature/Date/planning |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Clinical Activity 12: Proton beam calibration - TRS 398

Perform proton beam absolute dose calibration using IAEA TRS-398 protocol.

| Signature/Date |  |  |
| :--- | :--- | :--- |

## Therapeutic Medical Physics Residency <br> Rotation Curriculum Supervised Independent Practice

Rotation Director: As assigned
Rotation Mentors: As assigned
Rotation Location(s): As Assigned
Duration: 8 Weeks

Residents will be assigned to a section/team and perform clinical duties as assigned within their scope of permit.

## Resident Professional Expectations

1. The resident will act as a member of the assigned team completing all assignments in a timely manner.
2. The resident is expected to act independently within the scope and limits of their permit and section directors' assignments.

## Learning Objectives

1. The resident will be able to demonstrate knowledge and ability to perform standard medical physics duties at the level of junior physicist.
2. Deficiencies identified from earlier rotations will be addressed and corrected.
3. The resident will develop confidence in clinical problem solving.
4. The resident will show competence in acting as an independent practitioner of therapeutics medical physics.

## Required Readings/Training

1. As assigned by the rotation mentor or section chief.

## Key Topics and Tasks

1. Assigned task per the clinical service.

## Final Evaluation

1. Oral Exam (comprehensive)
a. Average score $\geq 3$ on 5 -point scale

# Therapeutic Medical Physics Residency <br> Rotation Curriculum <br> Elective 

Rotation Director: Christopher J. Watchman, PhD, DABR
Rotation Mentors: as assigned per the specifics of the elective rotation
Rotation Location(s): As Assigned

## Duration: 4 Weeks

## Resident Professional Expectations

1. The resident will choose an elective and coordinate with the assigned mentor.
2. The resident will complete all outstanding work related to clinical assignments, development projects and program requirements.
3. The resident will provide the program director with all completed work and forms.
4. The resident will leave with the program director, mentor and/or other faculty needed documentation and work product developed during their residency.

## Learning Objectives

1. The resident will learn to complete and closeout employment with an employer.

Required Readings/Training

1. As assigned by mentor or director

## Key Topics and Tasks

1. TBD based on resident's elective

[^0]:    *Obtained from annuel water tank scan using $R_{50}=1.029 I_{50}-0.06(c m)$

[^1]:    *Obtained from annual water tank scan using $R_{50}=1.029 I_{50}-0.06$ (cm)

[^2]:    *Obtained from annual water tank scan using $\mathrm{R}_{50}=1.029 \mathrm{I}_{50}-0.06(\mathrm{~cm})$

[^3]:    Agreement within $5 \%$ is considered a satisfactory check

