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Summary

Our work was motivated by the question whether, and to what extent, well-
established risk factors mediate the racial disparity observed for colorectal cancer
(CRC) incidence in the United States (US). Mediation analysis examines the rela-
tionships between an exposure, mediator and an outcome. All available methods
require access to a single complete data set with these three variables. However,
because population-based studies usually include few non-White participants, these
approaches have limited utility in answering our motivating question. Recently, we
developed novel methods to integrate several data sets with incomplete information
for mediation analysis. These methods have two limitations: (i) they only consider
a single mediator, and (ii) they require a data set containing individual-level data
on the mediator and exposure (and possibly confounders) obtained by independent
and identically distributed sampling from the target population. Here, we propose
a new method for mediation analysis with several different data sets that accom-
modates complex survey and registry data, and allows for multiple mediators. The
proposed approach yields unbiased causal effects estimates and confidence intervals
with nominal coverage in simulations. We apply our method to data from US can-
cer registries, a US-population-representative survey and summary level odds-ratio
estimates, to rigorously evaluate what proportion of the difference in CRC risk be-
tween non-Hispanic Whites and Blacks is mediated by three potentially modifiable
risk factors (CRC screening history, body mass index, regular aspirin use).
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1 INTRODUCTION

Mediation analysis is a popular statistical tool for understanding the causal relationship between an exposure, a mediator, and
an outcome. It is widely applicable in many disciplines, including epidemiology, clinical research, psychology, economics, and
neuroscience. Traditional parametric mediation models are based on an exposure, a single mediating variable and the outcome,
all measured in the same data set1,2. Modern mediation analysis has recently adopted a causal counterfactual framework to
evaluate mediating effects without strong parametric assumptions3,4,5,6. In parallel, advanced statistical methods for mediation
analysis have been proposed for high-dimensional settings to identify the true set of mediators and to describe the underlying
mediation model7,8,9,10,11,5. Mediation methods have also been extended to accommodate non-linear models with various types
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of outcomes, as well as discrete and ordinal mediators11,12,13. However, all these methods have the critical limitation that they
require the outcome, mediator and exposure to be measured on the same individuals. It is increasingly desirable in many fields
of research, including epidemiological studies, to utilize combinations of data sets, with various levels of information14,15,16,
in part due to the dramatic increase in data availability. In the setting of mediation analysis for epidemiologic investigations,
there are frequently two types of data: 1) a potentially large data set with exposures and outcomes derived from one or more
observational studies (e.g. case-control or cohort studies from large consortia) or from population-based surveys; and 2) data
sets that contain detailed information linking exposures and putative mediators (e.g., health care databases and well-designed
prospective epidemiological studies). There are an increasing number of statistical methods for analyzing and combining data
sets with partial information, but these are not suited for mediation analysis with summary level data17,18, and approaches
that can handle summary level data assume perfect mediation, i.e., the entire effect of an exposure on outcome is through the
mediators19. Therefore, we recently developed novel methods to perform mediation analysis for a single mediator with several
“incomplete” data sets, i.e. data sets containing partial information, and not a single one containing all primary variables20.

Here we build upon these methods for mediation analysis with several different data sets, each with partial information, to
accommodate survey and registry data, and multiple mediators. Our work was motivated by the question whether, and to what
extent, well-established risk factors mediate the racial disparity observed for colorectal cancer (CRC) incidence in the United
States (US). Racial disparities in CRC incidence and mortality are widely documented21,22,23 Multiple factors associated with
CRC risk have been consistently identified, including family history of CRC, high body mass index (BMI), a history of cigarette
smoking, regular aspirin use, and CRC screening and polyp history among others24,25,26. However, because population-based
studies usually include only few participants from racial minority groups, there is limited evidence on the extent to which
differences in the prevalence of these factors explain racial differences in CRC incidence.

To answer the motivating question, we propose a new method for mediation analysis with several different data sets that
accommodates data from US cancer registries, a US population-representative survey and summary level odds ratio estimates of
selected CRC risk or protective factors from a matched population-based case-control study. We build on the theoretical results of
our earlier methods20, which assumed that all individual level data sets contained information on identically and independently
sampled study participants from the same target population, and only considered a single mediator. We use the same theoretical
framework to prove identifiability of all regression model parameters under the new setting. We derive a new set of estimating
equations that incorporate sampling weights, and we prove consistency and asymptotic normality of the corresponding estimates.
We propose two new approaches for a variance calculation that accommodate the complex survey sampling design of one of the
data sets. The first approach derives the joint asymptotic variance of the estimates of the regression parameters and empirical
distribution function of the covariates, mediators and exposures while accommodating complex survey sampling. The second
approach incorporates uncertainty in the estimate of the empirical distribution though a bootstrap approach. We then use these
methods to rigorously evaluate what proportion of the difference in the probabilities of developing CRC over a given time period
between non-Hispanic Whites and Blacks is mediated by three potentially modifiable risk factors (CRC screening history, body
mass index (BMI), and regular aspirin use).

After a brief overview, we describe the data used for the analysis, present the statistical model and methods for estimating the
parameters needed for the mediation analysis from incomplete data sources (Section 2). In several simulations we demonstrate
that the new method provides unbiased estimates of the mediation statistics and analytic standard errors that are close to their
empirical values (Section 3). We then analyze the CRC data example and give estimates of the percentages of mediated effects
for various age-groups for US Whites and Blacks (Section 4). Lastly, we conclude with a short discussion in Section 5.

2 METHODS

We present our statistical methodology in the context of the motivating example, namely estimating the mediating effects of
well-established risk factors on the racial disparity observed for colorectal cancer (CRC) incidence. Our novel statistical method
combines age-specific disease incidence rates, race-specific distributions of three modifiable risk factors (the mediators) and
their association estimates with disease risk (odds ratios, ORs) to estimate adjusted age-specific differences in the probabilities
of disease development between two racial groups, and the percent of difference mediated by select risk factors. Specifically, for
our CRC example we combine the following information: 1) estimates of sex- and age-specific CRC incidence rates for Whites
and Blacks using the National Cancer Institute’s (NCI’s) Surveillance, Epidemiology, and End Results (SEER) cancer registry
database; 2) estimates of the prevalence of the mediating factors (CRC screening history; BMI, ≤ 24.9, 25−30, or > 30𝑘𝑔∕𝑚2;
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regular aspirin use) for both racial groups obtained from the US National Health Interview Survey (NHIS); and 3) ORs and their
covariance matrices for the mediating factors estimated from non-Hispanic Whites enrolled in a population-based age-matched
case-control study24.

2.1 Statistical Methods
Let 𝑌 denote a binary indicator that is 1 if a person is diagnosed with CRC within one year from baseline,𝐸 the exposure indicator
that is 1 if a subject is non-Hispanic White, and 0 if the subject is non-Hispanic Black and let 𝑴 =

(

𝑀1,… ,𝑀4
)

denote the
mediators that include CRC screening history in the last ten years, BMI (≤ 24.9 kg/m2, 25-30 kg/m2, or >30 kg/m2, with ≤ 24.9
kg/m2 used as the reference category), and aspirin use (regular user and nonuser; nonusers are the reference category). Covariates
are denoted by 𝑪 =

(

𝐶1, 𝐶2, 𝐶3
)

and include the age categories coded with dummy variables (40 − 49, 50 − 59, 60 − 69,≥ 70
years; the ≥ 70 age group is the reference group).

Model for cancer registry data
To evaluate racial disparities in the CRC incidence rates in the SEER population, where we only observe race (𝐸) and age

(𝐶), we assume the following logistic regression with Blacks as the reference category (𝐸 = 0)

𝑃 (𝑌 = 1 |𝐸,𝑪) =
exp(𝛽∗0 + 𝛽∗𝐸 +

∑

𝑖 𝛼∗
𝑖 𝐶𝑖 + 𝜁∗𝐶1𝐸)

1 + exp(𝛽∗0 + 𝛽∗𝐸 +
∑

𝑖 𝛼
∗
𝑖 𝐶𝑖 + 𝜁∗𝐶1𝐸)

. (2.1)

We also included an interaction term 𝐶1𝐸 to capture the nonlinear impact of age, noticeable in the age group 40-49 years, and
denote the vector of all parameter estimates in model (2.1) by �̂�∗ = (𝛽∗0 , 𝛽

∗,𝜶∗, 𝜁∗). The mediators 𝑴 were not measured in the
SEER data set and thus are not included in the model (2.1). Partial results for the estimates in model (2.1) are shown in Table 5
(2nd column of the table).

Model for the summary odds ratios
The summary ORs for White men and women24 estimated the association of the mediators with CRC risk in a population

based case-control study. As controls were matched to cases based on age (used in four categories) and study center, which is a
nuisance parameter, conditional logistic regression was used to estimate ORs. Here, we assume that the following logistic model
was postulated

𝑃 (𝑌 = 1 |𝐸 = 1,𝑴 ,𝑪) =
exp(𝛽∗∗0 +

∑

𝑖 𝛼∗∗
𝑖 𝐶𝑖 +

∑

𝑗 𝛾∗∗𝑗 𝑀𝑗)

1 + exp(𝛽∗∗0 +
∑

𝑖 𝛼
∗∗
𝑖 𝐶𝑖 +

∑

𝑗 𝛾
∗∗
𝑗 𝑀𝑗)

. (2.2)

where both 𝛽∗∗0 , the intercept, and 𝛼∗∗
𝑖 (𝑖 = 1, 2, 3), the ORs corresponding to the age groups cannot be estimated from a

conditional logistic regression model and thus 𝜶∗∗ is not provided to us. We denote the vector of all parameters in model (2.2)
by 𝜼∗∗ = (𝛽∗∗0 , 𝜸∗∗,𝜶∗∗). Partial results for the estimates in model (2.2) are shown in the 3rd column of Table 5.

Population level outcome model
We assume the following relationship between the outcome 𝑌 , the exposure 𝐸, mediators 𝑴 , and additional covariates 𝑪 :

𝑃 (𝑌 = 1 |𝐸,𝑴 ,𝑪) =
exp(𝛽0 + 𝛽𝐸 +

∑

𝑖 𝛼𝑖𝐶𝑖 +
∑

𝑗 𝛾𝑗𝑀𝑗 + 𝜁𝐶1𝐸)

1 + exp(𝛽0 + 𝛽𝐸 +
∑

𝑖 𝛼𝑖𝐶𝑖 +
∑

𝑗 𝛾𝑗𝑀𝑗 + 𝜁𝐶1𝐸)
. (2.3)

This model does not incorporate any interactions between mediators and exposure or other covariates, based on a lack of evidence
of such interactions for CRC in the literature24. Incorporating interactions between risk factors and race is discussed in Section
2.2. We let 𝜼 = (𝛽0, 𝛽, 𝜸,𝜶, 𝜁) denote all parameters in (2.3).

Combining information from the three different data sources to estimate the mediation parameters
We now propose a new approach to estimate 𝜼 = (𝛽0, 𝛽, 𝜸,𝜶, 𝜁), the parameters in model (2.3) using 𝜼∗ = (𝛽∗0 , 𝛽

∗, �̂�∗, 𝜁∗) and
�̂�∗∗, the reported association estimates from models (2.1) and (2.2) respectively, and data on 𝐹 (𝐸,𝑴 ,𝑪), the joint distribution
of mediators, covariates and race obtained from the NHIS survey. Here, we extend and build on our previous work20, where
we provided theoretical justifications for the identifiability of 𝜼 and for consistency of the proposed estimator. Briefly, under
mild conditions27,28, the expectations of the score vectors derived from the working models (2.1) and (2.2) are used to convert
their estimates into a system of equations with unique solutions that correspond to the true parameters 𝜼 of the model (2.3). The
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where �̂�∗ = 𝛽∗0 + 𝛽∗𝐸 +
∑

𝑖 �̂�∗
𝑖 𝐶𝑖 + 𝜁∗𝐶1𝐸, �̂�∗∗ = 𝛽∗∗0 +

∑

𝑖 �̂�∗∗
𝑖 𝐶𝑖 +

∑

𝑗 �̂�∗∗𝑀𝑗 and these expectations are taken under 𝑃 (𝑌 =
1 |𝐸,𝑴 ,𝑪) in (2.3) and 𝐹 (𝐸,𝑴 ,𝑪), the joint distribution of the racial groups, mediators and covariates. To estimate 𝜼, we
created the following system of equations based on the score vectors used to estimate the parameters from models (2.1) and (2.2):

𝑁
∑

𝑘=1
𝑤𝑘

[
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1 + exp(𝜃𝑘)
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⎢
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𝑁
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where 𝜃𝑘 = 𝛽0 + 𝛽𝐸𝑘 +
∑

𝑖 𝛼𝑖𝐶𝑘𝑖 +
∑

𝑗 𝛾𝑗𝑀𝑘𝑗 + 𝜁𝐶𝑘1𝐸𝑘 and 𝑤𝑘 is the survey sampling weight for subject 𝑘 in the NHIS survey.
Note that in addition to all parameters from (2.3) we also estimated the nuisance parameters (𝛽0

∗∗
, �̂�∗∗) from (2.2) using the

equations in (2.7). Heuristically, identifiability of the parameters can be inferred as the number of equations in (2.6) and (2.7) is
equal to the number of unknown parameters in the vectors 𝛽 and (𝛽0

∗∗
, �̂�∗∗). Rigorous proofs of identifiability and consistency

of the estimates follow the same steps as in our previous work20.
The derivation of the variance of �̂� requires accounting for the complex survey sampling scheme of the NHIS, a household

interview survey. We propose a novel strategy for estimating the joint distribution of the parameters by calculating score vectors
for each subject in the NHIS data set and treating them as a vector of the subject’s features so that variance calculations can be
conducted using available software for the analysis of surveys, e.g. the R package survey package. Appendix A contains details
on the derivation of the variance of �̂�.

Remarks:

1. Motivated by the observed differences in the estimated effects �̂�∗ and �̂�∗∗ from the working models (2.1) and (2.2), we fit
separate population level outcome models (2.3) to men and women. However, for some applications it may be preferred
to incorporate sex into model (2.3) as an additional covariate, to improve efficiency of the estimates. Heterogeneity by sex
could then be accommodated using interactions, which are identifiable as shown previously20.

2. In our data example we followed a standard of practice and discretized some patient’s characteristics such as BMI and age.
However, the approach outlined here also allows to model 𝑪 and 𝑴 as continuous variables. Consistency of the estimates
with continuous exposures, mediators and covariates was previously presented in Derkach et al.20. While our new approach
for the estimation of variance of �̂� outlined in Appendix A is still applicable, computing confidence intervals for the causal
estimates and the percentages of causal effects mediated through the mediators requires modifications discussed later in
this section.

3. Our approach allows population model (2.3) to assume a different structure than working models (2.1) and (2.2). E.g. in
our example one could incorporate age as a continuous variable using a linear term. In fact, following our framework20

and noticing that the system of equations (2.6 and 2.7) designate three equations (i.e. degrees of freedom) to model age
(𝐶), one can easily demonstrate that age can be modeled flexibly using any functional form with three-degree freedoms,
e.g. cubic polynomials.
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Next, using �̂�, we propose methods to estimate the proportion of the causal effects of race (𝐸) mediated through all three
risk factors (𝑴) simultaneously, without imposing any ordering or causal pathway. We make the same four assumptions as in
Vansteelandt and Daniel29 to ensure identifiability of causal effects under settings with multiple mediators. Estimates of the
indirect effect of individual mediators can be obtained using the same equations as in29 and the techniques given below.

The total effect (TE) of changing the exposure value from 𝐸 = 0 (non-Hispanic Black) to 𝐸 = 1 (non-Hispanic White)
decomposes into the natural direct effect (NDE) and the natural indirect effect (NIE) through three risk factors, while controlling
for age (𝑪),

𝑇𝐸𝑐 = 𝔼 {𝑌 [1,𝑴(1)] |𝑪 = 𝒄} − 𝔼 {𝑌 [0,𝑴 (0)] |𝑪 = 𝒄} = 𝑁𝐷𝐸𝑐 +𝑁𝐼𝐸𝑐 , (2.8)
where

𝑁𝐷𝐸𝑐 = 𝔼 {𝑌 [1,𝑴(0)] |𝑪 = 𝒄} − 𝔼 {𝑌 [0,𝑴 (0)] |𝑪 = 𝒄} (2.9)
and

𝑁𝐼𝐸𝑐 = 𝔼 {𝑌 [1,𝑴(1)] |𝑪 = 𝒄} − 𝔼 {𝑌 [1,𝑴 (0)] |𝑪 = 𝒄} . (2.10)
The percentage of the causal effect of race, 𝐸, mediated through 𝑴 is calculated as the ratio

𝑅𝑐 =
𝑁𝐼𝐸𝑐

𝑇𝐸𝑐
(2.11)

for each age group. To estimate the expectations in (2.8)-(2.10), we used a non-parametric approach. We assumed that the
distribution of (𝐸,𝑴,𝑪) is given by point masses 𝒑 =

(

𝑝1,… , 𝑝𝐿
)

at𝐿 unique values. Then, under model (2.3) and assumptions
outlined in Imai et al.4, the expectations in (2.8)-(2.10) are estimated using the conditional distribution of 𝑴 given 𝐸 = 𝑒 (0 or
1), where 0 denotes Blacks, and age group 𝒄, as

�̂�
{

𝑌
[

𝑒′,𝑴(𝑒)
]

|𝑪 = 𝒄
}

= 1
𝑇𝑒

𝐿
∑

𝑙=1

exp(𝛽0 + 𝛽𝑒′ +
∑

𝑗 �̂�𝑗𝑀𝑙𝑗 +
∑

𝑖 �̂�𝑖𝐶𝑙𝑖 + 𝜁𝐶𝑙1𝑒′)

1 + exp(𝛽0 + 𝛽𝑒′ +
∑

𝑗 �̂�𝑗𝑀𝑙𝑗 +
∑

𝑖 �̂�𝑖𝐶𝑙𝑖 + 𝜁𝐶𝑙1𝑒′)
𝐼(𝐸𝑙 = 𝑒,𝑪 𝑙 = 𝒄)�̂�𝑙, (2.12)

where 𝑇𝑒 =
∑𝐿

𝑙=1 𝐼(𝐸𝑙 = 𝑒,𝑪 𝑙 = 𝒄)�̂�𝑙 estimates the joint probability of 𝐸 = 𝑒 and 𝑪 = 𝒄.
Confidence intervals for the causal estimates and the percentages of causal effects mediated through the three mediators

(2.8)-(2.11) are calculated using a parametric bootstrap. Further details are given in Appendix B.
Remark: When the exposure, covariates or mediators are continuous, the dimension of vector 𝒑 becomes large, and computing

the asymptotic covariance matrix of
(

𝜼, 𝑝1,… , 𝑝𝐿−1
)

using the approach in Appendix B becomes challenging. To estimate
confidence intervals of the causal parameters in this case, we propose to bootstrap the third data set, the NHIS survey, following
an approach by Rao-Wu-Yue-Beaumont30 which can handle complex survey designs. A disadvantage of this approach is its
computational burden, as the entire NHIS survey has to be bootstrapped, even though our analysis uses only a small part of it.
Further details on this algorithm are given in Appendix C.

2.2 Sensitivity Analysis with Interaction Terms
Current approaches for mediation analysis often allow the effect of the mediator to be modified by the actual value of the
exposure. For the colorectal cancer example we consider in Section 2.1, the interaction term between race and modifiable risk
factors is not identifiable. However, under special settings, when estimates of effects of the mediators for each race group are
reported, the interaction is identifiable, and it can be estimated by extending the system of equations (2.6) and (2.7). For our
example information on the associations between the factors and CRC is not available for both racial groups. We suggest a
sensitivity analysis by incorporating an interaction term defined as a proportion of the main effects of mediators on the outcome.
We propose an extend outcome model (2.3), by incorporating the interaction term as function of 𝒌 = (𝑘1, ..., 𝑘𝑗), user specified
vector of parameters (assumed to be known):

𝑃 (𝑌 = 1 |𝐸,𝑴 ,𝑪) =
exp(𝛽0 + 𝛽𝐸 +

∑

𝑖 𝛼𝑖𝐶𝑖 +
∑

𝑗 𝛾𝑗𝑀𝑗 + (
∑

𝑗 𝑘𝑗𝛾𝑗𝑀𝑗)(1 − 𝐸) + 𝜁𝐶1𝐸)

1 + exp(𝛽0 + 𝛽𝐸 +
∑

𝑖 𝛼𝑖𝐶𝑖 +
∑

𝑗 𝛾𝑗𝑀𝑗 + (
∑

𝑗 𝑘𝑗𝛾𝑗𝑀𝑗)(1 − 𝐸) + 𝜁𝐶1𝐸)
. (2.13)

Similarly to the main method in Section 2.1, the expectations of the score vectors derived from the working models (2.1) and
(2.2) are also used to create the system of equations (2.4) and (2.5) with unique solutions that correspond to the true parameters
𝜼 of the model in (2.13). We suggest to use several values of 𝒌 to determine a degree of the influence of potential interactions
between the exposure and mediators on the causal effect estimates.
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3 SIMULATION STUDIES

We evaluated our procedures for estimating the regression parameters and causal effects in several simulation settings that closely
mimicked our motivating example with a single binary exposure 𝐸, a vector of four binary mediators 𝑴 =

(

𝑀1,… ,𝑀4
)

, and
a vector of three binary covariates 𝑪 =

(

𝐶1, 𝐶2, 𝐶3
)

. We also compared efficiency of parameter and mediation effect estimates
obtained from our approach to those estimated based on a single (survey) data set containing (𝐸,𝑴 ,𝑪) and also measurements
on the outcome 𝑌 .

3.1 Data Generation
We assumed that the distribution of (𝐸,𝑴 ,𝑪) was given by point masses 𝒑 =

(

𝑝1,… , 𝑝𝐿
)

estimated from NHIS data for men.
We generated two large cohorts by first generating a vector (𝐸,𝑴 ,𝑪) using 𝒑 and a binary outcome 𝑌 from model (2.3), where
𝛽0 = log (0.01∕0.99) = −4.6, 𝛽1 = log (1.3) = 0.26, 𝜁 = 0, 𝜶 =

(

𝛼1, 𝛼2, 𝛼3
)

= (0.26, 0.26, 0.26) and 𝜸 =
(

𝛾1, 𝛾2, 𝛾3, 𝛾4
)

=
(0, 0, 0, 0) , (0.26, 0, 0, 0.26) and (0.26, 0.26, 0.26, 0.26). For the first data set representing cancer registry data, we generated a
cohort of size 𝑁1 = 2 ⋅ 105 and for the second data set representing an external case-control study with information on the
modifiable risk factors, we sampled a nested case-control study with 𝑁0

2 = 5000 controls and 𝑁1
2 = 5000 cases from an

independent cohort of the same size (𝑁 = 105). We considered two scenarios for the third data set containing information on the
vector (𝐸,𝑴 ,𝑪). In the first scenario, we assumed that the third data set was a random sample from a large cohort by generating
(𝐸𝑘,𝑴𝒌,𝑪𝒌), 𝑘 = 1,… , 10000 from the estimated vector of point masses 𝒑. In the second scenario, the third data set was
the whole NHIS survey data set, without added variation. To compare efficiency of our approach to the ’best’ case scenario in
which one data set also contains outcome measurements, we additionally generated vector of outcomes 𝑌𝑘, 𝑘 = 1,… , 10000
using model (2.3) for the third data set. We used this complete data set to estimate 𝜼 based on a logistic regression model, and
the causal effects based on equations (2.8)-(2.11) and (2.12).

For each value of 𝜷 and choice of the third data set we simulated 10,000 empirical studies. Then we applied our method
to estimates �̂�∗ from model (2.1) obtained from the first data set, �̂�∗∗ from estimating model (2.2) from the second data set,
and using the third data set as the reference data set. The variance of the regression coefficients and confidence intervals were
estimated as described in Appendices A and B using the R package survey31.

3.2 Simulation Results
Table 1 shows that our proposed method unbiasly estimated the true parameters of model (2.3) and the NDE and NIE for 𝑪 =
(0, 1, 0) from data sets with incomplete information for both types of the third data set (scenario 1 and 2). The asymptotic 95%
confidence intervals (CIs) for the estimates of the regression coefficients had close to nominal coverage. The causal effects for
other values of 𝑪 were also unbiased (results not shown). However, the confidence intervals were conservative for some settings
(Table 1). Specifically, when NIE was 0, the empirical coverage of the CIs was 96.9% and 99% for a randomly sampled third
data set and the NHIS survey, respectively. The conservative nature of the CIs seen here is consistent with previous observations
when testing the mediating effects of individual biomarkers1,32.

When NIE was not equal to 0, the coverage of the 95% CIs was close to the nominal value for scenario 1 for the third data set.
Generally, CIs had slightly conservative coverage in simulations when the third data set was the NHIS survey. This is because our
procedure for the CI computation accounts for the uncertainty in the estimate of empirical distribution function when the third
data set is a random sample, but not when we used the NHIS survey data in each simulation study, which we considered fixed.

Lastly, we compared the standard deviations of estimates of regression coefficients and causal effects obtained from our
integration approach to those of estimates obtained from one single data set that had also outcome measurements (’best case
scenario’). Supplemental Table S1 shows that our approach has much better efficiency compared to the ’best case scenario’. These
gains in efficiency of our approach stems from gleaning information from the marginal estimates �̂�∗ and �̂�∗∗. These results also
agree with and complement our previous simulation results20 where we assumed that study 1 or study 2 had all measurements
instead of study 3. These scenarios are not applicable here, as SEER does not have detailed medical measurements and the
nested case-control study24 had a very small number of Black participants.
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Table 1 Simulation results. The average value of an estimator over 10,000 simulations is reported with the coverage (Cov)
of the true value by the 95% confidence interval computed using 1) the asymptotic variance for the regression parameter(i.e.,
Wald based CIs) and 2) using parametric bootstrap for causal effects (i.e., 𝑁𝐷𝐸𝑐 and 𝑁𝐼𝐸𝑐) for a true 𝛽 = 0.26. 𝑁𝐷𝐸𝑐
and 𝑁𝐼𝐸𝑐 are estimated for 𝑪 = (0, 1, 0) (i.e. 50-59 years old males) with true values 𝑁𝐷𝐸𝑐 = {0.38%, 0.47%, 0.57%} and
𝑁𝐼𝐸𝑐 = {0%, 0.06%, 0.07%} for the three values of 𝜸 in the table below. The average values of the estimates of effects of
covariates 𝑪 were also close to true value with coverage close to nominal value (results are not shown).

True value 𝛽 𝛾1 𝛾2 𝛾3 𝛾4 NDE NIE
𝜸 (Cov) (Cov) (Cov) (Cov) (Cov) (Cov) (Cov)

Scenario 1: the data set containing (𝐸𝑘,𝑴𝑘,𝑪𝑘) was obtained by random sampling

(0,0,0,0) 0.26 0 0 0 0 0.38% 0.00%
(95.0%) (95.0%) (94.9%) (94.9%) (94.6%) (95.1%) (96.9%)

(0.26,0,0,0.26) 0.26 0.26 0 0 0.26 0.47% 0.06%
(95.4%) (95.3%) (94.7%) (95.2%) (94.(9%) (95.0%) (95.7%)

(0.26,0.26,0.26,0.26) 0.26 0.26 0.26 0.26 0.26 0.57% 0.07%
(94.9%) (94.7%) (95.0%) (95.3%) (94.8%) (94.(9%) (95.4%)

Scenario 2: the data set containing (𝐸𝑘,𝑴𝑘,𝑪𝑘) was the NHIS survey

(0,0,0,0) 0.26 0.26 0 0 0 0.38% 0.00%
(95.1%) (94.7%) (94.(9%) (95.2%) (95.3%) (95.3%) (99%)

(0.26,0,0,0.26) 0.26 0.26 0 0 0.26 0.47% 0.06%
(95.4%) (94.7%) (95.0%) (95.3%) (94.8%) (95.3%) (100%)

(0.26,0.26,0.26,0.26) 0.26 0.26 0.26 0.26 0.26 0.57% 0.07%
(95.6%) (95.2%) (94.8%) (94.9%) (94.8%) (95.6%) (94.8%)

4 MOTIVATING EXAMPLE: MEDIATION OF RACIAL DIFFERENCES FOR
COLORECTAL CANCER

We analyzed men and women separately, as the risk factor associations differ between the two sexes. We restricted our analyses
to men and women aged 40-80 years, who self-reported as non-Hispanic White or non-Hispanic Black and used race as the
“exposure (𝐸)” in our mediation framework. The outcome is a diagnosis of CRC, defined as cancer of the proximal or distal
colon or rectum, within one year from variable ascertainment. A summary of the data sources used in this analysis data is
presented in Table 2, and detailed information about each data source is presented below.

Table 2 Overview of the data sources used in motivating example.

Data source Available information

SEER 17 Registries
(https://seer.cancer.gov/)

Numbers of newly diagnosed CRC cases and individuals at risk in 2018, by
race, sex, age at diagnosis, i.e. data on (𝑌 , 𝐸, 𝐶). Model (2.1) was fit to esti-
mate the parameters 𝜼∗.

Published Literature24 Summary log-ORs �̂�∗∗ (with corresponding covariance matrix) for the asso-
ciations of mediators (𝑀) with CRC risk (𝑌 ) from fitting model (2.2) to a
matched case-control study were shared with us. Results were reported for
White men and women.

National Health Interview Survey (NHIS)
https://www.cdc.gov/nchs/nhis/nhis
_2018_data_release.htm

Individual level data on mediators and covariates for both racial groups
(𝑀,𝐶,𝐸) and on survey sampling design variables (sampling weights, strata
information).
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Cancer registry data on race-specific colorectal cancer prevalence
For both non-Hispanic Whites and non-Hispanic Blacks, we used data on the number of individuals at risk and the number

of newly diagnosed CRCs in 2018, by sex and age at diagnosis from the NCI’s Surveillance, Epidemiology, and End Results
(SEER; https://seer.cancer.gov/) 17 Registries, that cover 26% of the US population, including 23.6% percent of non-Hispanic
Whites and 25.5% of non-Hispanic Blacks.

National Health Interview Survey (NHIS) data on race-specific joint mediator distributions
Data on the mediating factors, prevalence of CRC screening history (defined as a sigmoidoscopy and/or colonoscopy in the

last ten years), BMI, and regular aspirin use (defined as taking aspirin 3 or more times a week) for Whites and Blacks were
obtained from the National Health Interview Survey (NHIS) 2018, a cross-sectional, national survey that measures the health
of the US civilian non-institutionalized population, https://www.cdc.gov/nchs/nhis/nhis _2018_data_release.htm. We used data
and corresponding survey weights from 25,417 American adults from which 11,960 Whites and Blacks ages 40-79 years were
used in the final analysis. Frequencies with 95% CIs were estimated by using the survey R package31 to account for the survey
sampling design, and are reported overall and separately for each age interval.

Estimates of the association of the mediators with CRC risk
In many settings only published association estimates are available. Here we utilized data used to develop an absolute risk

model to predict the probability of developing CRC over a given time period using several well-established risk and protective
factors for CRC24. This model combines SEER incidence and competing mortality rates with relative risks for risk factor asso-
ciations, estimated by computing ORs from data on non-Hispanic White men and women from two age-matched case-control
studies. Here, we combined proximal and distal CRC cases with rectal cancer cases from the two age matched case-control stud-
ies and fit conditional logistic regression models to accommodate the age-group matching separately to men (𝑁 = 1675 controls
and 1407 cases) and women (𝑁 = 1435 controls and 1097 cases). We estimated ORs for CRC screening history, BMI and reg-
ular aspirin use and the corresponding covariance matrices from sex-specific models, and used this summary level information
in our mediation analysis.

4.1 Main Results
For both non-Hispanic Whites and non-Hispanic Blacks in the SEER 17 cancer registries in 2018, we calculated the one-year
CRC incidence based on new CRC diagnoses shown in Table 3. Differences in the incidence were estimated by a fitting logistic
regression model with CRC status as the outcome and race as the exposure for each age interval. Corresponding crude ORs
and 95% CIs are reported in Table 3 as well. Most men and women were in the age range 40-79 years, with each 10-year age
interval containing roughly 27-31% of individuals, and only approximately 16% of individuals were 70-79 years old. Compared
to Whites, Blacks had higher one-year CRC crude incidence for almost all age intervals, 0.09% vs 0.07% for males aged 50-59,
0.16% vs 0.11% for males aged 60-69, and 0.21% vs 0.17% for males aged 70-79. However, males between 40 and 49 years had
similar rates, 0.03% for both, Blacks and for Whites. Table 4 shows the prevalence of the three modifiable risk factors, CRC
screening history in the last ten years, being overweight or obese (BMI≥25), and regular aspirin use in men, estimated using
the 2018 NHIS data. Supplemental Table S2 shows these data for women. The age distribution in NHIS was similar to that in
SEER, and only approximately 16% of persons were 70-79 years old.

Overall, a significantly lower proportion of Black men reported CRC screening than Whites (46% vs. 52.3%, p-value=0.01)
and regular use of aspirin (29.2% vs. 33.6%, p-value =0.03). There was no statistically significant difference in BMI by racial/eth-
nic group (Table 4). Based on the age-specific analysis, we observed that the difference in rates of colonoscopy/sigmoidoscopy
was primarily driven by a significant difference of 12.3% (95% CI: 3.8-20.8, p-value=0.005) in males aged 50 to 59 years. This
difference diminished in older age groups. Lastly, there was no substantial difference in the prevalence of these risk factors be-
tween White and Black men 40-49 years old. In contrast to men, Black women overall were more likely to be obese than White
women (53.7% vs. 35.9%, p-value<0.001). Differences in BMI between the Black and White women were persistent indepen-
dent of age. Black women overall were less likely to report CRC screening (44.4% vs. 51.5%, p-value=0.002) (Supplement Table
S2). However, Black women aged 70-79 years used aspirin more often than White women (60% vs. 46.5%, p-value<0.001). This
observed sex-specific heterogeneity of the risk factor distribution motivated us to conduct separate analyses for men and women.

Table 5 and Supplemental Table S3 report the ORs for the association between race, the mediators (the modifiable risk
factors), and risk of CRC for the reduced models (2.1 and 2.2) and full model (2.3) using estimates from two incomplete models
(fit to the SEER registry data and utilizing the ORs from the external study). The association of race with CRC risk decreased
negligibly after adjusting for screening, being overweight or obese, and aspirin use (OR=0.79 vs. 0.77 for men and 0.79 vs.
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Table 3 Population at risk and number of CRC cases (with crude incidence in parenthesis) in 2018 for White and Black
men and women in each age category from the SEER 17 database. ORs and corresponding 95% CIs were estimated from
logistic regression with race as the exposure (𝐸) using Blacks as the reference group, and a CRC diagnosis during the 2018 year
as the outcome (𝑌 ) fitted to each age-group.

Age Interval N (%) N of NH-Black cases
(% )

N of NH-White cases
(%)

ORs (95 % CI)

Men (N= 12,316,564)

40-49 3,500,756 (27) 202 (0.03) 956 (0.03) 1.05 (0.9, 1.22)
50-59 4,018,761 (31) 569 (0.09) 2493 (0.07) 0.83 (0.76, 0.91)
60-69 3,548,680 (27) 730 (0.16) 3371 (0.11) 0.7 (0.64, 0.75)
>70 2,071,981 (16) 454 (0.21) 3221 (0.17) 0.82 (0.74, 0.90)

Women (N=12,984,887)

40-49 3,529,517 (25) 224 (0.03) 733 (0.03) 0.83 (0.72, 0.96)
50-59 4,149,151 (30) 482 (0.07) 1809 (0.05) 0.8 (0.73, 0.89)
60-69 3,865,496 (28) 639 (0.11) 2547 (0.08) 0.7 (0.64, 0.76)
>70 2,456,980 (18) 458 (0.15) 2817 (0.13) 0.87 (0.78, 0.96)

0.78 for women), indicating that most of racial differences in CRC incidence are not explained by these factors. However, the
difference in rates between younger and older men and women increased after the adjustment of these factors. Lastly, we note
that effect sizes of these three risk factors in the new joint model did not change compared to the external study ORs (i.e.
�̂�∗∗ = �̂�). This is because the external ORs are estimated from model (2.2), which is equivalent to fitting model (2.3) to Whites
only, and with no interactions between the mediators and the other covariates in model (2.3) the corresponding main effects
remain the same. The results from the mediation analysis (Table 6 and Supplemental Table S4) are consistent with the reported
results for the full model with 95% CIs calculated using the 2.5% and 97.5% quantiles of a bootstrap distribution function from
a parametric bootstrap with 10,000 bootstrap repetitions (see Appendix B). For men and women, racial differences persisted
for every age category, except for the TE for men, which was not statistically different from 0 for ages 40-50. With increasing
age, both TE and NDE also increased, with the largest NDE of 0.05% (95% CI: 0.035-0.060%) and 0.035% (95% CI: 0.019-
0.053%) for men and women ages 70-79 years. Overall, the mediators (CRC screening history, being overweight or obese, and
regular aspirin use) did not explain a substantial proportion of the difference in the rates between the two races. Only for males
ages 50-59 years did we see a significant proportion, 23% (95% CI: 9-38%), of the effect meditated by these factors. Women
in the same age group had a slightly lower proportion, 14% (95% CI: -2-30%) mediated. We also calculated 95% CIs using the
bootstrap approach propsed in Appendix C. The confidence intervals that were based on asymptotic normality (see Table 5)
and the bootstrap ones (Supplemental Table S5) were almost identical, as were the confidence intervals for the causal effects
(see Table 6 and Supplemental Table S6). However, the bootstrap approach was computationally noticeably slower as it requires
re-sampling the entire NHIS study.

4.2 Sensitivity analysis
In the first sensitivity analysis we varied the effects of the modifiable risk factors on CRC risk based on the recently published
literature33,34,35,36,37 to evaluate the robustness of our conclusions. None of these investigations considered all four factors studied
here simultaneously; however, most of reported effects were close to those used in our analysis. In Supplement Table S7, we
report the range of the estimated causal effects with 95%CIs based on parametric bootsrap that accounted only for uncertainty
due to empirical distribution estimated using NHIS data set. These results confirm our conclusion that the racial differences in
CRC incidence are not fully explained by these four factors. For example, for males ages 50-59 years we did see a large increase
in the proportion of the effect meditated by these factors; from 23% (95% CI: 9-38%) reported here to 44% (95% CI: 14-64%)
when the association parameter for screening was assumed to be 𝑂𝑅 = 0.3 instead of 𝑂𝑅 = 0.68 (Table 5), but still did not
completely explaining entire effect. Similar conclusions hold also for women.
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Table 4 Prevalence of modifiable risk factors (𝑴) in Black and White men in the general US population overall and for
each age category estimated from NHIS 2018 survey. NHIS samples are weighted to US population. Total NHIS sample size
was 𝑁 = 5525, with 𝑁𝐵 = 701 and 𝑁𝐴 = 4824 Black and White men.

Risk Factors Prevalence in
NH-Black

Prevalence in
NH-Whites

Difference in prevalence (95% CI)

Colonoscopy/sigmoidoscopy within last
ten years

46.0% 52.30% -6.2% (-11.0, -1.5)

BMI
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2) 21% 20.70% 0.3% (-3.6, 4.1)
Overweight (25 − 30𝑘𝑔∕𝑚2) 39.50% 43.0% -3.5% (-8.1, 1.1)
Obese (> 30𝑘𝑔∕𝑚2) 39.50% 36.30% 3.2% (-1.4, 7.8)

Regular aspirin use 29.20% 33.60% -4.5% (-8.5, -0.5)

Age interval: 40-49 representing 26% of the general US population

Colonoscopy/sigmoidoscopy within last
ten years

20.10% 15.90% 4.2% (-3.2, 11.6)

BMI
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2) 18.70% 19.80% -1.1% (-8.1, 6)
Overweight (25 − 30𝑘𝑔∕𝑚2) 39.30% 43.90% -4.6% (-13.6, 4.4)
Obese (> 30𝑘𝑔∕𝑚2) 41.90% 36.30% 5.6% (-3.6, 14.9)

Regular aspirin use 13.10% 11.50% 1.6% (-5.1, 8.3)

Age interval: 50-59 representing 29% of the general US population

Colonoscopy/sigmoidoscopy within last
ten years

41.90% 54.20% -12.3% (-20.8, -3.8)

BMI
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2) 19.80% 19.20% 0.5% (-6.8, 7.9)
Overweight (25 − 30𝑘𝑔∕𝑚2) 37.70% 44.30% -6.7% (-15.5, 2.2)
Obese (> 30𝑘𝑔∕𝑚2) 42.50% 36.40% 6.1% (-2.6, 14.9)

Regular aspirin use 24.70% 26.50% -1.8% (-9.4, 5.8)

Age interval: 60-69 representing 29% of the general US population

Colonoscopy/sigmoidoscopy within last
ten years

67.40% 69% -1.6% (-9.2, 6)

BMI
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2) 22.90% 21.50% 1.4% (-5.6, 8.4)
Overweight (25 − 30𝑘𝑔∕𝑚2) 42.40% 41.50% 1% (-7.1, 9)
Obese (> 30𝑘𝑔∕𝑚2) 34.70% 37.10% -2.4% (-10, 5.3)

Regular aspirin use 40.40% 45.60% -5.1% (-13, 2.8)

Age interval: 70-79 representing 16% of the general US population

Colonoscopy/sigmoidoscopy within last
ten years

77.10% 73.5% 3.6% (-5.4, 12.7)

BMI
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2) 26.10% 23.30% 2.8%(-5.9, 11.4)
Overweight (25 − 30𝑘𝑔∕𝑚2) 39.40% 42.10% -2.8% (-13.2, 7.7)
Obese (> 30𝑘𝑔∕𝑚2) 34.60% 34.50% 0.1% (-9.8, 9.8)

Regular aspirin use 57.9% 57.3% 0.6% (-10, 11.1)
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Table 5 Estimates of effects of race (𝐸), modifiable risk factors (𝑴) and age (𝑪) on the risk of colorectal cancer in men
from two data sources (SEER and external case-control study) and our estimates of the effects for the full joint model
(2.3). ORs and corresponding 95% CIs were estimated for logistic regression (2.3) from ORs obtained from reduced models
(2.1 and 2.2) using estimating equations (2.4) and (2.5).

Variables ORs estimated from
SEER

Estimates of ORs pro-
vided from external
study24

Estimated ORs for the
full model (2.3)

Race: NH White vs NH Black 0.77 (0.73,0.81) − 0.79 (0.72,0.86)
Colonoscopy/sigmoidoscopy within last
ten years

− 0.68 (0.63,0.74) 0.68 (0.63,0.74)

BMI: Overweight (25 − 30𝑘𝑔∕𝑚2) vs
Healthy weight (≤ 24.9𝑘𝑔∕𝑚2)

− 0.98 (0.88,1.08) 0.98 (0.88,1.08)

BMI: Obese (> 30𝑘𝑔∕𝑚2) vs Healthy
weight (≤ 24.9𝑘𝑔∕𝑚2)

− 1.3 (1.16,1.47) 1.3 (1.16,1.47)

Regular aspirin use − 0.89 (0.82,0.96) 0.89 (0.82,0.96)
Age: 40-49 vs 70-79 0.14 (0.12,0.17) Not reported 0.11 (0.09,0.13)
Age: 50-59 vs 70-79 0.42 (0.40,0.44) Not reported 0.37 (0.35,0.39)
Age: 60-69 vs 70-79 0.64 (0.62,0.68) Not reported 0.62 (0.59,0.65)
Race*Age: 40-50 1.36 (1.16,1.59) Not reported 1.33 (1.12,1.58)

Table 6 Estimates of causal mediation effects in men. The natural direct effect (NDE) and natural indirect effect (NIE) are
estimated for each age interval. The ratio was calculated as NIE/(NIE+NDE). 95% confidence intervals (CIs) were estimated
based on the percentiles of the bootstrap distribution function using 10,000 parametric bootstrap replicates.

Age Interval Number(%)
of Black CRC
cases (%)

Number(%) of
White CRC
cases (%)

NDE (95% CI) NIE (95% CI) Ratio (95% CI)

40-50 202 956 0.00% 0.00% -0.03 (-2.85, 2.73)
(0.032%) (0.032%) (-0.004,0.006) (-0.001,0.001)

50-60 569 2493 -0.02% -0.01% 0.23 (0.09,0.38)
(0.089%) (0.074%) (-0.025,-0.015) (-0.011,-0.002)

60-70 730 3371 -0.03% 0.00% 0.03 (-0.19,0.20)
(0.16%) (0.11%) (-0.039,-0.023) (-0.007,0.005)

>70 454 3321 -0.05% 0.00% -0.08 (-0.49,0.17)
(0.21%) (0.17%) (-0.060,-0.035) (-0.010,0.016)

Lastly, we evaluated if potential differences in the effect sizes of risk factors between the two racial groups could explain
the disparities in incidence using the sensitivity analysis proposed in Section 2.2. We varied the percentage 𝑘 representing the
difference in effects of the mediators on outcome between the two race groups from -50% to 50%. However, the results were
robust even when we assumed the presence of strong interactions between the exposure and the mediators (see Supplemental
Figures 1 and 2).

5 DISCUSSION

We developed a novel approach to estimate the mediation effects of several modifiable risk factors on racial differences in
CRC incidence for men and women aged 40 years and older that integrates data from publicly available sources and published
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association estimates. Our innovative method allows one to combine data on 1) CRC incidence rates of non-Hispanic Whites
and Blacks from SEER cancer registries, 2) data on the distribution of race and the potential mediators from the US population
representative NHIS survey, and 3) estimates of the ORs for three potential mediators from an external case-control study24.
The proposed method yields unbiased estimates of model parameters and causal effects, and both asymptotic and parametric
bootstrap confidence intervals with close to nominal coverage.

In our previous work20 we demonstrated identifiability and consistency of the regression model parameters for settings dis-
cussed in this paper under the assumption that all three data sets are obtained from the same underlying population by simple
random sampling. Here, we relax this assumption by allowing the data set with joint information on the exposure and mediators
to come from a complex survey sample, the NHIS, a household interview survey. We propose a novel strategy for accommo-
dating the complex survey sampling in the asymptotic variance calculation. As an alternative to using asymptotic confidence
intervals of the causal effects we propose a new bootstrap, that combines a parametric component with a non-parametric piece
based on the Rao-Wu-Yue-Beaumont method30 to accommodate the complex survey sampling design of the NHIS. This ap-
proach is computationally intensive, as ones needs to re-sample the entire survey, even though only a small part is used for the
analysis. Nonetheless, this bootstrap is required for continuous exposures and or mediators, when their joint distribution func-
tion cannot be reliably estimated from the empirical distribution, and makes our method broadly applicable. Our novel bootstrap
performed well in finite samples.

We expect there will be a growing interest in integrating partial information from multiple data sources into mediation models.
In some settings individual level data with an outcome are provided. In our CRC study, the large SEER data set could have been
integrated by developing new a likelihood based approach similar to Derkach et al.20, which would have improved efficiency
for estimating the natural direct effect but not natural indirect effect(see Supplemental Materials of Derkach et al.20); however,
this approach is more computationally challenging. One limitation of our work is that we assumed that the distribution of
(𝑌 , 𝐸,𝑀,𝐶) is the same in the three data sources. This assumption is reasonable for our motivating CRC example, as we
combined data from nationally and population representative sources. However, for some applications this assumption might
be violated. In future work we will account for this heterogeneity, possibly utilizing ideas from statistical methods based on
calibration equations38, and inverse probability weighting39,40. Other extensions include response-dependent and two-phase
studies that account for the sampling designs41,42,43,44.

Our approach provides an attractive exploratory tool to evaluate whether, and to what extent, well-established risk factors
explain the racial disparity observed for CRC incidence in the US. We found that CRC screening history within the last ten
years, BMI, and regular use of aspirin did not explain a large proportion of this racial differences in 2018. The exception were
men aged 50 to 59, years for whom an estimated 17% of the difference was explained by these three factors. The general
lack of significant results may be partially explained by considerable uncertainty in the OR estimates and a limited number of
participants in NHIS in each age category (Tables 3 and 3). However, the use of nationally representative sources of information
(the SEER cancer registries and the NHIS survey) makes results broadly interpretable for the general US population. One
source of bias is a potential difference in correlation between risk factors measured in NHIS and in the case-control study that
gave rise to the summary ORs. For example, it is possible that healthier participants are more likely to be of normal weight,
undergo CRC screening, and take aspirin daily have taken part in the epidemiological study. Further extensions might include
incorporating correlations between risk factors in addition to ORs and their uncertainties. Somewhat reassuringly though, results
from sensitivity analysis that used association estimates from other published studies led to very similar conclusions.

Results from mediation analyses need to be interpreted with caution, when studying exposures like race, as there are no
reasonable hypothetical interventions on such exposures45. Under our approach adopted here, one can interpret the results as a
way to quantify change due to intervening on the modifiable risk factors. A similar counterfactual framework was previously
studied other social disparities46,47,48,49. The mediation analysis method adopted here controlled for measured confounders such
as age and sex. That limits the interpretability of the results, as some of residual disparities in CRC may be attributable to
unmeasured factors such as social economic variables at birth or at the time of the analysis or racial discrimination48,49. We
thus view the results of our CRC example descriptively, as an aid in identifying inequities. However, our method is broadly
applicable to study mediation effects for any exposure of interest in the setting of data sets with partial information.

In summary, we developed novel methods to integrate incomplete information from multiple data sources into a single regres-
sion model that we used to estimate causal mediation effects. Our methods have broad applications beyond racial disparities,
to examine mediation when not all three variables, the outcome, the exposure and the mediators are available in same data set.
We used our methods to estimate the causal effect of race and mediators on CRC risk in men and women aged 40 or older. Our
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results may aid scientists in determining what risk factors drive racial disparities in CRC and other outcomes and can also be
helpful in designing future epidemiological studies that include multiple racial groups.
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APPENDIX

A ASYMPTOTIC COVARIANCE MATRIX OF �̂�

The derivation of the asymptotic covariance matrix of the estimate of 𝜼 follows similar steps as in Derkach et al.20.
Let 𝑺

(

𝐸𝑘,𝑴𝒌,𝑪𝒌; �̂�, �̂�
∗, �̂�∗∗

)

=
(

𝑺
(

𝐸𝑘,𝑴𝒌,𝑪𝒌; �̂�, �̂�
∗) ,𝑺

(

𝐸𝑘,𝑴𝒌,𝑪𝒌; �̂�, �̂�
∗∗)) be the score vector for 𝑘𝑡ℎ subject that is

element of sums in (2.6) and (2.7) with

𝑺
(

𝐸𝑘,𝑴𝒌,𝑪𝒌; �̂�, �̂�
∗) =

[

exp(�̂�∗𝑘)

1 + exp(�̂�∗𝑘)
−

exp(�̂�𝑘)
1 + exp(�̂�𝑘)

]

⎡

⎢

⎢

⎢

⎢

⎣

1
𝐸𝑘
𝑪𝑘

𝐶𝑘1𝐸𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, and

𝑺
(

𝐸𝑘,𝑴𝒌,𝑪𝒌; �̂�, �̂�
∗∗) = 𝐼

(

𝐸𝑘 = 1
)

[

exp(�̂�∗∗𝑘 )

1 + exp(�̂�∗∗𝑘 )
−

exp(�̂�𝑘)
1 + exp(�̂�𝑘)

]

⎡

⎢

⎢

⎣

1
𝑴𝑘
𝑪𝑘

⎤

⎥

⎥

⎦

,

where �̂�∗𝑘 , �̂�∗∗𝑘 and �̂�𝑘 are defined in Section 2.1 and �̂�∗ =
(

𝛽0
∗
, 𝛽∗, �̂�∗, 𝜁∗

)

are estimates obtained from SEER 2018 data set,
�̂�∗∗ = (𝛽0

∗∗
, �̂�∗∗, �̂�∗∗) are estimates obtained from external source (only �̂�∗∗ is reported) and �̂� = (𝛽0, 𝛽, �̂�, �̂�, 𝜁 ) are our estimates

of the parameters in the full model (2.3). By using a Taylor expansion around the true values (𝜼, 𝛽∗∗0 ,𝜶∗∗) and (𝜼∗, 𝜸∗∗) in the
sums (2.6) and (2.7), we can demonstrate that

𝑜𝑝
(
√

𝑁
)

=
𝑁
∑

𝑘=1
𝑤𝑘𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘; 𝜼, 𝜼∗, 𝜼∗∗
)

+

+
𝑁
∑

𝑘=1
𝑤𝑘∇𝜼,𝛽∗∗0 ,𝜶∗∗𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘; 𝜼, 𝜼∗, 𝜼∗∗
)

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

�̂�
𝛽∗∗0
�̂�∗∗

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝜼
𝛽∗∗0
𝜶∗∗

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

+

+
𝑁
∑

𝑘=1
𝑤𝑘∇𝜼∗,𝜸∗∗𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘; 𝜼, 𝜼∗, 𝜼∗∗
)

([

�̂�∗

�̂�∗∗
]

−
[

𝜼
𝜸∗∗

])

,

where∇ denotes the gradient operator that yields the matrix of partial derivatives. By applying Theorem 1 of Yuan and Jennrich50

we obtain the following asymptotic result:

lim
𝑁→∞

√

𝑁
[

(�̂�, 𝛽∗∗0 , �̂�∗∗) − (𝜼, 𝛽∗∗0 ,𝜶∗∗)
]

←←←←←←→
𝑑

𝑁
[

𝟎,𝕁−1 𝐵 (𝜼, 𝜼∗, 𝜼∗∗)𝕁−1′ +𝕁−1 ΩΣ𝜼∗,𝜸∗∗Ω′ 𝕁−1′
]

,
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where 𝕁 = 𝔼
{

∇𝜼,𝛽∗∗0 ,𝜶∗∗𝑺
(

𝐸𝑘,𝑴𝑘,𝑪𝑘; 𝜼, 𝜼∗, 𝜼∗∗
)

}

, Ω = 𝔼
{

∇𝜼∗,𝜸∗∗𝑺
(

𝐸𝑘,𝑴𝒌,𝑪𝒌; 𝜼, 𝜼∗, 𝜼∗∗
)}

, 𝐵 (𝜼, 𝜼∗, 𝜼∗∗) =
𝐶𝑜𝑣

{

𝑺
(

𝐸𝑘,𝑴𝒌,𝑪𝒌; 𝜼, 𝜼∗, 𝜼∗∗
)}

, andΣ𝜼∗,𝜸∗∗ = 𝑁𝐶𝑜𝑣(�̂�∗, �̂�∗∗) is based on the reported covariance matrix of the estimates from
SEER and the external study. Estimation of 𝕁,Ω, and 𝐵 (𝜼, 𝜼∗, 𝜼∗∗) was based on the NHIS survey, accommodating the complex
survey sample design. We used the R package survey31 to calculate the expected values of the Jacobians and the covariances of
the score vectors. As an example, we provide the following R code that was used to estimate 𝐵 (𝜼, 𝜼∗, 𝜼∗∗):

ScoreVector = calculateScoreVectorasAbove(Data1,Data2,DataNHIS)

DataNHISplusScoreVetor = cbind(DataNHIS, ScoreVector)

nhissvy=svydesign(id=~PPSU,strata=~STRAT,nest=TRUE,weights=~TFA_SA,data=DataNHISplusScoreVetor)

subgrp <- subset(nhissvy,(RACERPI2<3 & SEX<2 & HISPAN_I>8))

MeanScoreVector = svymean(~cbind(S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14),design=subgrp)

VarianceScoreVector = vcov(MeanScoreVector)

The estimation of the expectations 𝕁 and Ω follows similar steps, using the function svymean31.

B PARAMETRIC BOOTSTRAP

We used a parametric bootstrap to estimate standard errors and 95% confidence intervals of the causal effect estimates in (2.12).
In each parametric bootstrap replication, we generated a vector of (𝜼, 𝑝1,… , 𝑝𝐿−1) from their asymptotic distribution that we
derive here. The derivation of the asymptotic covariance matrix of the estimate of

(

𝜼, 𝑝1,… , 𝑝𝐿−1
)

follows similar steps as
outlined in Appendix A. First, we extended the sums in (2.6) and (2.7) by adding the following set of estimating equations for
�̂�−𝐿, the estimate of the empirical distribution defined by the vector 𝒑−𝐿 =

(

𝑝1,… , 𝑝𝐿−1
)

𝑁
∑

𝑘=1
𝑤𝑘𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘, �̂�−𝐿
)

=
𝑁
∑

𝑘=1
𝑤𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝐼(𝐸𝑘=𝑒1,𝑴𝑘=𝒎1,𝑪𝑘=𝒄1)
�̂�1

− 𝐼(𝐸𝑘=𝑒𝐿,𝑴𝑘=𝒎𝐿,𝑪𝑘=𝒄𝐿)
1−

∑𝐿−1
𝑙=1 �̂�𝑙

⋮
𝐼(𝐸𝑘=𝑒𝐿−1,𝑴𝑘=𝒎𝐿−1,𝑪𝑘=𝒄𝐿−1)

�̂�𝐿−1
− 𝐼(𝐸𝑘=𝑒𝐿,𝑴𝑘=𝒎𝐿,𝑪𝑘=𝒄𝐿)

1−
∑𝐿−1

𝑙=1 �̂�𝑙

⎤

⎥

⎥

⎥

⎥

⎦

= 𝟎

Second, we extend the vector 𝑺
(

𝐸𝑘,𝑴𝑘,𝑪𝑘; �̂�, �̂�
∗, �̂�∗∗

)

by adding 𝑺
(

𝐸𝑘,𝑴𝑘,𝑪𝑘; ̂𝒑−𝐿
)

to it. Lastly, the asymptotic
distribution of

(

𝜼, 𝑝1,… , 𝑝𝐿−1
)

can be easily derived by applying the same steps to

𝑺
(

𝐸𝑘,𝑴𝑘,𝑪𝑘; �̂�, �̂�
∗, �̂�∗∗, �̂�−𝐿

)

=
[

𝑺
(

𝐸𝑘,𝑴𝑘,𝑪𝑘, ; �̂�, �̂�
∗) ,𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘; �̂�, �̂�
∗∗) ,𝑺

(

𝐸𝑘,𝑴𝑘,𝑪𝑘; �̂�−𝐿
)]

,

as in Appendix A.

C BOOTSTRAP THAT ACCOMMODATES SURVEY DATA

We also proposed a bootstrap approach that can accommodate the complex survey sampling used in the NHIS to estimate
standard errors and 95% confidence intervals of the causal effect estimates in (2.12). Here, in contrast to the parametric bootstrap,
we do not estimate the joint distribution of (�̂�, 𝛽, �̂� , �̂�), but instead directly estimate the variance of the estimated NDE and NIE,
based on the Rao-Wu-Yue-Beaumont method30. At each bootstrap replication, instead of re-sampling a vector (𝐸,𝑴 ,𝑪) with
replacement, we generate new sampling weights 𝑤𝑏 for entire NHIS data set and simulate new values of �̂�∗𝑏 and �̂�∗∗𝑏 from the
asymptotic distributions 𝑁(�̂�∗,Σ𝜼∗) and 𝑁(�̂�∗∗,Σ𝜸∗∗). We next estimate (𝜼,𝐩) and both the NIE and NDE based on these new
bootstrap weights and marginal estimates. Lastly, we estimate the variances and confidence intervals of the NDE and NIE using
the sample variance and corresponding quantiles of these bootstrap replications. We used the R package svrep51 to generate
boostrap weights for the entire NHIS data set as in Rao-Wu-Yue-Beaumont30, using sampled clusters with replacement for each
stratum. We provide example R code below to estimate (�̂�𝑏, �̂�𝑏) for a single boostrap sample. The estimation of the causal effects
is conducted using output hatetapB.

subsetForAnalysis = indexOfMalesEligibleForAnalysis(DataNHIS)

etastarB = rmvnorm(1,hateta_star,Sigma_eta)

gammastarB = rmvnorm(1,hatganna_star,Sigma_gamma)
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nhissvy=svydesign(id=~PPSU,strata=~STRAT,nest=TRUE,weights=~TFA_SA,data=DataNHIS)

bootstrap = as_bootstrap_design(nhissvy,type='Rao-Wu-Yue-Beaumont',replicates=1)

RWScale = bootstrap$repweights

UpdatedWeightB = DataNHIS$WTFA_SA*RWScale

hatetapB = estimateParameters(etastarB,gammastarB,UpdatedWeightB,DataNHIS,subsetForAnalysis)
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