The presenters have no conflict of interest to report regarding any commercial product/manufacturer that may be referenced during this presentation.

Objectives

• Understand:
 – Types and symptoms of primary and metastatic CNS tumors
 – Medical treatments and procedures
 – Precautions and contraindications
 – The cancer continuum and its impact on function and rehabilitation
 – Rehabilitation interventions and determine discharge needs
CNS Tumor Characteristics

• Can be:
 – Benign or malignant
 – Primary or metastatic
• Prognosis depends on:
 – Type and grade of tumor
 – Location
 – Age
 – General health and functional status

CNS Tumor Risk Factors

• Hereditary diseases
• Disorders of the immune system
• Ionizing radiation
• Prior history of cancer (metastatic CNS disease)

Incidence of Oncology CNS Cases¹

< 1% chance that an individual will develop a malignant CNS tumor in his/her lifetime

<table>
<thead>
<tr>
<th></th>
<th>Estimated New Cases for 2013</th>
<th>Estimated Deaths for 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Sexes</td>
<td>23,130</td>
<td>7,930</td>
</tr>
<tr>
<td>Male</td>
<td>12,770</td>
<td>6,150</td>
</tr>
<tr>
<td>Female</td>
<td>10,360</td>
<td></td>
</tr>
</tbody>
</table>
Brain Tumors

- Primary brain tumor types
- Metastatic brain tumors
- Symptoms
- Medical interventions

Primary Brain Tumor Types

- Most common primary brain tumors in adults:
 - Meningioma
 - Astrocytomas
 - Oligodendrogliomas
 - Schwannomas
 - Primary central nervous system lymphomas (CNS lymphoma)

<table>
<thead>
<tr>
<th>Primary Brain Tumors in Adults</th>
<th>Meningiomas</th>
<th>High Grade (3 & 4) Astrocytomas (Anaplastic astrocytoma and glioblastoma)</th>
<th>Low Grade (1 & 2) Astrocytomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Membranes lining the skull, covering the brain</td>
<td>Supportive cells of the brain (astrocytes)</td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td>Affect twice as many women as men; very rarely spread</td>
<td>Grow rapidly and invade nearby tissues</td>
<td>Slow growing</td>
</tr>
<tr>
<td>Treatment Approaches</td>
<td>Often curable with surgery</td>
<td>Surgery, radiation, and chemotherapy</td>
<td>Surgery or radiation</td>
</tr>
<tr>
<td>Incidence</td>
<td>Account for 27% of primary brain tumors</td>
<td>Account for about 25% of primary brain tumors</td>
<td>Less than 10% of primary brain tumors</td>
</tr>
</tbody>
</table>
Primary Brain Tumors in Adults:

<table>
<thead>
<tr>
<th></th>
<th>Oligodendrogliomas</th>
<th>Schwannomas (Acoustic Neuromas)</th>
<th>CNS Lymphomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Oligodendrocytes</td>
<td>Schwann cells of vestibulocochlear nerve</td>
<td>Lymph tissue of brain, spinal cord, meninges, eye</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Often occur in frontal or temporal lobe; can be low grade or high grade</td>
<td>Benign tumor and usually very slow growing</td>
<td>Develops in people with compromised immune systems</td>
</tr>
<tr>
<td>Treatment approaches</td>
<td>Surgery, radiation, and chemotherapy</td>
<td>Surgery and radiation</td>
<td>Chemotherapy and/or radiation</td>
</tr>
<tr>
<td>Incidence</td>
<td>Less than 3% of primary brain tumors</td>
<td>Account for 7% of all CNS tumors</td>
<td>Account for 2% of primary brain tumors</td>
</tr>
</tbody>
</table>

Anaplastic Astrocytoma

Acoustic Neuroma
Metastatic Brain Tumors

• 10x more common than primary brain tumors
• Cancers originating in the lung, breast, colon, kidney, along with malignant melanoma, are most likely to metastasize to brain
• 5% to 25% of cancer patients will develop brain mets
• About half of patients with brain metastases will have multiple brain lesions
• Typically associated with a poor prognosis; median survival < 6 months

Metastatic Colon Cancer to Brain

Brain Tumors

• General symptoms / presentation
 – Headache
 – Seizures
 – Nausea and vomiting
 – Neurological dysfunction (hemiparesis, visual field cut, sensory loss, aphasia)
 – Cognitive / behavioral changes
 – Site specific focal symptoms
Medical Interventions for Brain Tumors

- Surgical procedures
 - Biopsy
 - Craniotomy
 - VP shunt
 - Ommaya reservoir
- Radiation
- Chemotherapy
- Corticosteroids

Surgery

- Types
 - Biopsy
 - Surgical removal of a sample of tumor tissue
 - Craniotomy
 - Incision made in skull
 - Removal of skull (bone flap) overlying tumor
 - Resection of tumor
 - Replacement of bone flap

Surgery

- Goals:
 - Provide a tumor sample to establish an accurate diagnosis
 - Remove as much of the tumor as possible
 - Relieve seizures
Ventriculoperitoneal Shunt (VP Shunt)
• Shunt placed to relieve blockage or excess fluid
• Relieve intracranial pressure

Ommaya Reservoir
• Used to:
 – Obtain samples of CSF used to find cancer cells or infection in lining of brain
 – Deliver chemotherapy and antibiotics into the CSF

Radiation Therapy
• Types:
 – Whole Brain Radiation Therapy (WBRT)
 – Stereotactic Radiation Therapy
 – Intensity Modulated Radiation Therapy (IMRT)
 – Image-Guided Radiation Therapy (IGRT)
• Indications:
 – After surgery to destroy any remaining tumor cells
 – To treat tumors that cannot be surgically removed and for metastatic brain tumors
 – To relieve symptoms
Radiation Therapy

- Possible side effects:
 - Fatigue
 - Nausea
 - Vomiting
 - Decreased cognition and memory
 - Radiation necrosis

Chemotherapy

- Blood brain barrier
- Methods of delivery
 - Systemic
 - Oral
 - IV
 - Local
 - Wafers
 - Ommaya reservoir

- Possible side effects:
 - Fatigue
 - Headaches
 - Nausea
 - Vomiting
 - Infection
 - Easy bruising or bleeding
 - Peripheral neuropathy
Corticosteroids (Decadron)

- Decrease edema around the tumor
- Improve neurological symptoms
- Help relieve pre-surgery symptoms such as headache
- Used following surgery or radiation
- Used for recurrent or metastatic brain tumors

Corticosteroids (Decadron)

- Common side-effects
 - Proximal muscle weakness / wasting
 - Osteoporosis
 - Weight gain
 - Hyperglycemia
 - GI problems
 - Insomnia and mood changes
 - Decreased immune response

Spinal Cord Disease
Spinal Cord Disease

- Characteristics and symptoms
- Spine tumor types
- Medical interventions and general precautions

Spine Tumor Characteristics

- Growing tumors cause spinal cord compression
- Location of the lesion in spinal cord determine symptoms
- Severity of symptoms does not correlate with tumor size
- Primary tumors in spinal cord are rare compared to brain (1 spine: 4 brain)
- Majority of spinal tumors are metastatic

Etiology of SCI Rehabilitation Admissions

Non-traumatic SCD vs. Traumatic SCI

Non-traumatic SCD-39%
Traumatic SCI-61%
Spinal Cord Disease Symptoms

- Pain
 - Biologic
 - Mechanical Instability
 - Radiculopathy

- Neurological Deficits
 - Loss of Sensation
 - Paresis/Loss of Motor Function
 - Ataxia
 - Loss of Bowel and Bladder

- Clinical Signs
 - Palpation Tenderness
 - Hyperreflexia, Clonus, +Babinski

Spine Tumors

<table>
<thead>
<tr>
<th>Location</th>
<th>Intramedullary</th>
<th>Intradural/Leptomeningeal</th>
<th>Extradural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spine Tumors

- Intramedullary: Location within the substance of the spinal cord (intradural); frequently occurs in cervical region
- Intradural/Leptomeningeal: Inside the dura around spinal cord; involves leptomeninges, CSF, and nerve roots
- Extradural: Outside of the dura (epidural space) within the osseous vertebra; can encroach on the spinal cord

Incidence:
- 75% of all spinal tumors
- 30% of all spinal tumors
- 65% of all spine tumors

Symptoms:
- Ataxia, increased muscle tone, clonus, spasticity, hyperreflexia, bowel and bladder dysfunction
- Back pain, burning pain that irradiates into the arm, trunk or leg, dysesthesias or paresis, hypoesthesia as it pushes on nerve root

© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.
Intramedullary Disease

Leptomeningeal Disease

Extradural Disease
Metastatic Spine Tumors

- 30-70% of patients with skeletal mets will have vertebral involvement.
- Systemic treatments have improved survival leading to an increased number of metastases.
- **Breast** (women), **lung** (men), prostate, and thyroid and kidney most common origins.
- Paravertebral involvement and pathological fracture cause pain.
- Frequency of location of resected metastatic tumors from highest to lowest are thoracic, lumbar, cervical and sacral.

Medical Intervention

Goals
- Alleviate pain
- Local tumor control
- Mechanical stability
- Decompress spinal cord
- Improve neurological function
- Improve quality of life

Treatments
- Local therapies:
 - Radiation and surgery
- Systemic therapies:
 - Chemotherapy
 - Medications

Medical Intervention

- NOMS framework:
 - Neurologic
 - Myelopathy
 - Functional radiculopathy
 - Degree of epidural spinal cord compression
 - Oncologic
 - Tumor histology
 - Radiation or chemosensitivity
 - Mechanical instability
 - Systemic disease and medical co-morbidity

© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.
Radiation

- **External Beam RT**
 - Conventional EBRT (Radiosensitive)
 - Stereotactic radiosurgery (Radioresistant)
 - Image-guided intensity modulated
- **Internal RT**
 - High-dose rate brachytherapy
- **Radiation Considerations**
 - Wound healing
 - Radiation necrosis

Surgery

Surgical procedures

- Percutaneous cement augmentation
 - Kyphoplasty
 - Vertebroplasty
- Posterolateral decompression (laminectomy)
- Posterior segmental fixation
Surgery

Surgical Considerations
- CSF leak
- Wound dehiscence
- Bracing
- Spine precautions

Chemotherapy

- Systemic therapy used to slow the growth of metastatic spine tumors and reduce risk of vertebral fractures
- Treats metastatic disease typically arising from lymphoma, myeloma, breast and prostate CA

Medications

- Narcotics/Pain medications (Percocet)
- Corticosteroids (Decadron, Dexamethasone)
- NSAIDS, anti-inflammatory (Toradol, Naproxen, Celebrex, Voltaren, Mobic)
- Muscle relaxors (Baclofen, Valium)
- Neurogenic pain meds (Lyrica, Neurontin)
Rehab Implications for Patients with CNS Tumors

• General oncology considerations
 – Pain, fatigue, DVT/PE, bony metastasis, lab values
• Precautions
 – Seizure, spinal cord compression fracture, fall, safety
• Post-surgical considerations
 – Wound dehiscence, CSF leak, crani, spine precautions
Craniotomy Precautions
• HOB at 30 degrees
• Avoid bending forward
• Avoid strenuous activities
• No isometric exercises
• Avoid Valsalva maneuver
• No patient helper / trapeze
• Monitor for activities that increase pain, headache

Spine Precautions
• No bending, lifting, twisting (BLT)
• 5 lb lifting limit
• No bilateral horizontal adduction
• No resistance for MMT or ther-ex
• Range of motion restrictions
• No trapeze
• Log roll
• Monitor for activities that increase pain, headache or appearance of clear fluid

Rehab Implications for Patients with CNS Tumors
• Neurological impairments
 – Cognition, speech, vision, strength, spasticity, coordination, sensation, neglect, bowel/bladder
• Functional impairments
 – Ambulation / mobility, balance, ADL performance

© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.
Evaluation Process in Acute Care

• Reasons for OT/PT referral:
 – Symptom presentation / decline in function
 – Post-operative patients
 – Evaluation for discharge recommendations and DME needs

Goal Setting for Patients with CNS Tumors

• Considerations:
 – Functional limitations / deficits
 – Medical intervention / treatment options
 – Progression across the cancer continuum
 – Patient centered goals
 – Family / caregiver support
 – Quality of Life
Physical Therapy for Patients with CNS Tumors

- Gait / stair training
- Neuromuscular Re-education (NDT, PNF, Neuro-IFRAH ®)
- Vestibular rehab
- Transfer training
- Therapeutic exercises

- DME training
- Family education / training
- Pulmonary hygiene
- Positioning
- Orthotic training
- Education of crani / spine precautions

PT Goal Setting in Acute Care

- Patients with brain tumors
 - Goal 1: Patient will ambulate at least 250 ft wearing a R AFO with RW and min assist x 1 to ambulate in home safely.
 - Goal 2: Patient will demonstrate good dynamic standing balance to ambulate on level and uneven surfaces safely.

- Patients with spine tumors
 - Goal 1: Patient will perform all bed mobility maintaining spine precautions with modified independence to prep for bed mobility safely.
 - Goal 2: Patient will demonstrate minimal assist with sliding board transfer between bed and wheelchair with caregiver to decrease risk for skin breakdown.
Occupational Therapy for Patients with CNS Tumors

- Neuromuscular Re-education (NDT, PNF, Neuro-IFRAH ®)
- Transfer training
- Therapeutic exercise
- Bowel / bladder training
- AE/DME training
- Energy conservation
- Family education / training
- Cognition
- ADL training
- Positioning
- Splint fabrication
- Education of crani / spine precautions
- Psychosocial support

OT Goal Setting in Acute Care

Patients with brain tumors:

- **Goal 1:** Pt will be educated in memory compensation strategies to complete multi-step kitchen task with Mod I and min VC to increase ADL performance.
- **Goal 2:** Pt will don shirt with Min A demo modified single-armed dressing technique to increase participation in ADLs.

Patients with spine tumors:

- **Goal 1:** Pt will perform all surface transfers with Mod I and AD prn while maintaining spine precautions to increase safety with OOB ADLs.
- **Goal 2:** Pt will complete LE dressing with Mod I using AE prn to maintain spine precautions and increase indep with ADLs.
Discharge Planning

- Consider functional status, prognosis, rehab potential, family/caregiver support, home environment, patient’s goals
- Home discharge:
 - Determine DME needs
 - Level of assistance needed
 - Therapy needs (home, outpatient)
- Inpatient discharge settings:
 - Rehab hospital (SAR, acute)
 - Nursing home (SNF)
- Palliative care (hospice)

Evidence Based Practice

- Use of vestibular adaptation exercises after acoustic neuroma resection results in:
 - Improved postural stability both in stance and during ambulation
 - Decreased perception of disequilibrium during early stage of recovery

Evidence Based Practice

- Support for inpatient acute rehabilitation for patients with brain tumors:
 - Patients with brain tumors have functional gains comparable to those of patients with stroke in acute rehab setting
 - Patients with brain tumors had a shorter length of stay than stroke patients
 - Both groups had high rates of discharge to the community
Evidence Based Practice

- Support for inpatient acute rehabilitation for patients with spine tumors:
 - 84% of patients with neoplastic spinal cord compression (SCC) were discharged home from rehab; 75% of those patients maintained their mobility, gait and transfer abilities for ≥3 months.
 - Patients with metastatic tumor related SCI demonstrated improved FIM scores (62 to 84) after stay at inpatient rehab SCI unit.
 - Patients with SCC due to cancer have similar functional outcomes as patients with traumatic SCI in the rehab setting.
 - Patients with neoplastic SCC have significantly shorter length of stay than traumatic SCI.

Conclusion

- CNS tumors are statistically very rare, but have profound effects on a patient’s function and QOL.
- Physical and occupational therapists must consider and educate patients on precautions and activities that may lead to post-treatment complications.
- It is important to consider a patient’s stage of disease and prognosis when setting goals.
- Physical and occupational therapists play a vital role in restoring function and QOL in the oncology neurology/neurosurgical patient.

References

References

References

Additional References

Additional References