The Malignant Spine
From Metastases to Myelopathy

Lisa M. Ruppert, MD
Assistant Attending Physiatrist
Memorial Sloan Kettering Cancer Center

Disclosures
Nothing!
Nichts!
Nada!
Niente!
Rein!

Objectives
• Understand the pathophysiology of metastases to the spine and spinal cord.
• Localize primary and metastatic disease and identify anatomic structures involved.
• Indentify the various etiologies of myelopathy in the cancer setting.
• Be able to clinically evaluate individuals with spine and spinal cord involvement.
• Understand the features important to predicting spinal stability, future deformity, and progressive neurologic compromise in individuals with spine metastases and primary vertebral body tumors.
• Understand the basis of oncologic management and establishment of a rehabilitation plan in patients with spine and spinal cord involvement.
• Emphasize the importance of a multidisciplinary approach to the care of individuals with spine and spinal cord involvement.
ANATOMY

The Malignant Spine-Anatomy

- Regions of the spine
 - Cervical
 - Thoracic
 - Lumbar
 - Sacral
- Epidural Spinal Cord Compression
 - Renal Cell Carcinoma

- Intradural Extramedullary
 - Leptomeningeal Metastases-Breast Cancer

- Intradural Intramedullary
 - Astrocytoma
Anatomy of the Malignant Spine-Structures Involved

METASTASES

The Malignant Spine-Metastases

Adult
- Prostate
- Breast
- Lung
- Thyroid
- Non-Hodgkin’s Lymphoma
- Multiple Myeloma
- Renal Cell Carcinoma
- Colorectal
- Sarcomas
- Unknown Primary

Pediatrics
- Sarcomas
 - Ewing’s
- Germ Cell Tumors
- Hodgkin’s Disease
The Malignant Spine - Pathophysiology of Metastasis

- Direct extension
- Hematogenous spread
- CSF spread

Pathophysiology of Metastasis - Direct Extension

- Direct spread from the vertebral body, intervertebral foramen, paravertebral soft tissues in epidural metastasis
- Direct extension from a parenchymal or dural metastasis adjacent to the subarachnoid space, or along veins leaving the bone marrow in intradural extramedullary metastasis
- Direct extension along the epineurium and perineurium of spinal nerves in intradural extramedullary and intramedullary metastases

Pathophysiology of Metastasis - Hematogenous & CSF Spread

- Hematogenous spread
 - Both arterial and venous (Batson’s plexus) routes
- CSF spread
 - “Shedding” of tumor cells from cerebral or cerebellar metastatic lesions
 - Often follows surgical manipulation
The Malignant Spine -
Etiologies of Epidural Metastases

- Lung, breast, prostate are most common
- Renal cell carcinoma, thyroid, and colon cancer are relatively common
- Non-Hodgkins lymphoma and Multiple Myeloma are most common hematologic tumors
- In children sarcoma and neuroblastoma are most common

Epidural Metastases -
Location

- 60% thoracic spine
- 25% lumbosacral spine
- 15% cervical spine
- 1/3 of patients have epidural involvement at multiple spinal levels
- Can result in cord compression
 - Most commonly compression anterior and lateral thecal sac

The Malignant Spine -
Epidural Cord Compression

- 3rd most common cause of compressive myelopathy in adults
- 2nd most common neurological complication in the cancer population
- 2-5% of patients develop clinical manifestations of ESCC during the course of their disease
 - 20% ESCC is the 1st manifestation
 - Lung cancer, Lymphoma, Myeloma
The Malignant Spine-Intradural Extramedullary Metastases (Leptomeningeal Disease)

- 1-8% of cancer patients in autopsy studies
- Female predominance
- 70% have a concurrent or prior diagnosis of brain parenchymal metastasis

Leptomeningeal Disease

Histology & Location

- Most common histologies: leukemia, lymphoma, lung and breast carcinoma, and melanoma
- Most common site of involvement is the dorsal aspect of the spinal cord, particularly in the cauda equina

The Malignant Spine-Primary Intradural Intramedullary Tumors and Metastases

- Diagnosed in <1% of cancer patients
 - Of these approximately 5% are identified before death secondary to systemic disease
 - Detected in approximately 2% of autopsies
- Usually occur in the setting of extensive metastatic disease
- Typically a solitary cord lesion
- 57% of patients have prior or concomitant brain parenchymal metastases
- Concomitant leptomeningeal tumors are common
Intradural Intramedullary Metastases-

Histology

- Small cell lung cancer is most common associated primary
- Breast and colon cancer, renal cell carcinoma, lymphoma, and melanoma are also common

Intradural Intramedullary Metastases-

Location

- Lesions are equally distributed between the cervical, thoracic, and lumbar segments of the cord
- Usually start in the dorsolateral aspect of the spinal cord

MYELOPATHY
The Malignant Spine-Myelopathy

- Spinal cord injury secondary to neoplastic spinal cord compression accounts for 26-45% of nontraumatic SCI admissions to inpatient rehabilitation, and 10-14% of all SCI admissions.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Traumatic SCI</th>
<th>Neoplastic SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>16-30</td>
<td>50-70</td>
</tr>
<tr>
<td>NIH</td>
<td>Tetraplegia =</td>
<td>Paraplegia ></td>
</tr>
<tr>
<td>Severity</td>
<td>Complete =</td>
<td>Incomplete ></td>
</tr>
</tbody>
</table>

- External beam radiation therapy
- Chemotherapy Induced Myelopathy
- Paraneoplastic Myelopathy
- Myelopathies Not Directly Related to Malignancy

The Malignant Spine-Etiologies of Myelopathy

- Epidural Spinal Cord Compression
- Leptomeningeal Metastases
- Primary Intramedullary Tumors and Metastases
- Radiation Induced Myelopathy
 - External beam radiation therapy
- Chemotherapy Induced Myelopathy
- Paraneoplastic Myelopathy
- Myelopathies Not Directly Related to Malignancy

The Malignant Spine-Spinal Cord Injury Cascade

- Mechanical injury to myelin and axons
- Vascular compromise resulting in venous congestion and cord infarction
 - Patient with rapidly progressing symptoms are more likely to have cord infarction
The Malignant Spine-Radiation Myelopathy

- Treatment of primary and metastatic spine/spinal cord tumors
- Prophylactic radiation to prevent metastases
- Included in field of treatment
 - Primary colorectal cancer

Radiation Myelopathy-Tissue Tolerance to Radiation

- Total doses received
- Number of fractions over which it is delivered
- Number of treatment days
- Length of the cord irradiated
- Dose is restricted to figures with a ≤5% risk
 - Estimated to be 4200-4500 cGy in 25 fractions

Radiation Myelopathy-2 Phases of Adverse Effects

- Early Myelopathy
- Late Myelopathy
Radiation Myelopathies - Early Myelopathies

- Acute Complete Radiation Myelopathy
- Lower Motor Neuron Disease
- Acute Transient Radiation Myelopathy

Early Myelopathies - Acute Complete Radiation Myelopathy

- Rare!
- Progression to complete tetra/paraplegia over the course of hours to days
- Presumed to be the result of spinal cord infarction secondary to radiation induced vascular damage

Early Myelopathies - Lower Motor Neuron Disease

- Rare!!
- Presumed to be related to anterior horn cell damage
Early Myelopathies-
Acute Transient Radiation Myelopathy

- Most common form of radiation induced myelopathy
- Occurs from 1-29 months after completion of radiation therapy
 - Median 4 months post completion
- Hypothesized to result from mild radiation induced demyelination of the posterior columns

Acute Transient Radiation Myelopathy

- Generally associated with cervical spine irradiation
 - Can occasionally be found in association with radiation to other cord segments
- Common after radiation for head and neck cancers and Hodgkin’s disease
- Symptoms resolve over weeks to months
 - Average duration of symptoms is 5.3 months

Late Myelopathies
Chronic Progressive Radiation Myelopathy

- Occurs in 1-5% of patients who survive >1 year post XRT
- Can occur after EBRT to treat spinal cord tumors or tumors adjacent to the spinal cord
- It has recently been reported after SRS to treat vertebral body tumors
Chronic Progressive Radiation Myelopathy-Time Course

- CPRM is characterized by a latent period during which the patient is asymptomatic.
- Symptoms can appear within 9-15 months after completion of radiation therapy:
 - It has been reported as early as 1 month post treatment and as late as 6 years.
 - Patients who are retreated tend to have a shorter latency period.
 - Pediatric patients commonly have shorter latency periods.

Hammack, J. Spinal Cord Disease in Patients With Cancer. Continuum Lifelong Learning Neurol 2012; 18(2) 312-327
Goldwein, J. Radiation Myelopathy: A Review. Medical and Pediatric Oncology. 1987;15, 89-95

Time Course

- Clinical onset is usually painless and insidious.
- Occasionally starts as a Brown-Séquard syndrome.
- Typically there is a steady progression of neurological deficits over the course of weeks to months:
 - 6 months.

Hammack, J. Spinal Cord Disease in Patients With Cancer. Continuum Lifelong Learning Neurol 2012; 18(2) 312-327
Goldwein, J. Radiation Myelopathy: A Review. Medical and Pediatric Oncology. 1987;15, 89-95

Chronic Progressive Radiation Myelopathy Criteria for Diagnosis

- Pallis et al, three criteria for diagnosis:
 - 1. Spinal cord must have been included in the radiation field.
 - 2. Main neurological deficit must be within the segments of the cord exposed to radiation.
 - 3. Metastases or other primary spinal cord lesions must be ruled out as the etiology of neurological impairments.

Hammack, J. Spinal Cord Disease in Patients With Cancer. Continuum Lifelong Learning Neurol 2012; 18(2) 312-327
Goldwein, J. Radiation Myelopathy: A Review. Medical and Pediatric Oncology. 1987;15, 89-95
The Malignant Spine-Chemotherapy Induced Myelopathy

- Exact pathogenesis is unknown
- IV Administration
 - Cisplatin, BCNU (Carmustine), and Fludarabine have been associated with myelopathy although it is rare.
- Intrathecal Administration
 - Transverse Myelopathy has been associated with Melphalan (most commonly), Cytarabine, and Thiopeta.
 - Anthracycline antibiotics (Adriamycin and Mitoxantrone) and Vinca Alkaloids (Vincristine and Vinblastine) reliably produce myelopathy with intrathecal injection.

The Malignant Spine-Paraneoplastic Myelopathy

- Uncommon and rarely occurs in isolation
- Small cell lung cancer
- Paraneoplastic Encephalomyelitis is most common syndrome
 - Limbic encephalitis
 - Brainstem encephalitis
 - Myelitis
 - Subacute neuronopathy

The Malignant Spine-Myelopathies Not Directly Related to Malignancy

- Acute trauma
- Multiple Sclerosis
- Acute Transverse Myelitis
- Degenerative Diseases
 - Spinal Stenosis
 - Intervertebral Disc Herniation
- Spinal Cord Vascular Disease
 - Anticoagulant Medications
 - Spinal Cord Infection
 - Intraoperative Transfusion
- Nutritional & Metabolic
 - Subacute Combined Degeneration of the Cord (Vit B12 deficiency)
 - Vitamin B deficiency
 - Copper deficiency
 - Toxic Myelopathy
- Neuromuscular Acute Injuries
 - Decompression Myelopathy
 - Myelopathy induced by electric shock
- Motor Neuron Disease
 - Amyotrophic Lateral Sclerosis
 - Primary Lateral Sclerosis
 - Spinal Muscular Atrophy
Myelopathies Not Directly Related to Malignancy

- Spinal Cord Infection
 - Spinal Epidural Abscess
 - Viral
 - HIV Vacuolar Myelopathy
 - CMV
 - Varicella-Zoster
 - HSV
 - HTLV-1 Associated Myelopathy
 - Postpolio Syndrome

- Hereditary Conditions
 - Hereditary Spastic Paraplegia
 - Friedreich Ataxia
 - Ataxinopathies
 - Syringomyelia
 - Simulated Paraplegia

CLINICAL MANIFESTATIONS

The Malignant Spine-Clinical Manifestations

- Pain
- Neurological deficits
- Spine instability
Clinical Manifestations - Pain

- Pain is the most common initial symptom in patients with ESCC
 - 80-90% of patients
 - Median of 2 months before diagnosis
- 16% of patients with leptomeningeal metastases present with pain
- Radiation myelopathy is typically not painful
- 3 classic pain syndromes:
 - Localized spine pain
 - Mechanical pain
 - Radicular pain

Classic Pain Syndromes - Localized Spine Pain

- Often initial pain complaint
 - Present in ESCC, Leptomeningeal disease, and ISCM
- Persistent “gnawing” or “aching” pain emanating from involved spinal segments
- Duration: weeks or longer
- Intensity increases over time
- Often worse when supine
 - Patient sleeps on incline or wakes frequently at night
 - Distension of Batson’s plexus

Localized Spine Pain

- Thought to be caused by periosteal stretching &/or a local inflammatory process 2/2 tumor growth
- Percussion over the spinal processes may illicit tenderness
- Responds well to steroids
Classic Pain Syndromes - Radicular Pain

- Can be present in ESCC, Leptomeningeal disease, ISCM
- “Sharp, shooting, stabbing, intense burning”
- Occurs secondary to nerve root invasion or compression

Diagnosis

- Major differential diagnoses are epidural spinal cord compression and intramedullary spinal cord tumors and metastases

Radicular Pain

- Follows a dermatomal distribution
 - Cervical/Lumbosacral spine radiates unilaterally into the upper or lower extremity
 - Thoracic spine typically bilateral, described as a “tight band” around chest
- ESCC worsens with Valsalva
 - Increases intraspinal pressure
- “Funicular Pain”
 - Compression of the dorsal columns and spinothalamic tract
 - Cervical/high thoracic lesions
 - “Sciatica” type pain and pseudo-claudication
Classic Pain Syndromes - Mechanical Pain

- Mechanical pain is associated with structural abnormalities in the spinal column and is a consistent feature of instability.
- Pain related to axial loading (sitting/standing), relieved when supine
- Usually refractory to steroids and narcotics

Mechanical Pain

- Pain descriptions based on location
 - C1-C2 (atlantoaxial complex): pain with rotation
 - Subaxial cervical spine: late day fatigue or difficulty holding head upright
 - Thoracic spine: pain when supine
 - Supine position can straighten an unstable kyphosis
 - Lumbar spine: pain with axial loading

Pain

- New onset back or neck pain in a patient with known cancer must be considered spinal metastatic disease until proven otherwise.
- Thoracic pain should raise even greater suspicion for the likelihood of cancer.
 - Since complaints of chronic back pain are common there is often a delay in diagnosing spinal metastasis.
 - Levak et al. reported a median of 2 months between reported onset of pain and diagnosis of metastatic spinal cord compression in 319 cancer patients.
Clinical Manifestations - Neurological Deficits

- Can be present in all etiologies of spinal cord injury in the cancer setting
 - Epidural Spinal Cord Compression
 - Leptomeningeal Metastases
 - Primary Intramedullary Tumors and Metastases
 - Radiation Induced Myelopathy
 - Chemotherapy Induced Myelopathy
 - Paraneoplastic Myelopathy

Neurological Deficits

- Sensory impairments
- Motor impairments
- Autonomic dysfunction

Neurological Deficits - Location

- Region of the spine involved - NLI
 - ESCC: thoracic > lumbar > cervical spine
 - Leptomeningeal Metastases: cauda equina
 - ISCM: equally distributed
 - Radiation Myelopathy: area radiated
 - Chemotherapy Induced Myelopathy: along the neuro-axis
- Spinal tracts involved
 - ESCC anterior/lateral aspect of cord
 - Leptomeningeal metastases: dorsal aspect of cord
 - ISCM: dorsolateral aspect of cord
Neurological Deficits - Sensory Impairments

- Dorsal column involvement
- Spinal thalamic tract involvement
- Spinocerebellar tracts
- Spinal nerve root compression

Neurologic Deficits - Motor Impairments

- ESCC, Leptomeningeal Metastases, ISCM, Chemotherapy Induced Myelopathy, Chronic Progressive Radiation Myelopathy
 - In ESCC weakness is the 2nd most common presenting symptom and is present in 35-85% of patients
 - Leptomeningeal Metastases & ISCM motor deficits are an early manifestation
 - Chemotherapy Induced Myelopathy weakness follows onset of pain
 - Chronic Progressive Radiation Myelopathy motor deficits progress to paraparesis or quadriplegia over the course of weeks to months

Motor Impairments

- May present as UMN or LMN type or a combination of both depending on region of the spine involved
- Sphincter Function
 - Usually a late finding in ESCC and Chronic Radiation Myelopathy unless conus medullaris/cauda equina is involved
 - Can be an early finding in Leptomeningeal Metastases and ISCM
Neurological Deficits-
Autonomic Dysfunction

- ESCC, Leptomeningeal Metastases, ISCM, Chronic Progressive Radiation Myelopathy
- Involvement of the sympathetic outflow T1-L2(3)
 - Horner’s syndrome
 - Orthostatic/post prandial hypotension
 - Bradycardia
 - Bowel, bladder, sexual dysfunction
- Involvement of the parasympathetic outflow S2-S4
 - Bowel, bladder, sexual dysfunction
- Bowel and bladder dysfunction is seen in approximately 50% at time of diagnosis

Neurological Deficits-
Patterns

- Posterior Column Syndrome
 - ESCC, Leptomeningeal Metastases, ISCM, Chemotherapy Induced Myelopathy, Chronic Radiation Induced Myelopathy
- Brown Séquard Syndrome
 - ESCC, Leptomeningeal Metastases, ISCM, Chronic Radiation Induced Myelopathy

Neurological Deficits-
Other Findings

- Eruption of herpes zoster from irritation of the spinal dorsal root
- Neuropathic facial pain from involvement of the trigeminothalamic tract in high cervical lesions
NEUROLOGICAL DEFICITS

- The onset of neurological deficits is considered to be a medical emergency.
 - Patients with motor dysfunction inevitably progress to complete paralysis in the absence of intervention.

Neurological Deficits - Time Course

- ESCC rapid progression think aggressive tumor/vascular compromise to the cord
- ISCM neurological deficits occur concomitantly or rapidly after onset of pain
- Chronic Progressive Radiation Myelopathy slow progression of neurological deficits

Hammack, J. Spinal Cord Disease in Patients With Cancer. Continuum CLifelong Learning Neurol 2012; 18(2) 312-327
Clarke, J. Leptomeningeal Metastasis from Systemic ancer. Continuum Lifelong Learning Neurol 2012; 18(2): 328-342

Clinical Manifestation - Spine Instability

- Spine instability
 - Loss of spinal integrity as a result of a neoplastic process that is associated with movement related pain, symptomatic/progressive deformity, &/or neurological compromise under physiologic loads

© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.
Spine Instability

• Determining Instability
 – Location of lesion
 – Spinal alignment
 – Vertebral body involvement
 – Involvement of posterior elements
 – Bone lesion quality
 – Mechanical pain

WORK UP

The Malignant Spine-Work Up

• Strong clinical suspicion
• MRI with and without gadolinium
 – Entire spine
 – Leptomeningeal metastases and ISCM consider addition of brain MRI
• CT myelography
 – If MRI is contraindicated
• CSF cytology
 – Leptomeningeal metastases and ISCM
• Biopsy
 – ESCC if no prior cancer history, or history of limited stage cancer
MANAGEMENT

The Malignant Spine-Tumor Related Treatment Options

- Goals of treatment are centered around pain relief, preservation of neurological function, and maintenance/restoration of spine stability
 - Radiation therapy
 - Surgery
 - Chemotherapy
 - Corticosteroids
 - Bisphosphonates
Treatment Options -
Decision Making

- Patient variables influence decision making
 - Age, tumor characteristics, tumor burden, life expectancy, comorbidities, and functional status

The Malignant Spine -
Treatment of Radiation Myelopathies

- Acute Transient Radiation Myelopathy
 - Symptom management
 - Reassurance

- Chronic Progressive Radiation Myelopathy
 - No effective therapy
 - Corticosteroids are often tried
 - Anticoagulation and hyperbaric oxygen
 - Noted to improve or stabilize symptoms
 - Bevacizumab
 - Monoclonal antibody against vascular endothelial growth factor
 - Anecdotal evidence of benefit

The Malignant Spine -
Role of Rehabilitation

- The overall life expectancy and oncologic prognosis should be taken into account in the rehabilitation of cancer patients.
 - The patient’s medical status can dictate appropriateness for and response to rehabilitation efforts.
 - The patient’s medical condition often follows their oncologic status.
 - Pre-morbid conditions can be exacerbated by cancer care itself or complications from cancer care and heavily impact a patient’s rehabilitation.
- Balance between time devoted to rehabilitation care and time spent with family and loved ones.
Cancer Rehabilitation Approaches-
Dr. J. Herbert Dietz

• Preventive rehabilitation
 – Indicated when disability can be predicted and focuses on reducing the severity and duration of its effect.
• Restorative rehabilitation
 – Attempts to restore pre-morbid function in a patient when a permanent impairment is not expected.
• Supportive rehabilitation
 – Focuses on maximizing function when a permanent impairment exists.
• Palliative rehabilitation
 – Provides comfort and support and reduces complications that may develop when increasing disability is expected from disease progression.

Goals of Rehabilitation

• Functional activities
 – Mobility, transfers, ADLs
• Bowel and bladder management
• Management of pain and spasticity
• Educational training to patient and caregivers
• Equipment
 – Adaptive equipment
 – Wheelchair assessment
 – Adaptive housing
• Psychological counseling
• Nutritional status
• Exploring patient’s financial aid possibilities
• Determine safest disposition
• QUALITY OF LIFE

Communication of Treatment Goals

• Consistent communication between members of the oncology team, rehab team, patient and family members is essential.
 – This ensures that realistic expectations for rehab can be set.
 – This is vital especially during periods when the patient’s clinical status, prognosis, and treatment strategies are changing.
Outcome Data - Rehabilitation Length of Stay

<table>
<thead>
<tr>
<th>Reference</th>
<th>Median Stay</th>
<th>Home Return Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murray10</td>
<td>49</td>
<td>81</td>
</tr>
<tr>
<td>Hacking16</td>
<td>111</td>
<td>64</td>
</tr>
<tr>
<td>McKinley17</td>
<td>27</td>
<td>84</td>
</tr>
<tr>
<td>McKinley96</td>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>Guo15</td>
<td>16.7</td>
<td>82</td>
</tr>
<tr>
<td>Persch79</td>
<td>50</td>
<td>NC</td>
</tr>
<tr>
<td>Eriks18</td>
<td>104</td>
<td>61</td>
</tr>
<tr>
<td>Tang12</td>
<td>23</td>
<td>NC</td>
</tr>
<tr>
<td>Ruff11</td>
<td>15</td>
<td>75, RhG; 20; NRhG</td>
</tr>
</tbody>
</table>

Abbreviations: NC, not communicated; NRhG, no rehabilitation group; RhG, rehabilitation group.

Outcome Data - Pain

Outcome Data - Ambulation

• Gait score progression on FIM was 38%.
• Acquired functional benefits lasted an average of 3 months.

© 2013 Memorial Sloan-Kettering Cancer Center, All Rights Reserved.
Myelopathy in the Cancer Setting—Putting it all Together

• What is the patient’s clinical presentation?
• What is the etiology of the spinal cord injury?
• What is the oncology plan?
• What is the patient’s overall life expectancy and oncologic prognosis?
• What is the best approach/setting for rehab efforts?
• What are realistic goals/what are the patient’s and family’s goals and expectations?
• What factors might interfere with the patient’s functional prognosis?

Putting it all Together

• Consistent communication between all members of the team (oncology, rehab, patient and family members) is ESSENTIAL.
• Balance between time devoted to rehab and time spent with family and loved ones.
Myelopathy in the Cancer Setting-Moving Forward

• “To date, no PM&R therapeutic care model has been designed or validated for patients with metastatic epidural spinal cord compression.”
• “According to the severity of the prognosis correlated with primary cancer and its metastatic potential, only 10-14% of patient with metastatic epidural spinal cord compression and paraplegia or paraparesis have access to rehabilitation care.”
• Further prospective studies are warranted to validate the effect of rehabilitation efforts and update the impact of PM&R in terms of functional outcome and comfort care provided to this population.

Thank you!!!!

Questions, Comments, Concerns???