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A weighted rank estimating function is proposed to estimate the regression parameter vector in an accelerated failure time model with right
censored data. In general, rank estimating functions are discontinuous in the regression parameter, creating difficulties in determining the
asymptotic distribution of the estimator. A local distribution function is used to create a rank based estimating function that is continuous
and monotone in the regression parameter vector. A weight is included in the estimating function to produce a bounded influence estimate.
The asymptotic distribution of the regression estimator is developed and simulations are performed to examine its finite sample properties.
A lung cancer dataset is used to illustrate the methodology.
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1. INTRODUCTION

The Cox proportional hazards model is the preeminent re-
gression model when the response variable is survival time and
is subject to possible right censoring (Cox 1972). The Cox
model is specified through the conditional hazard function

λ(t|x) = λ0(t) exp[γ T
0 x],

where x is the covariate vector, γ 0 is the true Cox model log
relative risk parameter, λ0(t) is the unknown baseline hazard
function, and exp[γ T

0 x] represents the covariate specific relative
risk. Due to right censoring, the observed data for this model
are (y, δ, x), where y is the minimum of the failure time and
the censoring time, and δ is the censoring indicator, with δ = 1
signifying the failure time is smaller.

Estimation and inference of the regression parameter are
based on the score function

Un(γ ) =
∑

i

δi

{
xi −

∑
j xjI(yj ≥ yi) exp[γ Txj]∑

j I(yj ≥ yi) exp[γ Txj]
}
,

which is derived from the partial likelihood and the propor-
tional hazards assumption. The score function has mean zero
when evaluated at γ = γ 0. It is monotone and continuous in γ ,
enabling stable numerical algorithms to be employed and sim-
plifying the asymptotic derivations for the properties of the pa-
rameter estimate γ̂ , computed as the zero solution to the score
equation Un(γ ) = 0.

In addition to its numerical stability, the partial likelihood
estimate γ̂ attains a semiparametric efficiency bound when
the proportional hazards assumption is satisfied. When this as-
sumption is violated, however, application of the Cox model
can produce inconsistent estimates of the relative risk parame-
ter and the asymptotic variance of the relative risk estimate. In
this case, the proportional hazards model is likely to lead to an
incorrect conclusion regarding the relationship between covari-
ates and survival time. As a result, alternative approaches to
modeling survival time are needed.

The most common alternative to the proportional hazards
model is the accelerated failure time model

log ti = βT
0 xi + εi, i = 1, . . . ,n,

where the stochastic errors {εi} are independent identically dis-
tributed with unknown distribution function F and the covari-
ate vector xi is independent of εi. Because F is unknown, an
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estimating equation is a natural approach for estimation and in-
ference on β0. However, the log survival time in the regression
residual εβ = log t − βTx is an indication that estimation and
inference is sensitive to small failure times. Rank regression is
one approach to regain robustness with respect to the outlying
log survival times.

Tsiatis (1990) developed an estimating equation based on a
nonparametric family of linear rank tests, with the observed sur-
vival times in the log-rank statistic replaced by the observed
residuals rβ = log y − βTx. The regression estimate β̂ is deter-
mined as the zero solution or, due to the discontinuity, the zero
crossing of the estimating equation

Qn(β) = n−1/2
∑

i

δi

{
xi −

∑
j xjI(r

β
j ≥ rβ

i )∑
j I(rβ

j ≥ rβ
i )

}
,

and when β = β0, this rank estimating function is asymptot-
ically normal with mean zero. There are clear similarities be-
tween this rank estimating function and the proportional haz-
ards score function. By replacement of the observed survival
times with the observed residuals (rβ), Tsiatis was able to re-
place the likelihood assumption with less restrictive moment
assumptions.

Tsiatis (1990) and Ying (1993) extended this result to a gen-
eral class of weighted rank estimating functions,

Qn(β;w) = n−1/2
∑

i

δiw(rβ
i )

{
xi −

∑
j xjI(r

β
j ≥ rβ

i )∑
j I(rβ

j ≥ rβ
i )

}
, (1)

with weights w(r) chosen to increase the efficiency of the es-
timate β̂ . The weight function λ′(r)/λ(r) produces an asymp-
totically efficient regression estimate. The selection of a weight
function based on efficiency criteria is problematic, because it
requires knowledge of the underlying distribution function F,
information that is assumed unknown at the outset. Setting
w(ri) = 1 is asymptotically efficient when the underlying error
distribution is extreme value.

Instead of using the weight function to maximize effi-
ciency, Fygenson and Ritov (1994) selected the weight w(rβ

i ) =
n−1 ∑

j I(rβ
j ≥ rβ

i ) to produce a monotone rank estimating func-
tion. The monotonicity with respect to β insures a unique solu-
tion to the estimating function. Jin, Lin, Wei, and Ying (2003)
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used an approximation to the weighted rank estimating func-
tion (1) to create a monotone estimating function, with weight
function equal to

w(rβ
i ) = ψ(rβ̃

i )
∑

k I(rβ̃
k > rβ̃

i )∑
k I(rβ

k ≥ rβ
i )

,

where ψ is chosen by the user and β̃ is an external consistent
estimate of β .

These modifications do not alter the discontinuity in the rank
estimating function with respect to β . The problem with the
discontinuous estimating function is manifested in the Taylor
series expansion of Qn(β;w) in a n1/2 neighborhood around
β0,

Qn(β;w) = Qn(β0;w) + Dn(β0;w)(β − β0),

and computation of Dn(β;w) requires differentiation of the dis-
continuous rank estimating function with respect to β . To en-
able differentiation, Tsiatis proposed using

D̃n(β;w) = ∂

∂β
E[Qn(β;w)]

in the Taylor expansion, employing kernel smoothing to esti-
mate the residual density function, a by-product of the expec-
tation operator. The uncertainty of the accuracy of density es-
timation in the presence of right censored data was raised by
Hess, Serachitopol, and Brown (1999).

In this article a monotone and continuous weighted rank es-
timating equation is developed. The weights are chosen to pro-
duce a regression estimate that is robust against outliers in the
covariate space, and because the ranks of the residuals bound
the effect of outlying survival times, the resulting regression
estimate has bounded influence. In Section 2 a smoothed rank
estimating equation is created that is continuous and monotone
in β . The asymptotic properties of the resultant regression esti-
mate are developed. In Section 3 a weight function is introduced
to add bounded influence to the properties of the regression esti-
mate. An analysis of lung cancer data is undertaken in Section 4
to illustrate the proposed methodology. In Section 5 simulations
are performed to examine the finite sample adequacy of the pa-
rameter estimate and coverage based on asymptotic confidence
intervals. Section 6 contains concluding remarks.

2. A SMOOTH RANK BASED ESTIMATING EQUATION

The rank estimating equation for censored data proposed by
Fygenson and Ritov (1994) is

S̃n(β) = n−3/2
∑

i

∑
j

δi(xi − xj)[1 − I(rβ
i > rβ

j )].

The estimating function is a U-statistic with degree 2, is asymp-
totically normal, and, when evaluated at β = β0, has expecta-
tion zero. In addition, this estimating function is monotone in β .
The monotonicity insures that a unique β0 exists to produce a
zero solution to the population estimating equation. From a data
analytic standpoint, the lack of monotonicity may produce mul-
tiple zero solutions to the estimating equation.

The Fygenson–Ritov (1994) estimating function is not con-
tinuous in β . The discontinuity, which stems from the indicator

function I(rβ
i > rβ

j ), presents a challenge for the derivation of
the asymptotic distribution of β̂ . A smooth approximation to
the indicator function is the local distribution function �((rβ

i −
rβ

j )/h), where the scale parameter h (which is termed the band-
width in the smoothing literature) converges to zero as the sam-
ple size increases. Note that if ri > rj, �((rβ

i − rβ
j )/h) → 1 as

n gets large, whereas if ri < rj, �((rβ
i − rβ

j )/h) → 0.
Thus, a smooth approximation to the Fygenson–Ritov (1994)

monotone rank estimating function is

Sn(β) = n−3/2
∑

i

∑
j

δi(xi − xj)

[
1 − �

( rβ
i − rβ

j

h

)]
. (2)

It is demonstrated in Theorem 1 that by choosing the bandwidth
h to converge to zero at a sufficient rate, the local distribution
function � may be substituted for the indicator function without
changing the asymptotic distribution of the estimating function.
As a result, U-statistic theory is used to derive its asymptotic
distribution and a Taylor series expansion is applied to derive
the asymptotic distribution for the regression estimate β̂ , which
is the zero solution to the estimating equation in (2). The fol-
lowing conditions are required for the proof of the theorem; the
proof is presented in the Appendix.

C1. The parameter vector β lies in a p-dimensional bound-
ed rectangle B and for the covariate vector, E(xxT) <

M < ∞.
C2. The term n−1/2Sn(β) has a bounded first derivative

n−1/2An(β) in a compact neighborhood of β0, with
n−1/2An(β) nonzero in that neighborhood.

C3. The local distribution function �(z) is continuous and
its derivative φ(z) = ∂�(z)/∂z is symmetric about
zero with

∫
z2φ(z) < ∞.

C4. The bandwidth h is chosen such as n → ∞, nh → ∞,
and nh4 → 0.

Theorem 1. For the accelerated failure time model, under
conditions C1–C4, n1/2(β̂ − β0) converges in distribution to
N(0,A−1VA−T), where

A = lim
n→∞ E

{
n−1/2 ∂Sn(β)/∂β

}∣∣
β=β0

and

V = lim
n→∞ n−1 var{Sn(β0)}.

In practice, the bandwidth h can be set equal to σ̂n−.26, where
the estimate σ̂ is the sample standard deviation of the uncen-

sored residuals rβ̂ . The exponent −.26 provides the quickest
rate of convergence while satisfying the bandwidth constraint
nh4 → 0. This use of smoothing is distinguished from den-
sity estimation needed to approximate the expectation opera-
tor applied to the second derivative matrix (Tsiatis 1990). Here,
smoothing is used at an earlier level to approximate the observ-
able, but discontinuous, estimating function. At this level, there
are no expectation operators and only the regression residuals
(rβ) are required for smoothing, stemming concern for smooth-
ing in a multidimensional space.

Computation of the estimate β̂ is straightforward and may be
accomplished through the standard Newton–Raphson iteration.



554 Journal of the American Statistical Association, June 2007

To incorporate the bandwidth h in the algorithm, an initial esti-
mate β̂I, based on the Fygenson and Ritov estimating function,

can be used to compute the standard deviation of rβ̂ . With h
determined, Newton–Raphson iteration is performed until con-
vergence. The (l,m) element of the second derivative matrix is

An(l,m)(β)

= n−3/2
∑

i

∑
j

δih
−1(xil − xjl)(xim − xjm)φ

( rβ
i − rβ

j

h

)
,

where φ(u) = ∂�(u)/∂u. A consistent estimate of the asymp-
totic variance of β̂ is A−1

n (β̂)Vn(β̂)A−1
n (β̂), where it follows

from U-statistics theory that the (l,m) element of Vn is

Vn(l,m)(β) = n−3
∑

i

∑
j

∑
k �=j

(xil − xjl)(xim − xkm)

× (eβ
ij − eβ

ji )(e
β
ik − eβ

ki),

where

eβ
ij = δi

[
1 − �

( rβ
i − rβ

j

h

)]
.

3. A BOUNDED INFLUENCE SMOOTH WEIGHTED
RANK ESTIMATING EQUATION

A strong motivation for the rank estimating function is its
robustness to outlying survival times. The rank estimating equa-
tion, however, remains vulnerable to leverage points in the co-
variate space. In this section a weighted rank estimating func-
tion is proposed. In contrast to the efficiency weights cited ear-
lier, the weight function is chosen to reduce the influence of
outlying covariate values on β̂ and its asymptotic variance.

Denote the weighted estimating function vector by

Sn(β;w) = (
Sn(1)(β;w), . . . ,Sn(p)(β;w)

)T
,

where the kth component is

Sn(k)(β;w) = n−3/2
∑

i

∑
j

δi(xik − xjk)wij

×
[

1 − �

( rβ
i − rβ

j

h

)]
, k = 1, . . . ,p. (3)

The weight function is defined by

wij = min

{
1,

1

maxk(xik − xjk)2

}
, k = 1, . . . ,p.

The weights are constant across covariate values within sub-
ject pair and were constructed to assure that Sn(β;w) remains a
monotone field (Ritov 1987).

Theorem 2. For the accelerated failure time model, under
conditions C1–C4, the weighted rank estimating function vec-
tor Sn(β;w) is a monotone field, is differentiable in β , and
has bounded influence. Let β̂ denote the regression estimate
derived as the zero solution to the estimating function vec-
tor Sn(β;w). Then n1/2(β̂ − β0) converges in distribution to
N(0,A−1(w)V(w)A−T (w)), where

A(w) = lim
n→∞ E

{
n−1/2 ∂Sn(β;w)/∂β

}∣∣
β=β0

and

V(w) = lim
n→∞ n−1 var{Sn(β0;w)}.

This theorem provides the asymptotic inferential structure for
the estimate β̂ . The monotonicity provides a sufficient condi-
tion for a unique solution, which eliminates the concern of mul-
tiple solutions. The differentiability of the estimating function
with respect to β enables the conventional sandwich estimate
of the asymptotic variance of β̂ to be computed. The estimated
variance–covariance matrix is A−1

n (β̂;w)Vn(β̂;w)A−T
n (β̂;w),

where An(β̂;w) and Vn(β̂;w) are computed from (3). The
bounded influence provides stability to the regression estimate
β̂ in the presence of outlying survival times and covariate val-
ues.

4. EXAMPLE—VETERANS ADMINISTRATION
LUNG CANCER DATA

The Veterans Administration lung cancer data, found in
Kalbfleisch and Prentice (1980), is used to demonstrate the
proposed methodology. The data were derived from a clinical
trial of 137 men with advanced stage lung cancer. The primary
endpoint of the clinical trial was survival time. The maximum
follow-up time in this dataset was 599 days and only 9 of the
137 survival times were censored. For this example, the asso-
ciation between survival time and the Karnofsky performance
status (KPS), measured at the time of study entry, was exam-
ined. The Karnofsky performance status is a clinician rating of
the patient’s functional impairment. The rating scale is from 10
to 100, with 10 representing a moribund state and 100 indicat-
ing no evidence of disease.

To assess the relationship between KPS and survival time,
the Cox proportional hazards model was initially employed.
The log relative risk estimate from the Cox model γ̂ and its
estimated standard error indicated a strong relationship be-
tween KPS and survival time [γ̂ = −.033, se(γ̂ ) = .005]. To
assess the adequacy of the proportional hazards assumption, a
smoothed relationship between the scaled Schoenfeld residuals
and the Kaplan–Meier estimate of the survival function was ex-
plored (Fig. 1). Grambsch and Therneau (1994) demonstrated
that if the proportional hazards assumption is satisfied, these
variables are asymptotically uncorrelated and the smoothed
function should have an approximate zero slope. Figure 1, how-
ever, indicates a nonzero slope, calling into question the as-
sumption of a constant relative risk with respect to time. The
rejection of the constant relative risk hypothesis was affirmed
using the test statistic developed in Grambsch and Therneau
(1994), which produced a p value of less than .01.

Because the proportional hazards specification was question-
able, the weighted rank estimating function was applied to de-
termine the relationship between KPS and survival. Based on
the accelerated failure time model,

log ti = α + βxi + εi,

where the {xi, ti} are the Karnofsky performance status scores
and the survival times, the coefficient estimate and standard
error were β̂ = .038 and se(β̂) = .005, indicating an associ-
ation between KPS and survival in this patient population. The
bandwidth (h), based on the uncensored residuals, was .302.
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Figure 1. Time-Dependent Coefficient Plot to Assess the Adequacy
of the Proportional Hazards Assumption. The solid line represents the
time-dependent slope estimate and the dashed lines represent a 95%
confidence interval. A nonzero slope indicates a violation of the propor-
tional hazards assumption.

The question, however, of whether the accelerated failure time
model is appropriate for these data must be addressed before ac-
ceptance of this result. The adequacy of the log-linear specifica-
tion was explored graphically. A smoothed Kaplan–Meier esti-
mate of the median survival time was computed conditional on
the KPS score. This nonparametric relationship was compared
to the conditional median estimates produced from the accel-
erated failure time model; the intercept α̂ = 1.890 was derived
as the median from the Kaplan–Meier estimate of the residu-
als log ti − β̂xi. Figure 2 depicts both curves and demonstrates
that the accelerated failure time model provides a good fit to the
data.

Figure 2. Estimated Median Log Survival Times From a Smoothed
Kaplan–Meier Estimator (circles) and From the Accelerated Failure Time
Model (solid line).

5. SIMULATIONS

Simulations were run to compare the small sample perfor-
mance of the proposed weighted rank regression estimate to
the Fygenson–Ritov estimate and a censored data version of
Kendall’s rank regression estimate

Snk(β) = n−3/2
∑

i

∑
j

δi sgn(xik − xjk)[1 − I(rβ
i > rβ

j )].

A prominent feature of the Kendall estimate is its robustness
against covariate outliers. Both the Fygenson–Ritov and the
Kendall estimating equations are nondifferentiable in β and re-
quire an alternative method to estimate the asymptotic variance
of the regression estimate. For the simulations, the procedure
developed by Huang (2002) will be employed; it is briefly de-
scribed.

For a single covariate, calculation of the asymptotic variance
of the Fygenson–Ritov and the Kendall estimating equations
follows directly from U-statistic theory and may be written
generically as

var
[
n−1/2Sn(β0)

] = d2.

Now define β̂ and β̃ through the equations

n−1/2Sn(β̂) = 0,

n−1/2Sn(β̃) = d.

The asymptotic variance of β̂ is estimated as (β̂ − β̃)2.
The simulations were based on the accelerated failure time

model

log ti = β0xi + εi,

where the regression coefficient used in all simulations was
β0 = 2. The censoring times were determined by first gener-
ating values from a uniform distribution (0, τ ), and then taking
the log of these values. The choice of τ determines the percent-
age of censored observations in each replication. The maximum
support (τ ) of the uniform was chosen to produce average cen-
soring proportions of {.0, .25, .50, .75}. For all simulations, the
sample size was n = 100 and there were 5,000 replications for
each simulation.

In all simulations the covariate (xi) and error (ε) distributions
were generated independently. Three different simulation sce-
narios are presented. In the first set of simulations, the (xi, εi)

were generated from a bivariate normal distribution with mean
(0,1) and standard deviation (1, σ ). The second set of simula-
tions was similarly structured except the error distribution was
extreme value (log Weibull). These simulations were carried out
to examine the properties of the regression estimator when the
error distribution is asymmetric. In the third set of simulations,
95% of the (xi, εi) were generated from a bivariate normal dis-
tribution with mean (0,1) and standard deviation (1, σ ), and
5% of the (xi, εi) were generated from a bivariate normal distri-
bution with mean (−5,1) and standard deviation (1,2σ). These
five observations were generated to convey contaminated un-
censored data with high leverage and were used to examine the
robustness of the rank based regression estimates. In all simu-
lations, the strength of the relationship between the covariate x
and the survival time t was dictated by σ , which ranged from 1
to 4.
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Figure 3. Boxplot Comparisons of the Bias and Sampling Standard Error of β̂, the Bias of the Asymptotic Standard Error Estimate, the 95%
Empirical Coverage Probability, and the Asymptotic Efficiency of β̂. The normal, log Weibull, and contaminated normal error distributions were used
for the simulations.

The properties of the three rank based estimates—the weight-
ed rank regression estimate β̂w, the Fygenson–Ritov regres-
sion estimate β̂FR, and the Kendall regression estimate β̂K—
and their attendant standard error estimates are presented for
the three sets of simulations in Figure 3. The figure dis-
plays the bias of β̂ , the simulation standard error of β̂ , the
bias of the estimated asymptotic standard error of β̂ , the
95% empirical coverage based on the confidence interval
β̂ ± 1.96 × se(β̂), and the asymptotic efficiency of the esti-
mates. The simulation standard error for the coverage proba-
bility estimate, based on 5,000 replications, is approximately
.003. A tabulation of all the simulation results can be found

on the American Statistical Association website at http://
www.amstat.org/publications/jasa/supplemental_materials/.

For the normal and log Weibull error simulations, the bias is
acceptable for each β̂ , but the weighted regression estimate β̂w
has the most pronounced bias. The asymptotic standard error
estimate for β̂w is consistently unbiased across simulations. In
contrast, the standard error estimate for β̂FR and β̂K, based on
nondifferential estimating equations, is positively biased in the
higher censoring simulations. The 95% empirical coverage is
adequate for all three estimates.

The robustness of the three rank based approaches is exam-
ined using a contaminated normal covariate/error distribution.
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The bias of the weighted rank estimate β̂w is least affected by
contamination. The stability of β̂w stems from the covariate
based bounded influence weight function. This weight function,
however, produces a small increase in the sampling variability
of β̂w relative to β̂K. Similar to the uncontaminated simula-
tions, the asymptotic standard error estimate for β̂FR and β̂K
is positively biased, and the asymptotic standard error estimate
for β̂w remains unbiased. Interestingly, the positive bias in the
standard error estimate for β̂K somewhat offset the bias of β̂K
by providing a larger interval to cover the true β . The Kendall
based coverage probability, however, remains below the nomi-
nal 95% rate. The coverage probability using β̂FR is poor. The
bias in β̂FR is too strong to be counterbalanced by the posi-
tive bias in its standard error estimate. The coverage probabil-
ity using β̂w is unaffected by the contaminated observations.
In conclusion, the contaminated simulation results demonstrate
the stability of the weighted rank estimate β̂w in the presence
of a small percentage of contaminated observations; the Kendall
estimate β̂K is moderately affected and the Fygenson–Ritov es-
timate β̂FR is strongly influenced by the contaminated obser-
vations. The standard error estimate for β̂w is superior to the
standard error estimates for β̂FR and β̂K over all simulations.

As noted in the contaminated normal simulation results, the
robustness of β̂w may be counterbalanced by an increase in
variability. To explore the asymptotic efficiency of the three es-
timators, an additional set of simulations was generated. The
simulation structure used for the small sample experiments
was used again here except that the sample size was increased
to 500, to approximate asymptotic calculations, and only 500
replications were generated for each simulation. To estimate
the asymptotic efficiency of the three regression estimators,
the asymptotic standard error of these regression estimates was
compared to the asymptotic standard of the estimators derived
from the asymptotically efficient weighted rank estimated func-
tion (1). For the normal and log Weibull error distributions,
the asymptotically efficient weights are w(r) = λ(r) − r (Ritov
1990) and w(r) = 1 (Tsiatis 1990), respectively. For the con-
taminated normal simulations, additional weights were used to
downweight the outlying observations. The estimating function
used as the benchmark for the contaminated normal efficiency
simulations was

∑
i

δiw1(r
β
i )u(xi)

{
xi −

∑
j xju(xj)I(r

β
j ≥ rβ

i )∑
j u(xj)I(r

β
j ≥ rβ

i )

}
,

where

w1(r
β
i ) = [λ(rβ

i ) − rβ
i ]min

{
1,

1

|λ(rβ
i ) − rβ

i |

}
,

u(xi) = min{1,1/|xi|}.
The outcome of the efficiency simulations, depicted in the bot-
tom of Figure 3, was expressed as

asymptotic efficiency = se(β̂eff)

se(β̂)
.

For the normal simulations, the Fygenson–Ritov estimator
is efficient, whereas the robust estimators β̂w and β̂K obtain

relative efficiencies in the 85–100% range. The efficiency of
the Fygenson–Ritov estimate is attributable to its monotone
decreasing weight function, a characteristic it shares with the
estimate derived from the asymptotically optimal weighted es-
timating function for the normal error. In the log Weibull
simulations, the relative efficiencies of the three estimators are
comparable and are generally in the range of 75–85%. The con-
taminated normal simulations produce a reduction in efficiency
for the Fygenson–Ritov estimator relative to β̂w and β̂K.

6. DISCUSSION

For the (log) linear model with uncensored data, M estima-
tion is a common choice for the creation of an unbiased esti-
mating equation and subsequent inference on the regression pa-
rameters. With right censored data, however, the right support
of the underlying survival time distribution may not be observ-
able, requiring truncation or weighting devices on the right tail
of the survival distribution (Ritov 1990; Lai and Ying 1991). As
pioneered by Cox (1972), and adapted to the accelerated failure
time model by Tsiatis (1990) and subsequent researchers, the
use of ranks provides an unconstrained approach to the con-
struction of an unbiased estimating equation in the presence of
right censored data.

One barrier to greater usage of rank based inference in the
accelerated failure time model stems from the discontinuity of
the estimating equation and the resulting difficulty in comput-
ing the asymptotic variance of the regression estimator. Brown
and Wang (2005) explored smoothed approximations to the es-
timating function for the uncensored case. With censored data,
Jin et al. (2003) used a resampling tool to bypass differentiation
of the estimating function. This approach, however, is computa-
tionally intensive and may be problematic if applied to an itera-
tive process of model building, where each time a set of covari-
ates is selected, the significance of the corresponding regression
coefficients requires determination. The order of magnitude of
these computations could increase further if regression diagnos-
tics are incorporated into the model building approach, requir-
ing a reassessment of the significance of the regression coeffi-
cients each time an influential observation is removed.

In this work, a smooth approximation to the monotone rank
based estimating function was developed in the censored data
case. Smoothing provided an analytic expression for the asymp-
totic variance of β̂ , with a straightforward plug-in estimate.
The differentiability and monotonicity of the estimating func-
tion, with respect to β , insured that the Newton–Raphson al-
gorithm converged quadratically to the proper neighborhood of
the true regression parameter. In addition, the proposed estimate
has bounded influence and, from the limited simulation studies,
provides stable finite sample results in the presence of outlying
observations.

APPENDIX: PROOFS

Lemma A.1. Under conditions C1–C4, the Fygenson–Ritov un-
smoothed estimating function S̃n(β) and the smoothed estimating
function Sn(β) are asymptotically equivalent:

S̃n(β) = Sn(β) + op(1) uniformly in β.
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Proof. We have

S̃n(β) − Sn(β)

= n−3/2
∑

i

∑
j

δi(xi − xj)

{
�

( rβi − rβj
h

)
− I(rβi > rβj )

}
.

Letting x = x1 − x2 and r = r1 − r2, we can write

|S̃n(β) − Sn(β)|

≤ Mn1/2 sup
β∈B

∣∣∣∣
∫

x

∫
r

x
{
�

(
rβ

h

)

− I(rβ > 0)

}
dF̂n×n(rβ |x)dĜn×n(x)

∣∣∣∣, (A.1)

where F̂n×n and Ĝn×n are the conditional and marginal empirical cu-
mulative distribution functions with jumps at each of the n2 differ-
ences.

The right side can be expanded as∫
x

∫
r

x
{
�

(
r

h

)
− I(r > 0)

}

× [
dF̂n×n(r|x) − dF(r|x)

]
dĜn×n(x)

+
∫

x

∫
r

x
{
�

(
r

h

)
− I(r > 0)

}
dF(r|x)dĜn×n(x),

where F(r|x) = limn→∞ F̂n×n(r|x) and the superscript β is omitted
when selecting the supremum over the bounded space B. As a result,
(A.1) is bounded by

Mn1/2|U1(h) + U2(0)| + Mn1/2|B(h)|,
where

U1(h) =
∫

x

∫
r

x�

(
r

h

)[
dF̂n×n(r|x) − dF(r|x)

]
dĜn×n(x),

U2(0) = −
∫

x

∫
r

xI(r > 0)
[
dF̂n×n(r|x) − dF(r|x)

]
dĜn×n(x),

B(h) =
∫

x

∫
r

x
[
�

(
r

h

)
− I(r > 0)

]
dF(r|x)dĜn×n(x).

For U1(h), a change of variable z = h−1r and integration by parts
gives

U1(h) = −
∫

x

∫
z

xφ(z)
[
F̂n×n(zh|x) − F(zh|x)

]
dz dĜn×n(x)

and, hence,

n1/2|U1(h) + U2(0)|

= n1/2
∣∣∣∣
∫

x

∫
z

xφ(z)
{[

F̂n×n(zh|x) − F(zh|x)
]

− [
F̂n×n(0|x) − F(0|x)

]}
dz dĜn×n(x)

∣∣∣∣.
Using the results on oscillations of empirical processes (Shorack and
Wellner 1986, p. 531) and assuming E(xxT ) < M < ∞ yields

n1/2|U1(h) + U2(0)| = Op

([
h log n log

(
1

h log n

)]1/2)
.

For B(h), integration by parts and a two-term Taylor expansion
around h = 0 produces

B(h) = −h2

2

∫
x

∫
z

xz2φ(z)f ′(zh∗|x)dz dĜn×n(x),

where h∗ lies between h and zero, and f ′(u|x) = ∂2F(u|x)/∂u2.

Combining the preceding arguments gives

sup
β∈B

|S̃n(β) − Sn(β)|

≤ Mn1/2|U1(h) + U2(0)| + Mn1/2|B(h)|

= Op

([
h log n log

(
1

h log n

)]1/2
+ n1/2h2

)
.

Using the condition nh4 → 0, it follows that

S̃n(β) − Sn(β) = op(1) uniformly in β.

Theorem A.1. Under conditions C1–C4, n1/2(β̂ −β0) converges in
distribution to N(0,A−1VA−T ), where

A = lim
n→∞ E

{
n−1/2 ∂Sn(β)/∂β

}∣∣
β=β0

and

V = lim
n→∞ n−1 var{Sn(β0)}.

Proof. From Lemma A.1 and the results in Fygenson and Ritov
(1994), Sn(β) is asymptotically normal with mean zero. Taylor ex-
panding Sn(β̂) around β0 gives

Sn(β̂) = Sn(β0) + An(β#)(β̂ − β0),

where β# lies between β̂ and β0. Because n−1/2An(β#) is bounded
and nonzero (condition C2), it follows that n1/2(β̂ − β0) converges in
distribution to N(0,A−1VA−T ).

Definition. An estimating function vector is a monotone field if, for
all β,α ∈ Rp (Ritov 1987),

∂

∂a
αT Sn(β + aα) ≥ 0, a ∈ R1.

Theorem A.2. Under conditions C1–C4, the weighted rank esti-
mating function vector Sn(β;w) is a monotone field, is differen-
tiable in β , and has bounded influence. Let β̂ denote the regres-
sion estimate derived as the zero solution to the estimating func-
tion vector Sn(β;w). Then n1/2(β̂ − β0) converges in distribution to
N(0,A−1(w)V(w)A−T (w)), where

A(w) = lim
n→∞ E

{
n−1/2 ∂Sn(β;w)/∂β

}∣∣
β=β0

and

V(w) = lim
n→∞ n−1 var{Sn(β0;w)}.

Proof. An argument similar to that found in Narjano and Hettman-
sperger (1994) is used to show that the influence function is bounded.
Because the unsmoothed and smoothed estimating functions are as-
ymptotically equivalent, consider the unsmoothed estimating function

S̃n(k)(β0;w) = n−3/2
∑

i

∑
j

φ(xik − xjk)

× δi[1 − I(ri > rj)], k = 1, . . . ,p,

where φ(u) = |u|−1 if |u| ≥ 1 and φ(u) = u if |u| < 1. The expectation
of this estimating function, conditional on (εi, εj, xik, xjk), is

n−3/2
∑

i

∑
j

φ(xik − xjk)Ḡi(εi + xT
i β0)Ḡj(εi + xT

j β0)I(εj > εi),

where Ḡi(u) is the survival function of the censoring random variable
conditional on the covariate xi. It follows that the population estimat-
ing function that defines β0 is∫

x1,ε1

∫
x2,ε2

φ(x1k, x2k)Ḡ1(ε1 + xT
1 β0)Ḡ2(ε1 + xT

2 β0)

× I(ε2 > ε1)dH(x1, ε1)dH(x2, ε2) = 0
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for k = 1,2, . . . ,p. To compute the influence function for β0, define
the contaminated cumulative distribution function by Hv = (1−v)H +
vψ0, where ψ0(x, ε) is the distribution function of a point mass at
(x0, ε0). The population estimating equation based on the contami-
nated distribution is written as∫

x1,ε1

∫
x2,ε2

φ(x1k − x2k)Ḡ1(ε1 + xT
1 β(Hv))Ḡ2(ε1 + xT

2 β(Hv))

× I(ε2 > ε1)dHv(x1, ε1)dHv(x2, ε2) = 0. (A.2)

Differentiating both sides of (A.2) with respect to v, setting v = 0, and
denoting the influence function (∂/∂v)β(Hv)|v=0 by β̇ produces∫

x1,ε1

∫
x2,ε2

φ(x1k − x2k)
∂

∂β
{Ḡ1(ε1 + xT

1 β)Ḡ2(ε1 + xT
2 β)}

× β̇I(ε2 > ε1)dH(x1, ε1)dH(x2, ε2)

+
∫

x1,ε1

φ(x1k − x0k)Ḡ1(ε1 + xT
1 β)Ḡ0(ε1 + xT

0 β)

× I(ε0 > ε1)dH(x1, ε1)

+
∫

x2,ε2

φ(x0k − x2k)Ḡ0(ε0 + xT
0 β)Ḡ2(ε0 + xT

2 β)

× I(ε2 > ε0)dH(x2, ε2).

The influence function evaluated at (x0, ε0) is

β̇ =
[∫

x1,ε1

∫
x2,ε2

φ(x1k − x2k)
∂

∂β
{Ḡ1(ε1 + xT

1 β)Ḡ2(ε1 + xT
2 β)}

× I(ε2 > ε1)dH(x1, ε1)dH(x2, ε2)

]−1

×
[∫

x1,ε1

φ(x1k − x0k)Ḡ1(ε1 + xT
1 β)Ḡ0(ε1 + xT

0 β)

× I(ε0 > ε1)dH(x1, ε1)

+
∫

x2,ε2

φ(x0k − x2k)Ḡ0(ε0 + xT
0 β)Ḡ2(ε0 + xT

2 β)

× I(ε2 > ε0)dH(x2, ε2)

]

which is bounded for any (x0, ε0).

To show that Sn(β) is a monotone field, consider

αT Sn(β + aα)

= α1n−3/2
∑

i

∑
j

δi(xi1 − xj1)wij1

[
1 −

rβ+aα
i − rβ+aα

j

h

]
+ · · ·

+ αpn−3/2
∑

i

∑
j

δi(xip − xjp)wijp

×
[

1 − �

( rβ+aα
i − rβ+aα

j

h

)]
,

where rβ+aα
i = yi − (β1 + aα1)xi1 − · · · − (βp + aαp)xip. Because

∂

∂a

[
1 −�

( rβ+aα
i − rβ+aα

j

h

)]
= αT (xi − xj)

h
φ

( rβ+aα
i − rβ+aα

j

h

)
,

it follows that

∂

∂a
αT Sn(β + aα)

= n−3/2
∑

i

∑
j

φ

( rβ+aα
i − rβ+aα

j

h

)[
αT (xi − xj)

h

]

× [α1(xi1 − xj1)wij1 + · · · + αp(xip − xjp)wijp]
and because wijk = wij > 0,

∂

∂a
αT Sn(β + aα) ≥ 0, a ∈ R1.

The proof that n1/2(β̂−β0) converges in distribution to N(0,A−1 ×
VA−1) follows immediately from the proof in Theorem 1.

[Received June 2005. Revised August 2005.]
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