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ABSTRACT

The continuous net reclassification improvement (NRI) statistic is a popular model

change measure that was developed to assess the incremental value of new factors in a

risk prediction model. Two prominent statistical issues identified in the literature call

the utility of this measure into question: (1) it is not a proper scoring function and (2)

it has a high false positive rate when testing whether new factors contribute to the risk

model. For binary response regression models, these subjects are interrogated and

a modification of the continuous NRI, guided by the likelihood-based score residual,

is proposed to address these issues. Within a nested model framework, the modified

NRI may be viewed as a distance measure between two risk models. An application

of the modified NRI is illustrated using prostate cancer data.
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1. INTRODUCTION

In the clinical setting, individual risk assessment is often derived through a regression

model, which incorporates a combination of risk factors due to biological complexity.

These risk models are used in forecasting future health outcomes of an individual

such as treatment response or survival. The quality of the risk model, evaluated

using statistical measures such as calibration, discrimination, explained variation, and

likelihood based, reflects the level of confidence in the forecast (Gerds and Kattan

2021). When the objective is to incorporate a new set of factors to an existing risk

model, assessing the impact of these new factors on the forecast is critical. For binary

response regression, a discrimination measure, the net reclassification improvement

(NRI), is one statistic used for this evaluative process. The NRI, also referred to as

the net reclassification index, was developed to ascertain whether the introduction

of new risk factors move a model derived forecast in a direction consonant with the

binary response outcome (Pencina et al. 2008).

The NRI statistic has been criticized on numerous grounds. Two prevailing points

of contention are: (1) it is not a proper scoring function and (2) it has a high false

positive rate when testing whether the new factors contribute to the risk model, even

in situations that include independent training and test datasets (Kerr et al. 2014 and

Pepe et al. 2014, 2015). Despite of these critiques, the NRI is a popular statistic, and

in the three-year time period 2019-2021, it was cited in PubMed over 800 times. The

purpose of this work is to elucidate the methodology underlying these two concerns

and to propose a likelihood guided modification to the NRI to rectify these issues.

The NRI is defined through a series of nested regression models, where it is as-

sumed that the existing factors alone (x), which includes a constant for the intercept
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term, or combined with new factors (z) are modeled as

Pr(Y = 1) = G(β•)

Pr(Y = 1|x) = G(β0Tx)

Pr(Y = 1|x, z) = G(βT0 x+ γT0 z)

(1)

where Y is a binary outcome denoted as event (Y = 1) or non-event (Y = 0), G is

a monotone function representing the probability of an event, the base model risk

score is β0Tx, the expanded model risk score is βT0 x + γT0 z, and for the constant

model, π0 = G(β•). Throughout this work, random variables are represented with

upper case, their observed copies are written in lower case, and vectors are indicated

in bold.

The log-likelihood used to estimate the model parameters is

L(β,γ) =
∑
i

[
yi logG(βTxi + γTzi) + (1− yi) log(1−G(βTxi + γTzi))

]
,

where {(yi,xi, zi)}, i = 1, . . . , n are independent identically distributed copies of

(Y,X,Z). The maximum likelihood estimates from the three models are represented

as: θ̂ = (β̂, γ̂), θ̂
0

= (β̂
0
,0), and π̂ = ȳ, the observed proportion of events.

Historically, the NRI was developed under the assumption that the base model risk

score could be placed in risk classification categories. It was a measure of whether the

expanded model risk score, due to the addition of new factors, would move into higher

risk categories for subjects with an event and into lower risk categories for subjects

without an event. This framework, however, requires apriori clinically meaningful

risk categories, which are often not apparent at the time of analysis, particularly in

the early stage of model development. As a result, the continuous NRI was developed

(Pencina et al. 2011) and it is this measure that is the focus of this work.
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The population NRI is defined as

ρ(θ0;θ
0; π0) =

2
{

Pr(βT0X + γT0Z ≥ β0TX|Y = 1)− Pr(βT0X + γT0Z ≥ β0TX|Y = 0)
}

where θ0 = (β0,γ0) and θ0 = (β0,0). When multiplied by 1/2, the population NRI

is estimated as

Rn(θ̂; θ̂
0
; π̂) = [nȳ(1− ȳ)]−1

∑
i

[yi − ȳ]

[
I(β̂

T
xi + γ̂Tzi − β̂0

T

xi > 0)− 1

2

]
. (2)

Assuming at least one component of x is continuous, it can be asserted without loss

of generality, that the indicator function can be extended as

I(u > 0) = 1 if u > 0

I(u > 0) =
1

2
if u = 0

I(u > 0) = 0 if u < 0.

(3)

Although the net reclassification improvement statistic is a frequently applied

model change measure, its lack of propriety and high false positive rate are problem-

atic. In Section 2, a modified NRI (mNRI) is developed that satisfies the concept

of a proper change score, which adapts the proper scoring principle to model change

measures (Pepe et al. 2015). Section 3 demonstrates that a smooth version of the

mNRI provides a valid test procedure when the population NRI is zero. This result

is established in the single sample and the independent training and test data case.

In Section 4, a prostate cancer data example is used to illustrate these concepts and

Section 5 contains a discussion.

2. THE mNRI IS A PROPER CHANGE SCORE
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For a correctly specified parametric risk model, a performance measure is a proper

score if its expected value is minimized/maximized at the true model parameter value

(Gneiting and Raftery, 2007). For example, the expected value of the Brier score

applied to the expanded model

E[Y −G(βTX + γTZ)]2,

is minimized at (β,γ) = (β0,γ0). If a performance measure is not a proper score,

then the analyst may find inconsistent parameter estimates that make the measure

look better. Population performance measures such as the expected value of the area

under the curve (AUC), the Brier score (BS), and Kullback-Leibler divergence (KL),

are maximized/minimized at their true parameter values and therefore are proper

scores.

Proper scoring is more difficult to achieve for model change measures. Consider

the case where a performance measure M is applied separately to the expanded model

and the base model, and the change measure is

∆M(b, g; b0) = M(b, g)−M(b0).

If the performance measure (M) is convex,

(β0,γ0) = arg min
(b,g)

E[M(b, g)]

β0 = arg min
b0

E[M(b0)],

but the difference of two convex functions is not necessarily convex, and in general,

(β0,γ0,β
0) 6= arg min

(b,g,b0
)

E[∆M(b, g; b0)].
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To adapt proper scoring to change measures, Pepe et al. (2015) orient the model

parameter space so that the base model is evaluated at the true parameter β0. In

this setting, ∆M is termed a proper change score, since

(β0,γ0) = arg min
(b,g)

E
[
∆M(b, g;β0)

]
,

recreating the single model evaluation. The term proper change score is used here

to acknowledge the adaptation of the proper scoring principle to change measures.

Under this definition, ∆AUC, ∆BS, and ∆KL are proper change scores.

The NRI differs from other change measures because it is a statistic based on

within subject change and not between model change as above. In addition, the

statistic is composed of parameter estimates from three nested models. As a result,

it is not covered under the previous argument. To satisfy the proper change score

criterion, the NRI is modified

Tn(θ̂; θ̂
0
; π̂) = [nȳ(1− ȳ)]−1

∑
i

r(β̂0
T

xi)

[
I(β̂

T
xi + γ̂Tzi − β̂0

T

xi > 0)− 1

2

]
,

which is constructed by replacing the constant model score residual y− ȳ in (2) with

the base model score residual r(β̂0
T

x), where

r(β0Tx) =

[
∂G(β0Tx)

∂(β0Tx)

] [
G(β0Tx)(1−G(β0Tx))

]−1 [
yi −G(β0Tx)

]
. (4)

The modified NRI (mNRI) is closely akin to the maximum score statistic and the

least absolute deviation statistic (Manski 1985, Horowitz 1998), which provide the

framework for the derivation in Theorem 1.

Theorem 1.
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Consider the mNRI scoring function derived from a single random variable, with the

base and constant model parameters given

T1(θ;θ0; π0) = [π0(1− π0)]−1r(β0TX)

[
I(βTX + γTZ − β0TX > 0)− 1

2

]
.

The mNRI scoring function is a proper change score,

E[T1(θ0;θ
0; π0)] ≥ E[T1(θ;θ0; π0)] for any θ = (β,γ).

The theorem is proved in the appendix.

An interpretation of the mNRI statistic is obtained by rewriting it as

Tn(θ̂; θ̂0, π̂) = [2ȳ(1− ȳ)]−1
[s(θ̂; θ̂0)]T [r(θ̂0)]

[s(θ̂; θ̂0)]T [s(θ̂; θ̂0)]

where r(θ̂0) = [r(β̂0
T

x1), . . . , r(β̂
0
T

xn)] is the base model score residual vector and

s(θ̂; θ̂0) is a sign vector with subject components si(θ̂; θ̂0) = 2I(β̂
T
xi + γ̂Tzi −

β̂0
T

xi > 0)− 1. The mNRI is a function of the propensity of the event outcome (ȳ)

and a regression coefficient representing the association between the direction of the

risk score due to adding z and the event outcome after taking into account x. This

perspective is analogous to a partial residual plot, where a model covariate of interest

z is replaced by a between model directional covariate s(θ̂; θ̂0).

An alternative interpretation of the mNRI may be considered from the viewpoint

of its limiting value

lim
n→∞

Tn(θ0;θ
0; π0) = [2π0(1−π0)]−1EX,Z

{
h(β0TX)

∣∣∣G(β0
TX + γT0Z)−G(β0TX)

∣∣∣}
where the weight h(β0TX) stems from the base model score residual (4),

h(β0TX) =

[
∂G(β0Tx)

∂(β0Tx)

] [
G(β0Tx)(1−G(β0Tx))

]−1
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r(β0TX) = h(β0TX)[yi −G(β0TX)].

Thus, the population mNRI is a weighted L1 distance measure between the nested

event probabilities. An important special case occurs when G is logistic and

lim
n→∞

Tn(θ0;θ
0; π0) = [2π0(1− π0)]−1EX,Z

∣∣G(βT0X + γT0Z)−G(β0TX)
∣∣,

which results in an unweighted L1 distance measure. Here, the population mNRI is

proportional to the mean absolute deviation (MAD) of the nested event probabili-

ties. In addition to using the MAD as a summary measure, this result suggests that

graphical insight into the mNRI may be obtained by plotting the base model event

probability estimates by the expanded model event probability estimates.

3. THE NRI FALSE POSITIVE RATE

Empirical research on the utility of the NRI has raised questions as to whether it has

an unacceptably high false positive rate, signifying a larger than anticipated value

when the new factors have no effect on the binary response (Kerr et al. 2014 and

Pepe et al. 2014, 2015). As a practical matter, measures with high false positive rates

lead to the introduction of irrelevant factors into the model development process. In

this section, this issue is investigated, and a valid test procedure is developed, both

in the case of a single sample and when independent training and test samples are

included.

Pencina et al (2008) state that under the null ρ(θ0;θ
0; π0) = 0, the asymptotic

distribution of the estimated NRI in (2) is

n1/2Rn(θ̂; θ̂
0
; π̂)

D→ N [0, A] (5)
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where accounting for the multiplication by 1/2 to produce (3), the asymptotic variance

is estimated as Â = [(4n1)
−1 + (4n0)

−1]. Further work by Pencina et al. (2011, 2012)

modified the asymptotic variance calculation. In a series of simulation experiments,

Kerr et al. (2014) and Pepe et al. (2014, 2015) evaluated the adequacy of this result,

using a conditional binormal model to produce nested logistic regression models.

They found that on average, under the null, the NRI estimate was positive and

that the type 1 error rate using the asymptotic normal reference distribution was

as high as 0.63. Additional simulations that incorporated independent training and

test datasets produced similar conclusions. Taken in total, these results represent

a critical indictment against the test procedure in (5). A problem, recognized by

these authors, and Demler et al. (2017), is that the asymptotic normal reference

distribution is incorrect.

Consider a smooth NRI

RS
n(θ̂; θ̂

0
; π̂) = [nȳ(1− ȳ)]−1

∑
i

[yi − ȳ]

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2

]
, (6)

where the extended indicator function, which is discontinuous in θ, is replaced by the

continuous standard normal distribution function Φ(·). A heuristic for this substitu-

tion is that when ρ(θ0;θ
0; π0) = 0, as n gets large, γ̂

p→ 0, β̂ − β̂0 p→ 0 (Pepe et al.

2013), and therefore (Horowitz 1998)

I(β̂
T
x+ γ̂Tz − β̂0

T

x > 0) ≈ Φ

(
β̂
T
x+ γ̂Tz − β̂0

T

x

)
≈ 1

2
.

The purpose of this local smoothing is to facilitate the derivation of the asymptotic

null reference distribution.

Theorem 2. Assume the binary response regression models in (1) are properly
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specified and the covariate vectors x and z have dimension p and q, respectively. If

ρ(θ0;θ
0; π0) = 0, then

nRS
n(θ̂; θ̂

0
; π̂)

D→ [N q(0, V1)]
T [N q(0, V2)] +

1

2
DT

p I−1ββ cp.

The first term is the inner product of two positively correlated, q-dimensional,

mean zero normal random vectors, and the second term is bilinear, where Dp is a

p dimensional random vector with quadratic components, and cp is a p dimensional

constant vector. This result demonstrates that the null distribution of the NRI is not

normal and is not symmetric about zero, which explains the anomalous findings in

Kerr et al. (2014) and Pepe et al. (2014, 2015).

The reference distribution for the NRI test statistic RS
n(θ̂; θ̂

0
; π̂) is complex and

difficult to apply. In contrast, the mNRI test statistic

T Sn (θ̂; θ̂
0
; π̂) = [nȳ(1− ȳ)]−1

∑
i

r(β̂0
T

xi)

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2

]
has a straightforward null reference distribution.

Theorem 3. Assume the binary regression models in (1) are properly specified and

the covariate vectors x and z have dimension p and q, respectively. If ρ(θ0;θ
0; π0) = 0,

then

nT Sn (θ̂; θ̂
0
; π̂)

D→ kχ2
q,

where k = φ(0)[π0(1−π0)]−1, φ(0) is the standard normal density function evaluated

at 0, and χ2
q is a chi-square random variable with q degrees of freedom. A proof of

this result is found in the appendix.

Theorems 2 and 3 reorient one’s understanding of what constitutes meaningful
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NRI and mNRI statistics and Theorem 3 provides an uncomplicated metric to test

the mNRI distance from zero. If the new clinical factors (z) are noise, then small

positive values are simply random variation under the null, and only large positive

values, as determined by the scaled chi-square reference distribution, are considered

meaningful. A precursor to this result is found in Kerr et al. (2011).

Theorem 3 covers the single sample case. Alternatively, the test statistic may be

constructed from two independent data sets from the same population, where the

regression coefficients are estimated from the training data (θ̂, θ̂
0
) and the test data

(θ̃, θ̃
0
), and the data for the test statistic (yi,xi, zi) are drawn from the independent

test data. Under these conditions, the reference distribution for the smooth mNRI

test statistic

T Sn (θ̂; θ̂
0
, θ̃

0
; π̃) = [nȳ(1− ȳ)]−1

∑
i

r(β̃0
T
xi)

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2

]
.

is provided in Theorem 4.

Theorem 4. Assume the binary regression models for the training and test data

have the same specification and are given in (1), where the covariate vector x has

dimension p and the covariate vector z has dimension q. If ρ(θ0;θ
0; π0) = 0,

nT sn(θ̂; θ̂
0
, θ̃

0
; π̃)

D→ k

2

2q∑
j=1

λjχ
2
j ,

where k is defined in Theorem 3, {χ2
j} are independent chi-square random variables

each with one degree of freedom, and {λj} represent eigenvalues determined from the

product matrix V C (Baldessari 1967), where

V =

 var(γ̃) 0

0 var(γ̂)

 C =

 0 D

D 0

 .
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and D = [var(γ̃)]−1 . The details are provided in the appendix.

A simulation study was performed to assess the false positive rate using the ref-

erence distributions in Theorems 3 and 4, and the normal reference distribution

in (5). A conditional bivariate normal covariate distribution was used to generate

nested logistic risk models. The conditioning variable was the event status with

Pr(Y = 1) = {0.25, 0.50, 0.75}. The bivariate normal had a common variance-

covariance matrix across event status, with correlation parameters 0 or 0.5. The

mean of Z was 0 for Y = 0 or Y = 1, and the mean of X was set equal to 0 for

Y = 0 and took on values {0.25, 0.50, 0.75, 1.0} for Y = 1. Simulations with 200 and

500 observations per replicate were conducted. Five thousand replicates were run for

each simulation. Tables 1 and 2 compare the size estimates for the mNRI reference

distributions in Theorems 3 and 4 with the NRI normal reference distribution. The

nominal type 1 error in all simulations was 0.05.

For the single sample simulations in Table 1, using Theorem 3, the average type

1 error was 0.048 (n=200) and 0.050 (n=500). In contrast, applying the normal

reference distribution in (5), produced average type 1 errors equal to 0.079 (n=200)

and 0.129 (n=500). Similar results were found for the independent training-test

sample simulations in Table 2. From Theorem 4, the average type 1 error was 0.051

(n=200) and 0.052 (n=500), whereas when using the normal reference distribution

it was 0.079 (n=200) and 0.124 (n=500). These simulation results confirm that the

modified NRI test statistics, with their associated reference distributions, are valid

test procedures, and they confirm the poor operating characteristics of the asymptotic

normal reference distribution, with divergence increasing with sample size.
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5. PROSTATE CANCER DATA

Patients with metastatic prostate cancer are by definition high risk. Nevertheless,

there is significant variability in the survival times of these patients (Sayegh, Swami,

and Agarwal, 2021). Given this heterogeneity, there is a pressing need to identify new

biomarkers that can accurately assess patient risk. Historically, the use of prostate

specific antigen (PSA) and other blood based biomarkers have produced risk models

with only moderate calibration and discrimination in the metastatic prostate cancer

setting (Gafita et al. 2021). As a result, exploring informative new biomarkers

continues, with a recent focus around circulating tumor cells and serum testosterone

(Cieslikowski et al. 2021; Ryan et al. 2019).

An application of the net reclassification improvement (NRI), based on the addi-

tion of circulating tumor cells and serum testosterone, was undertaken for metastatic

prostate cancer patients treated on the control arm of a multicenter phase 3 ran-

domized clinical trial (Saad et al. 2015). The control arm of the randomized trial,

patients treated with steroids alone, is useful to assess the added prognostic utility of

new biomarkers, because it approximates the natural history of the disease.

Four hundred and eighteen patients with a complete set of biomarkers and suf-

ficient follow-up were used in the analysis. The binary endpoint was survival 24

months after the start of treatment. In this cohort, forty seven percent of the pa-

tients survived longer than two years. In addition to circulating tumor cells and

serum testosterone, traditional biomarkers for metastatic prostate cancer were incor-

porated into the risk model. The complete set of eight biomarkers included in the

analysis were: albumin, alkaline phosphatase, circulating tumor cells, Gleason score,

hemoglobin, lactate dehydrogenase, prostate specific antigen, and serum testosterone.
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Nested logistic regression models were fit for the binary 24 month survival endpoint;

the expanded model incorporated all eight biomarkers and the base model represented

a subset of seven biomarkers. All biomarkers except Gleason score were continuous.

To create greater flexibility in the models, a restricted cubic spline with four knots was

fit to each continuous biomarker. Gleason score, an ordinal variable ranging from 2-

10, representing tumor complexity as determined by pathology, and was dichotomized

as 1-7 and 8-10.

Table 3 summarizes the results of the NRI, mNRI, and the p-values generated

from their respective test procedures described in Section 3. For the logistic models,

the mNRI equates to a scaled mean absolute difference (MAD) between the estimated

event probabilities

[2nȳ(1− ȳ)]−1
∑
i

|G(β̂
T
xi + γ̂Tzi)−G(β̂0

T

xi)|.

For the prostate data, the observed proportion of events was 0.47, and so the mNRI ≈

2×MAD.

With the addition of serum testosterone, the mean absolute distance was only

0.022, and using the smooth mNRI, a test of whether the population NRI differed

from zero generated a p-value equal to 0.490. Figure 1 provides corroborating evidence

that adding serum testosterone does not meaningfully change the predicted event

probabilities. An application of the NRI with a normal reference distribution (5),

however, produced a p-value equal to 0.046, which mirrors the high false positive

rate for the NRI found in the simulations. When the circulating tumor cell (CTC)

biomarker was added to the risk model, the mean absolute difference between the

estimated event probabilities was large and equal to 0.095, with an attending p-value
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less than 0.001. The addition of circulating tumor cells had a marked effect on the

predicted probability of death within 24 months. This result is confirmed visually in

Figure 2, where the estimated event probabilities change significantly from the base

model to the expanded model due to the addition of CTC. Thus, the addition of CTC

but not serum testosterone would consequentially change the predicted probabilities

of surviving greater than 24 months. Furthermore, for other single variable deletions,

only the addition of alkaline phosphatase and hemoglobin appreciably change the

expanded model probabilities.

6. DISCUSSION

The net reclassification improvement (NRI) statistic is a measure of change for a

model based risk score due to the addition of new factors. Although the NRI is fre-

quently applied, identified weaknesses of the statistic include that it is not a proper

scoring function (or proper change score) and it does not produce a valid test proce-

dure. A modification of this statistic (mNRI) corrects these deficiencies. The mNRI

can be interpreted as a measure of association between the directional change in the

risk score and the base model score residual. In the special but frequently applied

case of logistic regression, an asymptotic analysis demonstrates that the mNRI is

proportional to a mean absolute deviation measure, putting the mNRI on an easily

interpretable difference in probability scale.

There remain, however, some concerns with the NRI that are not resolved through

the mNRI (Kerr et al. 2014). The mNRI does not include risk thresholds for the pur-

pose of intervention strategies, and therefore does not include the costs and benefits
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of a risk threshold guided intervention. As a result, its application should be directed

to the model development stage. On this topic, there has been significant discussion

surrounding the utility of the NRI, and even with the modification proposed here, the

debate will almost surely continue. The contribution of this work is to put the statis-

tic on a stronger statistical foundation and to clear away some of the arguments that

obscure its properties, perhaps shedding more light and less heat on this measure.

ACKNOWLEDGEMENTS.

This work was supported by NIH Grants R01CA207220 and P30CA008748.

15



REFERENCES

Baldessari, B. (1967), ”The Distribution of a Quadratic Form of Normal Random

Variables,” Annals of Mathematical Statistics, 38, 1700-1704.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1993), Efficient and

Adaptive Estimation for Semiparametric Models, The Johns Hopkins University

Press.

Cieslikowski, W. A., Antczak, A., Nowicki, M., Zabel, M., Budna-Tukan, J.

(2021), ”Clinical Relevance of Circulating Tumor Cells in Prostate Cancer Man-

agement,” Biomedicines, 9, 1179.

Demler, O. V., Pencina, M. J., Cook, N. R., and D’Agostino Sr, R. B. (2017),

”Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-

statistics, ”Statistics in Medicine, 36, 3334-3360.

Gafita, A., Calais, J., Grogan, T. R., Hadaschik, B., Wang, H., Weber, M.,

Sandhu, S., Kratochwil, C., Esfandiari, R., Tauber, R., Zeldin, A., Rathke,

H., Armstrong, W. R., Robertson, A., Thin, P., D’Alessandria, C., Rettig, M.

B., Delpassand, E. S., Haberkorn, U., Elashoff, D., Herrmann, K., Czernin, J.,

Hofman, M. S., Fendler, W. P., Eiber, M. (2021), ”Nomograms to predict out-

comes after 177 Lu-PSMA therapy in men with metastatic castration-resistant

prostate cancer: an international, multicentre, retrospective study,” Lancet On-

cology, 22, 1115–25.

Gerds, T. A. and Kattan, M. W. (2021), Medical Risk Prediction Models With

Ties to Machine Learning. CRC Press.

16



Gneiting, T. and Raftery, A. E. (2007), ”Strictly proper scoring rules, prediction,

and estimation,” Journal of The American Statistical Association, 102, 359-378.

Horowitz, J. L. (1998), Semiparametric Methods in Econometrics. Springer-

Verlag.

Kerr, K. F., McClelland, R. L., Brown, E. R., and Lumley, T. (2011), ”Evaluat-

ing the Incremental Value of New Biomarkers With Integrated Discrimination

Improvement,” American Journal of Epidemiology, 174, 364-374.

Kerr, K. F., Wang, Z., Janes, H., McClelland, R. L., Psaty, B. M., and Pepe, M. S.

(2014), ”Net reclassification indices for evaluating risk-prediction instruments:

A critical review,” Epidemiology, 25, 114-121.

Manski, C. F. (1985), ”Semiparametric analysis of discrete response: Asymptotic

properties of the maximum score estimator,” Journal of Econometrics, 27, 313-

333.

Pencina, M. J., D’Agostino Sr, R. B., D’Agostino Jr, R. D., and Vasan, R. (2008),

”Evaluating the added predictive ability of a new marker: From area under the

ROC curve to reclassification and beyond,” Statistics in Medicine, 27, 157-172.

Pencina, M. J., D’Agostino Sr, R. B., and Steyerberg, E. W. (2011), ”Extensions

of net reclassification improvement calculations to measure usefulness of new

biomarkers,” Statistics in Medicine, 30, 11-21.

Pencina, M. J., D’Agostino Sr, R. B., and Demler O. V. (2012), ”Novel metrics

for evaluating improvement in discrimination: net reclassification and integrated

discrimination improvement for normal variables and nested models,” Statistics

in Medicine, 31, 101-113.

17



Pepe, M. S., Fan, J., Feng, Z., Gerds, T., and Hilden, J. (2015), ”The net reclas-

sification index (NRI): A misleading measure of prediction improvement even

with independent test data sets,” Statistics in Biosciences, 7, 282-295.

Pepe, M. S., Janes, H., and Li, C. I. (2014), Net risk reclassification p values:

Valid or misleading? Journal of the National Cancer Institute, 106, 1-6.

Pepe, M. S., Kerr, K. F., Longton, G., and Wang, Z. (2013), ”Testing for improve-

ment in prediction model performance,” Statistics in Medicine, 32, 1467-1482.

Ryan, C. J., Dutta, S., Kelly, W. K., Russell, C., Small, E. J., Morris, M. J.,

Taplin, M. E., Halabi, S. (2020), ”Androgen Decline and Survival During Doc-

etaxel Therapy in Metastatic Castration Resistant Prostate Cancer (mCRPC),”

Prostate Cancer and Prostatic Disease, 23, 66-73.

Saad, F., Fizazi, K., Jinga, V., Efstathiou, E., Fong, P. C., Hart, L. L., Jones, R.,

McDermott, R., Wirth, M., Suzuki, K., MacLean, D. B., Wang, L., Akaza, H.,

Nelson, J., Scher, H. I., Dreicer, R., Webb, I. J., de Wit, R. ELM-PC 4 investi-

gators. (2015), ”Orteronel plus prednisone in patients with chemotherapy naive

metastatic castration-resistant prostate cancer (ELM-PC 4): a double-blind,

multicentre, phase 3, randomised, placebo-controlled trial,” Lancet Oncology,

16, 338–348.

Sayegh, N., Swami, U., and Agarwal, N. (2021), ”Recent Advances in the Man-

agement of Metastatic Prostate Cancer,” JCO Oncology Practice, 18, 45-55.

Tsiatis, A. A. (2006), Semiparametric Theory and Missing Data. Springer-Verlag.

18



Appendix: Proof of theorems

The following conditions and notation will be used in the appendix.

(C1) The set of binary response nested models

Pr(Y = 1) = G(β•)

Pr(Y = 1|x) = G(β0Tx)

Pr(Y = 1|x, z) = G(βT0 x+ γT0 z)

specify the relationship between the p-dimensional existing factors x, the q-dimensional

new factors z, and the binary event outcome y. The model with no covariates is the

constant model, x alone is the base model and (x, z) is the expanded model. The

inverse link function G is known. Throughout this work, random variables are repre-

sented with upper case, their observed copies are written in lower case, and vectors

are indicated in bold.

(C2) The log-likelihood used to estimate the regression coefficients is

L(β,γ) =
∑
i

[
yi logG(βTxi + γTzi) + (1− yi) log(1−G(βTxi + γTzi))

]
,

where {(yi,xi, zi)}, i = 1, . . . , n are independent identically distributed copies of

(Y,X,Z). For θ = (β,γ), the expanded model maximum likelihood estimate is

denoted by θ̂ = (β̂, γ̂), and the two sets of restricted maximum likelihood estimates

are θ̂
0

= (β̂
0
,0) for the base model, and π̂ = G(β̂

•
), which is equal to the mean

number of events ȳ, for the constant model.

(C3) The score vector, observed information matrix, and expected information matrix
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for L(θ) are partitioned as

∂L(θ)

∂θ
=

 Uβ

Uγ

 ;
∂2L(θ)

∂θ∂θT
=

 Uββ Uβγ

Uγβ Uγγ

 ; −E
[
n−1Uθθ

]
=

 Iββ Iβγ
Iγβ Iγγ



(C4) The likelihood parameterization L(η) will be utilized, where ηi = βTxi + γTzi

is the risk score and the corresponding score residual r(ηi) is

∂L(η)

∂ηi
=

(
dG(ηi)

dηi

)
[G(ηi)(1−G(ηi))]

−1 [yi −G(ηi)] ,

which will be useful to rewrite as

r(ηi) = h(ηi)[yi −G(ηi)].

Proof of Theorem 1: The modified NRI (mNRI) is a proper change score

For a single random variable, the modified NRI with the base and constant model

parameters evaluated at their true value is

T1(θ;θ0; π0) = [π0(1− π0)]−1 r(β0TX)

[
I(βTX + γTZ − β0TX > 0)− 1

2

]
.

Its expected value is equal to

EX,Z

{
[π0(1− π0)]−1 h(β0TX) ×[
G(βT0X + γT0Z)−G(β0TX)

] [
I(βTX + γTZ − β0TX > 0)− 1

2

]}
where h(β0TX) is a component of the score residual in (C4) evaluated under the base

model.
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To show E[T1(θ;θ0; π0)] is maximized at θ = θ0, and therefore the modified NRI is a

proper change score, consider

E[T1(θ0;θ
0; π0)− T1(θ;θ0; π0)] =

EX,Z

{
[π0(1− π0)]−1 h(β0TX)

[
G(β0

TX + γ0
TZ)−G(β0TX)

]
×[

I(β0
TX + γ0

TZ − β0TX > 0)− I(βTX + γTZ − β0TX > 0)
]}

This expectation is evaluated under two cases:

Case (i): βT0X + γT0Z ≥ β0TX

The first term in square brackets, G(β0
TX+γ0

TZ)−G(β0TX), is non-negative due

to the monotonicity of G, and the second term in square brackets, the difference in

indicator functions, is either 0 or 1. Therefore, since the weight function h(β0TX) is

positive, the expectation is non-negative for any θ = (β,γ).

Case (ii): βT0X + γT0Z < β0TX.

Under this constraint, the first term in square brackets is negative and the second

term in square brackets is either 0 or −1. It follows that the expectation is again

non-negative for any θ = (β,γ).

Combining these two cases, E[T1(θ;θ0; π0)] is maximized at θ = θ0 and therefore,

the modified NRI is a proper change score.

Theorem 2. Assume the covariate vectors x and z have dimension p and q,

respectively. If ρ(θ0;θ
0; π0) = 0, then the smooth NRI test statistic

nRS
n(θ̂; θ̂

0
; π̂)

D→ [N q(0, V1)]
T [N q(0, V2)] +

1

2
DT

p I−1ββ cp.
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The first term is the inner product of two positively correlated, q-dimensional, mean

zero normal random vectors, and the second term is bilinear, where Dp is a p dimen-

sional random vector with quadratic components, and cp is a p dimensional constant

vector.

Proof of Theorem 2:

The smooth NRI test statistic is

RS
n(θ̂; θ̂0; π̂) =

[
nȳ(1− ȳ)

]−1∑
i

[yi − ȳ]

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2
,

]
,

where Φ(·) is the standard normal distribution function.

To determine its null reference distribution, Pepe et al. (2013) demonstrate that for

correctly specified nested models (C1), ρ(θ0;θ
0; π0) = 0 iff γ0 = 0. This allows

consideration of a second order Taylor expansion of RS
n(θ̂; θ̂

0
; π̂) around θ̂ = θ̂

0
,

nRS
n(θ̂; θ̂0; π̂) =

[
φ(0)

ȳ(1− ȳ)

]∑
i

[
(β̂ − β̂

0
)Txi + (γ̂ − γ̂0)Tzi

]
[yi − ȳ] + op(1), (A.1)

where φ(0) represents the standard normal density function evaluated at 0, and since

its derivative evaluated at zero, φ′(0) = 0, each element of the matrix in the quadratic

term of the expansion is equal to 0.

To further simplify, note that

n1/2(β̂ − β̂
0
) = −I−1ββ Iβγ[n

1/2(γ̂ − γ0)] + (4n)−1/2I−1ββ d(θ̂; θ̂
0
) + op(n

−1/2) (A.2)

which follows from a second order Taylor series approximation of the score statistic

22



(C3), Uβ(θ) around θ̂ = θ̂
0
, with

d(θ̂; θ̂
0
) =


n1/2(θ̂ − θ̂

0
)T [n−1H(1)(θ̂

0
)]n1/2(θ̂ − θ̂

0
)

...

n1/2(θ̂ − θ̂
0
)T [n−1H(p)(θ̂

0
)]n1/2(θ̂ − θ̂

0
)

 and H(j)(θ) =
∂2Uβj(θ)

∂θ∂θT
.

Substituting (A.2) into (A.1),

nRS
n(θ̂; θ̂

0
; π̂) =

[
φ(0)

ȳ(1− ȳ)

]
× (A.3){[

n1/2(γ̂ − γ0)
]T [

n−1/2
∑

i

(
zi − IγβI−1ββxi

)
(yi − ȳ)

]
+

1
2

[
d(θ̂; θ̂

0
)
]T
I−1ββ [n−1

∑
i xi(yi − ȳ)]

}
+ op(1).

To obtain the result in Theorem 2, consider the elements in (A.3),

φ(0)

ȳ(1− ȳ)

p→ φ(0)

π0(1− π0)

n1/2(γ̂ − γ0)
D→ N q(0, Vγ)

n−1
∑
i

xi(yi − ȳ)
p→ cp

d(θ̂; θ̂
0
)

D→ Dp

The remaining element is

n−1/2
∑
i

(
zi − IγβI−1ββxi

)
(yi − ȳ) .

First, under the null

n−1
∑
i

(
zi − IγβI−1ββxi

)
(yi − ȳ)

p→ EX,Z

{
(Z − IγβI−1ββX)(G(β0TX)− π0)

}
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which is rewritten as

EX,Z

{
(Z∗ − IγβI−1ββX∗)(W

−1/2
X [G(β0TX)− π0])

}
(A.4)

where Z∗ = ZW
1/2
X , X∗ = XW

1/2
X , and WX = var[r(β0TX)|X].

The motivation for the weight WX comes from the Bernoulli loglikelihood (C2, C3)

Iββ = E[X∗X
T
∗ ] Iγβ = E[Z∗X

T
∗ ]

and the recognition that

EX,Z
{

(Z∗ − IγβI−1ββX∗)X
T
∗
}

= 0,

a q × p matrix of zeros.

Therefore by projection theory (Tsiatis 2006),

E[Z∗|X∗] = IγβI−1ββX∗

and so the expectation in (A.4) is equal to zero.

It now follows from the central limit theorem,

n−1/2
∑
i

(
zi − IγβI−1ββxi

)
(yi − ȳ)

D→ N q(0, V2).

Theorem 2 is the result of Slutsky’s theorem applied to the elements in (A.3).

Theorem 3. Assume the binary regression models in (C1) are properly specified and

the covariate vectors x and z have dimension p and q, respectively. If ρ(θ0;θ
0; π0) = 0,

then

nT Sn (θ̂; θ̂
0
; π̂)

D→ kχ2
q,
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where k = φ(0)[π0(1−π0)]−1, φ(0) is the standard normal density function evaluated

at 0, and χ2
q is a chi-square random variable with q degrees of freedom.

Proof of Theorem 3:

The mNRI test statistic is,

nT Sn (θ̂; θ̂0; π̂) = [ȳ(1− ȳ)]−1
∑
i

r(β̂0
T

xi)

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2

]
,

where r(·) is the score residual defined in (C4).

A second order Taylor expansion of T Sn around θ̂ = θ̂
0

results in

nT Sn (θ̂; θ̂0; π̂) =

φ(0)

ȳ(1− ȳ)

[
n1/2(γ̂ − γ0)

]T [
n−1/2

∑
i

r(β̂0
T

xi)
(
zi − IγβI−1ββxi

)]
+ op(1).

This approximation may be further simplified through the recognition that∑
i r(β̂

0
T

xi)
(
zi − IγβI−1ββxi

)
is the efficient score statistic for estimating γ in the

presence of β and evaluated under the constraint γ = 0. It follows that (Bickel,

Klassen, Ritov, and Wellner, 1993)

n−1/2
∑
i

r(β̂0
T

xi)
(
zi − IγβI−1ββxi

)
= [Iγγ]−1[n1/2(γ̂ − γ0)] + op(1),

and therefore,

nT Sn (θ̂; θ̂
0
; π̂) =

φ(0)

π0(1− π0)
[
n1/2(γ̂ − γ0)

]T
[Iγγ]−1[n1/2(γ̂ − γ0)] + op(1).

That is,

Pr
(
nT Sn (θ̂; θ̂

0
; π̂) ≤ u

)
= Pr

(
kχ2

q ≤ u
)

where k = φ(0)[π0(1 − π0)]−1 and χ2
q is a chi-square random variable with q degrees

of freedom.
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Theorem 4. Assume the binary regression models for the training and test data

have the same specification and are given in (C1), where the covariate vector x

has dimension p and the covariate vector z has dimension q. Denote the estimated

regression coefficients from the training data by (θ̂, θ̂
0
, π̂), the coefficients from the

test data by (θ̃, θ̃
0
, π̃), and the data (yi,xi, zi) are drawn from the test sample. If

ρ(θ0;θ
0; π0) = 0,

nT Sn (θ̂; θ̂
0
, θ̃

0
; π̃)

D→ k

2

2q∑
j=1

λjχ
2
j ,

where k is defined in Theorem 3, {χ2
j} are independent chi-square random variables

each with one degree of freedom, and {λj} represent eigenvalues determined from the

product matrix V C, where

V =

 var(γ̃) 0

0 var(γ̂)

 C =

 0 D

D 0

 .

and D = [var(γ̃)]−1 .

Proof of Theorem 4:

The test statistic for the NRI derived from training and test data are

nT Sn (θ̂; θ̂
0
, θ̃

0
; π̃) = [ȳ(1− ȳ)]−1

∑
i

r(β̃0
T
xi)

[
Φ(β̂

T
xi + γ̂Tzi − β̂0

T

xi)−
1

2

]
.

Employing the arguments provided in the proof of Theorem 3, the smooth mNRI may

be asymptotically approximated by

nT Sn (θ̂; θ̂
0
, θ̃

0
; π̃) =

[
φ(0)

π0(1− π0)

]
[n1/2(γ̂ − γ0)]

T [Iγγ]−1[n1/2(γ̃ − γ0)] + op(1).

The test statistic T Sn is bilinear, due to the different coefficient estimates (γ̂, γ̃) from
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the training and test data. This statistic may be transformed to the quadratic

k

2

 (γ̂ − γ0)

(γ̃ − γ0)


T  0 D

D 0


 (γ̂ − γ0)

(γ̃ − γ0)

 .
It follows from Baldessari (1967) that as n→∞,

Pr
(
nT Sn (θ̂; θ̂

0
, θ̃

0
; π̃) ≤ t

)
= Pr

(
k

2

2q∑
j=1

λjχ
2
j ≤ t

)
.
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TABLE 1. Type 1 error for the NRI and the modified NRI

test procedures using a single sample

ρ = 0 ρ = 0.5

n π0 µX mNRI NRI mNRI NRI

test test test test

200 0.25 0.25 0.0494 0.0468 0.0496 0.0504

0.50 0.0504 0.0578 0.0466 0.0582

0.75 0.0484 0.0776 0.0470 0.0724

1.00 0.0452 0.1046 0.0494 0.1034

0.50 0.25 0.0508 0.0574 0.0516 0.0678

0.50 0.0488 0.0820 0.0546 0.0804

0.75 0.0538 0.1028 0.0500 0.1008

1.00 0.0510 0.1242 0.0444 0.1276

0.75 0.25 0.0454 0.0466 0.0444 0.0466

0.50 0.0432 0.0588 0.0462 0.0568

0.75 0.0464 0.0756 0.0474 0.0832

1.00 0.0426 0.1032 0.0462 0.1036

500 0.25 0.25 0.0522 0.0630 0.0456 0.0604

0.50 0.0468 0.0926 0.0510 0.1040

0.75 0.0496 0.1468 0.0480 0.1392

1.00 0.0572 0.2012 0.0502 0.1910

0.50 0.25 0.0596 0.0726 0.0494 0.0646

0.50 0.0494 0.1128 0.0478 0.1116

0.75 0.0462 0.1532 0.0482 0.1590

1.00 0.0582 0.2152 0.0506 0.2076

0.75 0.25 0.0470 0.0624 0.0480 0.0650

0.50 0.0480 0.0976 0.0504 0.0940

0.75 0.0470 0.1488 0.0506 0.1472

1.00 0.0474 0.1946 0.0490 0.1864

mNRI test = Modified NRI test with Theorem 3 reference distribution

NRI test = NRI test with normal reference distribution

n = Sample size within each simulation; ρ = Correlation between covariates (X,Z);

π0 = Pr(Y = 1); µX = Population mean for X when Y = 1
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TABLE 2. Type 1 error for the NRI and the modified NRI

test procedures using a training and an independent test sample

ρ = 0 ρ = 0.5

n π0 µX mNRI NRI mNRI NRI

test test test test

200 0.25 0.25 0.0518 0.0492 0.0490 0.0454

0.50 0.0500 0.0586 0.0528 0.0590

0.75 0.0506 0.0750 0.0498 0.0718

1.00 0.0524 0.1128 0.0468 0.1058

0.50 0.25 0.0500 0.0602 0.0508 0.0556

0.50 0.0456 0.0722 0.0534 0.0818

0.75 0.0496 0.0966 0.0486 0.0984

1.00 0.0568 0.1210 0.0484 0.1288

0.75 0.25 0.0516 0.0486 0.0532 0.0520

0.50 0.0496 0.0582 0.0478 0.0640

0.75 0.0492 0.0834 0.0516 0.0834

1.00 0.0560 0.1076 0.0484 0.1070

500 0.25 0.25 0.0510 0.0620 0.0528 0.0634

0.50 0.0528 0.1060 0.0494 0.0932

0.75 0.0542 0.1340 0.0532 0.1448

1.00 0.0536 0.2012 0.0554 0.1862

0.50 0.25 0.0594 0.0684 0.0480 0.0654

0.50 0.0518 0.1068 0.0560 0.1140

0.75 0.0516 0.1510 0.0488 0.1528

1.00 0.0524 0.1924 0.0464 0.1922

0.75 0.25 0.0526 0.0628 0.0564 0.0610

0.50 0.0530 0.0980 0.0498 0.0998

0.75 0.0514 0.1476 0.0500 0.1302

1.00 0.0504 0.1894 0.0486 0.1862

mNRI test = Modified NRI test with Theorem 4 reference distribution

NRI test = NRI test with normal reference distribution

n = Sample size within each simulation; ρ = Correlation between covariates (X,Z);

π0 = Pr(Y = 1); µX = Population mean for X when Y = 1
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TABLE 3. NRI and modified NRI for the prostate data

Omitted factor NRI P-value mNRI P-value

NRI test mNRI test

Albumin 0.116 0.236 0.018 0.920

Alkaline phosphatase 0.336 < 0.001 0.106 0.014

Circulating tumor cells 0.627 < 0.001 0.190 < 0.001

Gleason score 0.086 0.381 0.034 0.849

Hemoglobin 0.351 < 0.001 0.088 0.020

Lactate dehydrogenase 0.027 0.787 0.056 0.322

Prostate specific antigen 0.359 < 0.001 0.080 0.138

Serum testosterone 0.195 0.046 0.044 0.490

P-value NRI test = P-value generated from the NRI test procedure with a normal

reference distribution

P-value mNRI test = P-value generated from the mNRI test procedure with the

reference distribution specified in Theorem 3.
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FIGURE 1 Event probabilities for each individual estimated from the base model

and the expanded model. The expanded model includes all eight biomarkers and the

base model omits the biomarker serum testosterone. The symbols ’o’ and ’x’ represent

individuals that survived 24 months from the start of treatment and those who did

not.
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FIGURE 2 Event probabilities for each individual estimated from the base model

and the expanded model. The expanded model includes all eight biomarkers, and

the base model omits the biomarker circulating tumor cells. The symbols ’o’ and ’x’

represent individuals that survived 24 months from the start of treatment and those

who did not.
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