

# Precision Medicine in Supportive Oncology: Identifying Candidate Genetic Variants Timothy Genovese, B.S., Irene Orlow, Ph.D., and Jun Mao, M.D., M.S.C.E. Memorial Sloan Kettering Cancer Center, Department of Integrative Medicine

### Introduction

- Precision medicine is a rapidly developing field that has produced many advances in cancer care, including prognostic information and genetic targets for therapy, but it has been largely neglected in symptom management for cancer survivors and supportive cancer care.
- Insomnia is a common symptom experienced by more than half of cancer patients; the current gold standard of treatment is modified cognitive behavioral therapy for insomnia (CBT-I), although emerging evidence supports the effectiveness of acupuncture for treating insomnia in cancer.

# Objective

• The current study seeks to identify associations between selected genetic variants and the odds of treatment response in order to determine who is most likely to respond to acupuncture or psychotherapy for insomnia in cancer

## Methods

- Biological specimens were obtained from 132 cancer patients in a clinical trial, Choosing Options for Insomnia in Cancer Effectively (CHOICE), that randomized subjects to receive acupuncture (n=68) or CBT-I (n=64) for insomnia
- The outcome of interest was change in Insomnia Severity
  Index score; patients were categorized as responders to
  therapy if their score was reduced at end-of-treatment by at
  least 8 points from baseline
- I conducted a series of three PubMed searches:
  - (gene OR polymorphism) AND insomnia
  - (gene OR polymorphism) AND acupuncture response
  - (gene OR polymorphism) AND treatment response AND cognitive behavioral therapy
- I then subjected promising genetic polymorphisms to two exclusion criteria:
  - Minor allele frequency < 0.10</li>
  - Uncertain effect on gene product function and lack of further support from the literature

### Results

- A total of 1041 articles were screened and 90 full-text articles were retrieved
- 30 unique genetic variants were identified by the literature search before exclusion criteria were applied
- After applying exclusion criteria, 15 variants were included and 15 excluded (Figure 1)
- Polymorphisms were tiered on the basis of minor allele frequency and supportive level of support from the literature
- Included variants are associated with the nervous system, the immune system, and signal transduction (Table 1)

### Figure 1. Flow Diagram of Genetic Variant Selection

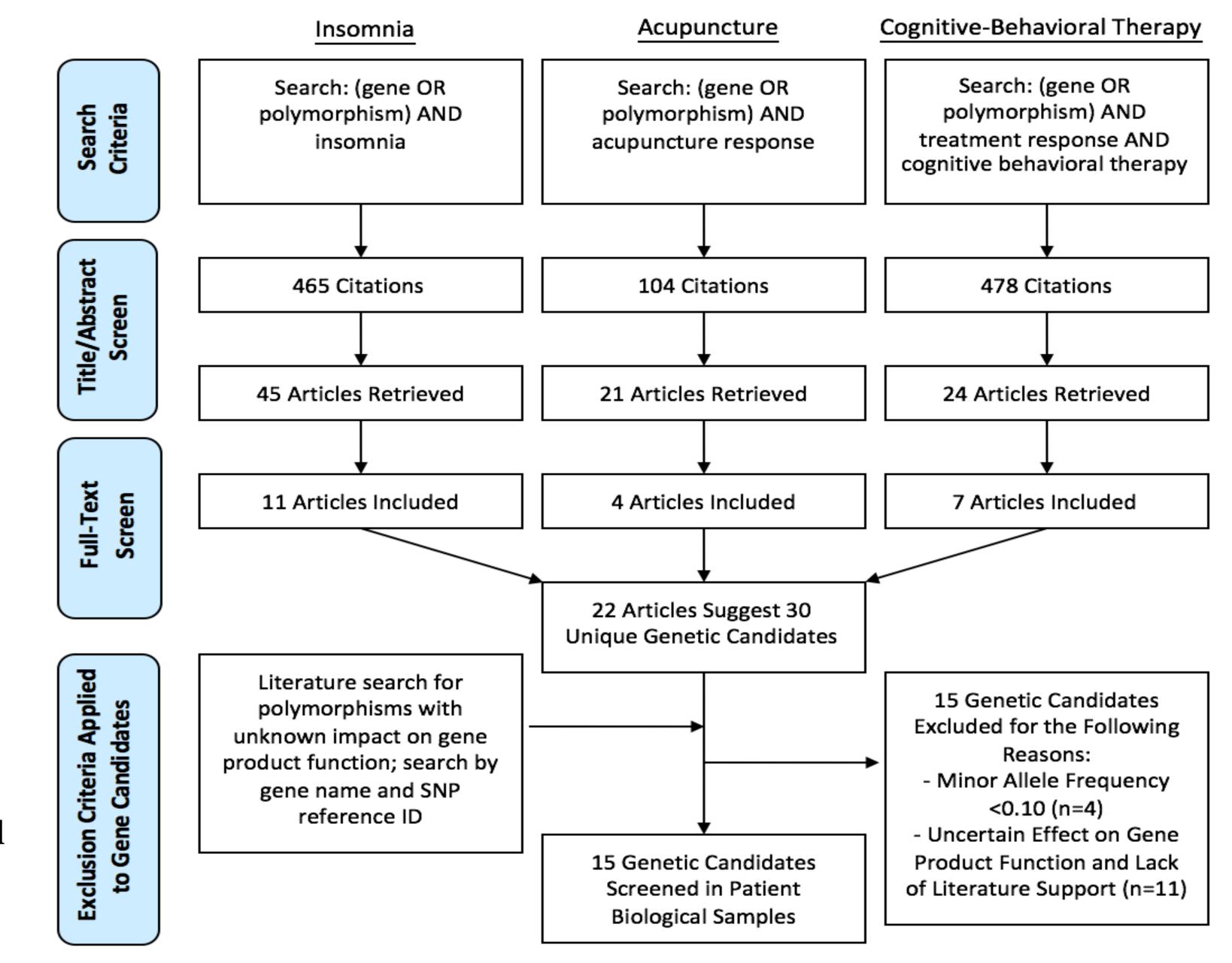



Table 1. Selected Genetic Variants

| Gene   | Protein Product                                                                      | Polymorphism                        | Major>minor allele | Global Minor<br>Allele Frequency | Location/Context       | Reported Effects & Associations                                                                                                                                                      |
|--------|--------------------------------------------------------------------------------------|-------------------------------------|--------------------|----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BDNF   | Brain-Derived Neurotrophic Factor                                                    | rs6265                              | G>A                | 0.201                            | Val66Met               | Several neuropsychiatric disorders (A allele)                                                                                                                                        |
| AHRR   | Aryl Hydrocarbon Receptor<br>Repressor                                               | rs2292596                           | C>G                | 0.380                            | Exonic<br>Pro189Ala    | Insomnia in women<br>(C allele)                                                                                                                                                      |
| COMT   | Catechol-O-Methyltransferase                                                         | rs4680                              | G>A                | 0.472                            | Exonic<br>Val158Met    | •Reduced enzymatic activity •Neurological and psychiatric disorders •Response to medication (A allele)                                                                               |
| ANKK1  | Ankyrin Repeat and Kinase Domain Containing 1 (associated with Dopamine D2 Receptor) | rs1800497                           | C>T                | 0.296                            | Exonic<br>Glu713Lys    | T allele associated with decreased dopamine binding, addiction, poorer antidepressant response                                                                                       |
| SLC6A4 | Serotonin Transporter                                                                | Long (16) vs. short (14)<br>Repeats | L>S                | ~0.400                           | Promoter region        | "Short allele" causes less transcription of gene and is associated with anxiety-related personality traits; phenotype is either microdeletion or presence of the G allele at rs25531 |
|        |                                                                                      | rs25531                             | A>G                | 0.138                            | Promoter region        |                                                                                                                                                                                      |
| MAOA   | Monoamine Oxidase A                                                                  | rs6323                              | T>G                | 0.347                            | Exonic                 | G allele codes for more active form of enzyme, associated with lower placebo response                                                                                                |
| CLOCK  | Circadian Locomotor Output Cycles Kaput Protein                                      | rs1801260                           | T>C                | 0.230                            | 3' untranslated region | C allele is associated with higher prevalence of depression and sleep disturbance                                                                                                    |
| FKBP5  | FK506 Binding Protein 5                                                              | rs4713916                           | A>G                | 0.222                            | Promoter region        | A allele is associated with stronger antidepressant response and better recovery from psychosocial stress without intervention                                                       |
| NFKB2  | Necrosis Factor Kappa B2                                                             | rs1056890                           | C>T                | 0.290                            | 3' untranslated region | T allele is associated with long daytime napping and evening chronotype preference; also associated with less severe sleep disturbance                                               |
| IL1R2  | Interleukin 1 Receptor 2                                                             | rs11674595                          | T>C                | 0.187                            | Intronic               | Each dose of T and A allele, respectively, is associated with greater sleep disturbance, lower quality of life, and lower depressive symptom progression over time                   |
|        |                                                                                      | rs7570441                           | G>A                | 0.467                            | Intronic               |                                                                                                                                                                                      |
| RBFOX3 | RNA-Binding Protein, Fox-1<br>Homolog 3                                              | rs9900428                           | G>A                | 0.215                            | Intronic               | A and T (minor) alleles are associated with less sleep time latency                                                                                                                  |
|        |                                                                                      | rs9907432                           | G>A                | 0.163                            | Intronic               |                                                                                                                                                                                      |
|        |                                                                                      | rs7211029                           | C>T                | 0.230                            | Intronic               |                                                                                                                                                                                      |

### Conclusions

- I selected 15 genetic variants associated with signal transduction, the immune system, and the nervous system
- I designed PCR primers using the AgenaCx Assay Design Suite and previously-reported assays for genotyping
- I hypothesize that the selected genes will associate with treatment response, warranting further investigation in a larger study

### **Future Direction**

- For 132 patients, germline DNA will be extracted from blood and saliva samples and genotyped
- Reduction in insomnia severity scale score will be analyzed by genotype and treatment modality
- Associations between genotype at each locus and the proportion of individuals experiencing a significant reduction in insomnia will be analyzed for each treatment modality
- Identification of normal genetic variants associated with treatment response is a step in the direction of personalized medical care

# Acknowledgements

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number R25CA020449. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Research reported in this publication was also funded through a Patient-Centered Outcomes Research Institute (PCORI) Award (CER-1403-14292)

Thank you to Jun Mao for active and engaged mentorship – I would not have been able to complete this project without your support, advice, and interest in my personal development.

Thank you as well to Lydia Singerman, Sally Romero, and the rest of the Integrative Medicine Department at Sloan Kettering for your support and contributions to this project.