Long-term thyroid effects of cancer treatments

Monica Girotra, MD
Endocrine Service
Thyroid effects of cancer treatments

- Hypothyroidism
- Benign and malignant thyroid nodules
Common symptoms of hypothyroidism

- Fatigue and weakness
- Cold intolerance
- Weight gain
- Constipation
- Dry skin
External neck irradiation and Hypothyroidism

- 25 Gy [2500 rads]
- Effect is dose-dependent
- Onset gradual
External neck irradiation and Hypothyroidism

• Develops at a median of 1.4 to 1.8 years (range 0.3 to 7.2 years)

• Many patients can have subclinical hypothyroidism for several years before developing overt disease
External neck irradiation and Hypothyroidism

• Study of patients with Hodgkin lymphoma
 – 1677 pts treated with neck RT
 – Followed for up to 20 years
 – Cumulative incidence of hypothyroidism was 30 %

Total Body Irradiation and thyroid dysfunction

- TBI often used before BMT
- May also cause thyroid-destructive effect
Methods of screening for hypothyroidism

• TSH, FT4

• TSH most sensitive screen

• Pts with a high dose exposure can be screened with a yearly history, physical exam, free T4 and TSH.
Diagnosis of primary hypothyroidism
Diagnosis of primary hypothyroidism

- Hypothyroidism: Elevated TSH, low FT4
- Subclinical hypothyroidism: Elevated TSH, FT4
Management of hypothyroidism

- Thyroid hormone replacement (levothyroxine)
- Full replacement dose = 1.6 mcg/kg/day
- Start at a lower dose in older patients/patient with h/o CAD and titrate up to full replacement dose
External neck irradiation and benign and malignant thyroid nodules

• Radiation exposure of the thyroid during childhood is the most clearly defined environmental factor associated with benign and malignant thyroid tumors
External neck irradiation and thyroid cancer

• Excess cancers can occur at doses as low as 10 cGy (centigray, 1 cGy = 1 rad)

• Highest risk at >200-300 cGy
External neck irradiation and thyroid cancer

![Graph showing relative risk vs radiation dose for cancer, benign, and all outcomes]
External neck irradiation and thyroid cancer

• **Younger** the age at the time of radiation exposure the **higher the risk** (<15 yo)

• The effects of radiation persist for several decades and then eventually wane
External neck irradiation and thyroid cancer

- Increased risk of thyroid cancer resulting from XRT during childhood persists for at least four decades

- Thereafter, begins to decline, but does not reach baseline
Follow-up of patients with h/o external neck RT

• If the initial examination is normal and the level of risk is low
 – annual or every other year palpation is reasonable
Follow-up of patients with h/o external neck RT

- If the risk is high (usually based on large dose exposure at a young age) or exam findings are not normal, then more careful follow-up is indicated

 - Annual palpation and serial thyroid ultrasonography
Palpating the thyroid gland

To palpate the thyroid gland, you’ll need to stand behind the patient. Give the patient a cup of water, and have him extend his neck slightly. Place the fingers of both hands on the patient’s neck, just below the cricoid cartilage and just lateral to the trachea. Tell the patient to take a sip of water and swallow. The thyroid gland should rise as he swallows. Use your fingers to palpate laterally and downward to feel the whole thyroid gland. Palpate over the midline to feel the isthmus of the thyroid.
Thyroid ultrasound uses high frequency sound waves to make a picture of the thyroid gland.
Thyroid Fine Needle Aspiration

• Fine-needle-aspiration (FNA) biopsy is the most informative method for characterizing thyroid nodules

• Accuracy of FNA appears to be similar for nodules in the general population and in patients exposed to radiation
Thyroid FNA
US-guided FNA

- US-guided FNA often preferred
- Performed by the US radiologist at MSK
Thyroid FNA in patients with h/o XRT

• In irradiated patients:

 – all accessible nodules usually those larger than 1.0 to 1.5 cm should be biopsied whether they are palpable or detected by US alone