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Abstract

3′-untranslated regions (3′-UTRs) are the noncoding parts of mRNAs. Com-
pared to yeast, in humans, median 3′-UTR length has expanded approx-
imately tenfold alongside an increased generation of alternative 3′-UTR
isoforms. In contrast, the number of coding genes, as well as coding region
length, has remained similar. This suggests an important role for 3′-UTRs
in the biology of higher organisms. 3′-UTRs are best known to regulate
diverse fates of mRNAs, including degradation, translation, and localiza-
tion, but they can also function like long noncoding or small RNAs, as has
been shown for whole 3′-UTRs as well as for cleaved fragments. Further-
more, 3′-UTRs determine the fate of proteins through the regulation of
protein–protein interactions. They facilitate cotranslational protein com-
plex formation, which establishes a role for 3′-UTRs as evolved eukary-
otic operons. Whereas bacterial operons promote the interaction of two
subunits, 3′-UTRs enable the formation of protein complexes with diverse
compositions. All of these 3′-UTR functions are accomplished by effector
proteins that are recruited by RNA-binding proteins that bind to 3′-UTR
cis-elements. In summary, 3′-UTRs seem to be major players in gene regu-
lation that enable local functions, compartmentalization, and cooperativity,
which makes them important tools for the regulation of phenotypic diversity
of higher organisms.
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INTRODUCTION

Regulation of gene function through 3′-untranslated regions (3′-UTRs) is a relatively new field
as only recent sequencing technology has provided us with the full landscape of 3′-UTRs across
species and cell types. Before sequencing technology was available, detailed functional and mech-
anistic studies were performed only on a few model 3′-UTRs. Although these model 3′-UTRs
have contributed substantially to our understanding of 3′-UTR biology, the conclusions drawn
about their regulatory functions have focused primarily on the role of 3′-UTRs in gene regulation.
3′-UTRs determine protein levels through regulation of mRNA stability and translation mediated
largely by AU-rich elements and miRNAs (6, 7, 21). 3′-UTRs also enable local translation through
the regulation of mRNA localization (82, 98). In this review, some of the general principles that
were learned from these model 3′-UTRs will be discussed, but I mostly focus on newer findings
that may change our view about the functions of 3′-UTRs. This includes the discovery that 3′-
UTR length can be regulated by alternative cleavage and polyadenylation (APA) (81, 87, 106), as
well as the observation that 3′-UTRs may be cleaved off and act like long noncoding RNAs living
their own life independent of the coding region (17, 69, 90). Lastly, 3′-UTRs were found to be able
to mediate protein–protein interactions (PPIs), a discovery which has widespread consequences
for protein complex formation, protein localization, and protein functions (9, 19, 31, 45).

3′-UTRs regulate gene expression through the binding of RNA-binding proteins (RBPs) (5, 15,
51, 93). RBPs bind to 3′-UTR cis-elements and mediate 3′-UTR functions through the recruitment
of effector proteins. As RBPs interact with diverse effector proteins, each 3′-UTR regulatory
element has the potential to carry out several different functions, depending on the cell type or
cellular state. The cellular state also determines the RBPs that are able to access 3′-UTRs at a given
moment. As such, 3′-UTR functions can be assessed only in the context of their bound RBPs. The
composition of RBPs bound to a 3′-UTR at a given moment is dynamic and can change depending
on the local environment, e.g., through addition of posttranslational modifications (PTMs), local
expression of other RBPs, and interactions with membranes and cytoskeletal filaments (59, 60,
118). RBP binding is also influenced by secondary and tertiary RNA structure formation that
regulates the accessibility of 3′-UTRs (2, 42, 68, 122). Importantly, RBPs cooperate with other
bound RBPs to enable functional specificity in vivo. Answers to open questions will ultimately
stimulate new avenues of 3′-UTR research in coming years.

In 1958, Francis Crick wrote, “Watson said to me, a few years ago, ‘The most significant thing
about the nucleic acids is that we don’t know what they do.’ By contrast the most significant
thing about proteins is that they can do almost anything” (24, p. 138). In the same article, Crick
published his hypothesis of the central dogma, in which he stated that the “transfer of information
from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from
protein to protein, or from protein to nucleic acid is impossible” (24, p. 153). The simplicity of the
idea was widely embraced and shaped the protein-centric view of cell biology for the next 50 years.
However, in addition to the coding region—which is translated into protein—mRNAs also consist
of untranslated regions at the 5′ and 3′ ends, which contain important regulatory elements (103).
The novel finding that the nucleic acids located within 3′-UTRs can mediate PPIs, and thus can
determine protein functions without altering the amino acid sequence (9), has the potential to
lead to a less protein-centric view of cell biology.

EXPANSION OF 3′-UTRs DURING EVOLUTION
OF MORE COMPLEX ORGANISMS

3′-UTRs are ancient components of mRNAs and are found in all three domains of life—bacteria,
archaea, and eukaryotes. Despite the compact genomes found in unicellular organisms, sequencing
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Figure 1
Characteristics of 3′-UTR isoforms. (a) Correlation between genome size and median 3′-UTR length in uni- and multicellular
organisms. Genome size was obtained from Reference 97. 3′-UTR length was obtained from References 26–28, 58, 81, 107, 130, and
139. (b) Sequence conservation shown as PhastCons scores for genes that generate three 3′-UTRs (n = 1,939) for the regions between
the stop codon and the first pA site (short 3′-UTR), the first to the second pA site (middle 3′-UTR), and the second to the last pA site
(distal 3′-UTR). (c) Alternative 3′-UTRs are expressed in a cell type–specific manner. Shown are 3′-seq data for skeletal muscle (top) and
naive B cells (bottom) obtained from Reference 81. The gene model ( gray) is drawn to scale and depicts the last exon. Abbreviations:
3′-UTR, 3′-untranslated region; Mbp, millions of base pairs; nt, nucleotide; pA, polyadenylation.

technology has revealed that their mRNAs contain 3′-UTRs (26, 27, 107, 139). In unicellular
genomes, medium 3′-UTR length correlates with genome size (Figure 1a) and is approximately
60 nucleotides (nt) in the bacterial and archaeal species sequenced so far and approximately 150 nt
in yeast. Characteristic of the evolution of more complex multicellular organisms is a substantial
expansion in genome size that also strongly correlates with increased 3′-UTR length (28, 58, 81,
130) (Figure 1a). For example, median 3′-UTR length increased from approximately 140 nt in
worms to approximately 1,200 nt in humans (86). Intriguingly, the increase in 3′-UTR length
correlates with organismal complexity when measured as the number of cell types found in an
organism (20).

Notably, although they are less conserved than coding regions, 3′-UTRs still show a high
degree of sequence conservation across species (117, 143), which is exemplified by the distribu-
tion of highly conserved elements. The percentage of base pairs in vertebrate genomes that are
highly conserved is 0.14%; however, these elements are enriched 22-fold in coding regions and
11-fold in 3′-UTRs (117). Furthermore, 3′-UTRs often contain many islands of sequence conser-
vation that are similar in conservation to coding regions, and these islands often contain binding
sites for miRNAs or RBPs (34, 143). Taken together, the increase in 3′-UTR length during the
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development of higher organisms and the enrichment of conserved sequence elements within
3′-UTRs suggests a critical role for 3′-UTRs in the regulation of biological complexity (86).

ALTERNATIVE CLEAVAGE AND POLYADENYLATION REGULATES
THE PRESENCE AND ACCESSIBILITY OF REGULATORY ELEMENTS
IN 3′-UTRs

Further evidence for the importance of 3′-UTRs is the fact that the presence of functional el-
ements is regulated through the process of APA. In archaea, 30% of genes generate alternative
3′-UTRs with a median length difference of 54 nt (26). In humans, the median 3′-UTR length of
genes that produce alternative 3′-UTR isoforms is 2,462 nt, and the majority of genes (51–79%)
express alternative 3′-UTRs (28, 81; I. Singh & C. Mayr, unpublished data). Thus, the number of
genes that generate alternative 3′-UTRs has expanded alongside the increase in 3′-UTR length
during the evolution of multicellular organisms.

Intuitively, one would think that longer 3′-UTRs mediate more regulatory functions as they
contain more regulatory elements. However, this is only partially the case, as it was found that
especially long 3′-UTRs are less responsive than expected to miRNA regulation (2, 68). One
reason for this relationship seems to be a decreased accessibility of regulatory elements because
of occlusive structures in long 3′-UTRs. As was shown several years ago, miRNA-binding sites
located in the middle of 3′-UTRs mediate less repression than do sites at the ends of 3′-UTRs
(42), which is also true for alternative 3′-UTRs (50). Better accessibility is supported by cross-
linking immunoprecipitation (CLIP) studies demonstrating an enrichment of RBP-binding sites
toward the very ends of 3′-UTRs (95, 136). Interestingly, increased accessibility correlates with
increased sequence conservation in the last few hundred nucleotides toward the ends of alternative
3′-UTR isoforms (Figure 1b) (I. Singh & C. Mayr, unpublished data). The general association
between RNA sequence conservation and accessibility in 3′-UTRs is reminiscent of what was
also found in introns and ribozymes (109, 122). The generation of alternative 3′-UTRs seems
to enable increased accessibility of 3′-UTR regulatory elements that are otherwise buried within
long 3′-UTRs.

In addition to facilitating the accessibility of regulatory elements, alternative 3′-UTRs can also
differentially regulate gene expression. Most genes that generate alternative 3′-UTR isoforms have
evolved ways to regulate 3′-UTR ratios (81). Embryonic tissues tend to express shorter 3′-UTRs
than differentiated tissues (63, 73, 115, 130). Across differentiated tissues, alternative 3′-UTRs
are usually expressed in a cell type–specific manner (Figure 1c) (33, 81) and can change through
activation of signaling pathways (32, 106) or disease (83, 87, 125). Usage of the most proximal
polyadenylation (pA) site in these 3′-UTRs results in mRNA transcripts with rather short 3′-UTRs
(median length of 400 nt). These are similar in length to mRNA transcripts generating only one
3′-UTR isoform (median length of 505 nt). This indicates that usage of proximal pA sites can
result in the loss of the majority of regulatory elements present in longer 3′-UTRs.

BIOLOGICAL FUNCTIONS OF 3′-UTRs

3′-UTRs are best known to determine the fate of mRNAs through the regulation of mRNA
stability, translation, and mRNA localization. 3′-UTR functions are mediated by RBPs that bind
to 3′-UTRs in a sequence- or structure-dependent manner. However, RBPs act only as adaptors
that connect 3′-UTRs to effector proteins. Thus, the biological consequences that are mediated
by 3′-UTRs depend on the functions of the effector proteins. For example, mRNA destabilization
is achieved through RBPs that recruit a deadenylase (Figure 2a) (147), whereas translational
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repression is accomplished by RBPs that recruit decapping enzymes (22). 3′-UTRs also determine
the fate of newly translated proteins. This is facilitated by RBPs that recruit effector proteins that
are transferred in a cotranslational manner onto the nascent peptide chain (9) (Figure 2b). This
indicates that 3′-UTRs can mediate PPIs, and thus, regulate both protein localization and protein
function (9).

3′-UTRs Mediate Protein–Protein Interactions

During translation of mRNAs, the nascent peptide chain and the 3′-UTR come into close prox-
imity which seems to enable the transfer of proteins from the vicinity of the 3′-UTR onto the
nascent peptide chain. Recruitment of protein interaction partners (PIPs) to the nascent peptide
chain by 3′-UTRs may increase the association rate of the interacting proteins, and thus, may
enable 3′UTR-dependent PPIs.

3′-UTRs can regulate protein localization independently of mRNA localization. It is com-
monly thought that the information for the formation of PPIs is fully contained within the interact-
ing proteins themselves. This is illustrated in experiments studying PPIs by the use of constructs
that contain only the coding regions (54). It is also generally assumed that proteins find their
binding partners through diffusion and random collision. However, Berkovits & Mayr (9) made
an observation that is not consistent with this prevalent model through their discovery that the
3′-UTR of CD47 is required for the PPI between CD47 and SET. CD47 is known as a plasma
membrane receptor that acts as a don’t-eat-me signal (55), and the CD47 gene uses APA to pro-
duce mRNA transcripts with either a short or a long 3′-UTR. Berkovits & Mayr called the protein
that was generated from the short CD47 3′-UTR isoform CD47-SU and called the protein that
was made from the long 3′-UTR isoform CD47-LU. Although CD47-SU and CD47-LU have
identical amino acid sequences, Berkovits & Mayr demonstrated that, of the two, only CD47-LU
interacts with SET (Figure 2c). This indicated that the formation of the PPI between CD47-LU
and SET required recruitment of SET by the long CD47 3′-UTR (9). This PPI has functional
consequences, as it promotes plasma membrane localization of CD47-LU, whereas CD47-SU is
predominantly expressed intracellularly.

Importantly, Berkovits & Mayr demonstrated that the difference in CD47 protein localization
was not due to differences in mRNA localization. Instead, a model was proposed and experimentally
verified in which the RBP HuR binds only to the long, not the short, CD47 3′-UTR. HuR binding
was responsible for the recruitment of SET to the long 3′-UTR (9, 13). During translation of the
CD47 polypeptide chain, SET seems to be transferred onto the newly made CD47-LU protein,
where SET binds to positively charged amino acids in the cytoplasmic domains of CD47-LU.
SET also interacts with RAC1, and active RAC1 mediates efficient surface localization of CD47-
LU (9, 124). In contrast, SET is not recruited to the short CD47 3′-UTR and does not interact
with CD47-SU, leading to inefficient localization of CD47-SU to the plasma membrane. Thus,
CD47-LU largely represents the well-known surface CD47 protein (55).

The study also expanded these findings to show that long 3′-UTRs of genes encoding other
plasma membrane proteins, such as CD44, Integrin α1, and the BAFF receptor, were also able
to increase cell surface expression of their cognate proteins. These candidates were investigated
because they had the minimal requirements necessary for 3′-UTR-dependent protein localiza-
tion. These requirements included HuR-binding sites in their long 3′-UTRs that facilitate SET
recruitment and positively charged amino acids in their cytoplasmic protein domains necessary
for SET binding (9). Therefore, 3′-UTRs can mediate PPIs, and thus they enable subcellular
localization of proteins independently of mRNA localization.

www.annualreviews.org • Regulation by 3′-Untranslated Regions 175
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3′-UTR-mediated prerecruitment of the signal recognition particle to the ribosome. 3′-
UTR-mediated recruitment of proteins to the nascent peptide chain was recently confirmed in
yeast using ribosome profiling of ribosome subpopulations. The 3′-UTRs of membrane protein-
encoding genes, but not the 3′-UTR of a gene encoding a cytosolic protein, can recruit the signal
recognition particle (SRP) to the ribosome before the polypeptide chain encoding the signal
sequence has become exposed (19). The prevailing model of SRP recruitment to ribosomes has
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been that translation of mRNAs encoding secretory proteins begins in the cytoplasm and, following
exposure of the hydrophobic signal sequence at the exit channel of the ribosome, SRP binds to the
signal sequence. This leads to halted translation and transfer of the SRP-bound ribosome to the
surface of the endoplasmic reticulum. Once the ribosome is localized to the endoplasmic reticulum,
translation resumes and the membrane protein is folded into the membrane (135). However,
using co-immunoprecipitation (co-IP) of SRP72 followed by ribosome profiling, Chartron and
colleagues (19) showed that this model is only true for a minority of secretory proteins. For the vast
majority of proteins, SRP is prerecruited to ribosomes in a 3′-UTR-dependent manner before the
signal sequence has been translated and before the nascent peptide chain has become exposed (19).
These findings demonstrate that the selective interaction of SRP with ribosomes that translate
secretory proteins is for the majority of cases not contained within the hydrophobic amino acids
of the nascent peptides, but rather is mediated by elements in the 3′-UTRs of the mRNAs that
are being translated. This suggests that specific 3′-UTRs recruit to the site of translation proteins
that subsequently bind the nascent peptide chain.

Widespread occurrence of cotranslational cognate mRNA–protein complexes. For both
SET and SRP, which are transferred onto the nascent peptide chain in a 3′-UTR-mediated man-
ner, the model contains a complex that consists of a translating ribosome, an mRNA that en-
codes the nascent protein, and the nascent protein with an mRNA-recruited cotranslational PIP
(Figure 2b). Such complexes seem to be widespread in yeast. For example, purification of the
SET1 histone methyltransferase complex revealed an enrichment of SET1 mRNA. SET1 mRNA
copurified with four of the eight proteins of the SET1 histone methyltransferase complex in a
process that was dependent on cytoplasmic expression of the mRNA and on translation (45).
Therefore, it was concluded that a SET1 subcomplex assembles on the nascent SET1 protein
in a cotranslational manner. Using RNA-IP on proteins that do not contain RNA-binding do-
mains, Duncan & Mata (31) showed that such cotranslational complexes occur in 38% of tested
cases (Figure 2b). These data strongly suggest that the protein used for RNA-IP binds to the
nascent polypeptide chain and that cotranslational PPIs that involve the corresponding mRNAs
are widespread.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Models of 3′-UTR-mediated functions. (a) RBPs (red, orange) bound to 3′-UTRs recruit effector proteins (blue) that determine the fate
of mRNAs. (b) RBPs (red, orange) bound to 3′-UTRs recruit effector proteins (blue) that are transferred onto the nascent peptide chain
(dark green), resulting in a 3′-UTR-dependent protein complex. (c) Co-IP of endogenous SET using GFP-trap after transfection of
GFP-CD47-SU or GFP-CD47-LU in HEK293 cells. Two percent of input was loaded. (d ) Model of alternative PIPs recruited by
alternative 3′-UTRs despite the sequence of the short 3′-UTR being fully contained within the long 3′-UTR. It is possible that the
mRNA structure occludes the regulatory elements in the short 3′-UTR within the context of the long 3′-UTR. Effector proteins are
shown in light blue, dark blue, and purple. (e) Model of peripherin mRNA clustering by an RBP that binds to the peripherin 3′-UTR and
clusters the mRNAs through multimerization. This brings nascent peripherin proteins together and may allow them to oligomerize
using microtubules (blue) as scaffold. ( f ) In bacterial operons, genes encoding subunits of protein complexes are in close proximity and
are translated simultaneously. This facilitates protein complex formation. In evolved operons in eukaryotes, the 3′-UTR recruits
various PIPs to the site of translation. This has the advantage of being independent of simultaneous translation of the PIPs and allows
the recruitment of different PIPs that enable formation of substoichiometric protein complexes with diverse compositions. ( g) mRNA
localization through a microtubule motor protein ( purple) that connects the 3′-UTR to cytoskeletal filaments using an RBP (red ) as
adaptor. (h) An actin-binding domain in the N terminus of Abp140 binds to actin filaments and transports the cognate mRNA using
actin retrograde flow. Abbreviations: 3′-UTRs, 3′-untranslated regions; co-IP, co-immunoprecipitation; GFP, green fluorescent
protein; IgG, immunoglobulin G; LU, long 3′-untranslated region; PIP, protein interaction partner; RBP, RNA-binding protein;
SU, short 3′-untranslated region; WB, Western blotting. Panel c adapted from Reference 9.
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Alternative 3′-UTRs mediate the multifunctionality of proteins. In the case of CD47, the
alternative 3′-UTRs not only regulate protein localization but also determine alternative functions
of CD47. When cells that expressed either CD47-LU or CD47-SU were exposed to γ-irradiation,
the cells that expressed CD47-LU survived whereas the cells that expressed CD47-SU died (9).
The functional difference between CD47-SU and CD47-LU was due to alternative 3′-UTR-
dependent PIPs (Figure 2d). As discussed earlier, SET binds to CD47-LU, but not to CD47-SU.
Consequently, the binding domains in CD47-SU are available to interact with proteins other than
SET. The CD47-SU-specific PIPs were shown to be responsible for cell death induction after γ-
irradiation (85). These findings demonstrate that the information that determines protein complex
formation as well as protein function is not always contained within the amino acid sequence; it
can be encoded in the noncoding parts of mRNAs, specifically within 3′-UTRs.

3′-UTR-mediated cotranslational complexes may facilitate homopolymerization of fila-
ments. Taking these new findings into account, earlier experimental evidence can be reinter-
preted. For example, Chang and colleagues (16) studied the assembly of intermediate filaments
in mammalian cells using peripherin as a model. Like the previously mentioned yeast studies,
they identified cotranslational cognate mRNA–protein complexes together with a clustering of
peripherin mRNAs. Interestingly, they showed that mRNA clustering depends on the presence of
the peripherin 3′-UTR, translation of peripherin protein, and polymerized microtubules. Thus, a
model can be proposed in which mRNA clustering facilitates cotranslational homopolymerization
of filaments (Figure 2e). mRNA clustering can be achieved through an RBP that binds and con-
nects different peripherin 3′-UTRs. This brings the ribosomes translating peripherin mRNAs into
proximity with one another so that nascent peripherin subunits can assemble on microtubules.
Such a model is consistent with early reports on the association of nascent peptides, including
vimentin and myosin, with the cytoskeleton (36). As vimentin, myosin, and peripherin are built
through homotypic coiled-coiled interactions, it is possible that polymerization of intermediate
filament chains takes place cotranslationally and involves the coordinated synthesis of mRNAs
that closely associate through their 3′-UTRs.

3′-UTR-mediated protein–protein interactions: open questions and future directions. 3′-
UTR-mediated cotranslational protein transfer is a conserved and widespread mechanism in both
yeast and human cells. An emerging picture from the studies described above is that 3′-UTRs can
assist cotranslational multiprotein complex assembly, protein oligomerization, and the formation
of PPIs (9, 16, 19, 31, 45). These data suggest that although PPIs take place between two proteins,
the initiation of binding is facilitated through recruitment of a PIP by a 3′-UTR. However, the
number of edges of the cotranslational mRNA–protein network seems to be larger in human cells
than in yeast. In yeast, mRNAs recruit only a few mRNA-dependent PIPs, and the recruited PIPs
generally interact with only one to three mRNAs (31, 45). By contrast, in human cells dozens or
even hundreds of 3′-UTR-dependent PIPs have been found (79, 85).

The recruitment of many different 3′-UTR-dependent PIPs may enable the multifunctionality
of proteins, even in the absence of alternative 3′-UTRs. For example, a single 3′-UTR could assist
in the cotranslational formation of several substoichiometric protein complexes or subcomplexes.
For processes that require the presence of several proteins in a specific location, the assumption that
proteins are able to freely diffuse makes it unlikely that all of them are present simultaneously at the
required location. However, through 3′-UTR-dependent formation of subcomplexes that contain
the majority of these factors, only one protein localization event would be necessary. This suggests
that 3′-UTRs may preorganize ligand binding sites of a protein complex. Preorganization reduces
the freedom for binding events of individual components, which, in turn, decreases the number
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of nonproductive configurations and reduces entropy. Such 3′-UTR-dependent preorganization
may even increase reaction rates, as it reduces the freedom of motion of individual proteins (141).
Thus, 3′-UTR-dependent PPIs enable cooperativity.

The topology of the cotranslational complexes that enable 3′-UTR-dependent PPIs is very
reminiscent of translational operons in bacteria. Operons organize genes that encode distinct
subunits of protein complexes to facilitate cotranslational protein complex assembly (116, 140).
Cotranslational 3′-UTR-dependent protein complex assembly can be viewed as an evolved eu-
karyotic operon because the recruitment of PIPs by 3′-UTRs has several key advantages: A lack
of dependency on simultaneous translation of the PIPs makes it more flexible, and the ability to
recruit several different PIPs enables the formation of 3′-UTR-dependent protein complexes with
diverse compositions (Figure 2f ).

3′-UTRs Regulate mRNA Localization

Although it was initially thought that mRNA localization happens only in the case of a few select
mRNAs in polarized cells, it seems that mRNA localization is actually very widespread. Large-scale
localization experiments in Drosophila embryos showed that 71% of mRNAs have a nonuniform
distribution within cells (77).

mRNA localization through association with motor proteins. Localization of mRNAs is
usually mediated by localization signals in 3′-UTRs that are bound by RBPs. These RBPs in turn
bind motor proteins, which result in movement of the mRNAs along filaments of the cytoskeleton
(Figure 2g). One of the best-characterized examples of this is the asymmetric distribution of
ASH1 mRNA to the bud tip during cell division in yeast, which is required for the suppression
of mating type switching in the daughter cells (98). ASH1 mRNA contains four cis-elements,
including one located in the 3′-UTR, which are required for proper localization. These elements
are bound by two RBPs, She2p and She3p. She3p also binds to a myosin motor protein, Myo4p,
which transports the mRNA–protein complex along actin microfilaments to the bud tip.

Other mRNAs, including oskar mRNA in Drosophila oocytes, are transported along micro-
tubules. Local function of Oskar is required to promote the localization of nanos mRNA, which
is translated in the embryo and forms a gradient important for proper embryo patterning (82).
oskar mRNA enters the oocyte from the nurse cells, a step that requires a 3′-UTR element and the
microtubule motor protein dynein (57). Dynein is connected to the 3′-UTR through the RBPs Egl
and BicD, which serve as adaptors (29). After oocyte entry, oskar mRNA uses a different 3′-UTR
element, bound by Tropomyosin1-I/C, which connects oskar mRNA to kinesin-1, a microtubule
motor protein that moves toward the plus end. This results in localization of oskar mRNA to
the posterior pole of the oocyte (37, 56, 152). 3′-UTR-dependent recruitment of motor proteins,
which is mediated by RBPs, has been described for the majority of localized mRNAs, including
CAMK2A, bicoid, and β-actin (82, 91, 112).

Additional mechanisms of mRNA localization. In some cases, RBPs that bind to mRNAs do
not directly interact with motor proteins, but they are connected through additional RBPs that
serve as adaptors, such as BicD or She3p (98). Interestingly, such an adaptor can also be an early
endosome, as was shown for RRM4 in a fungus (8, 70). Another unconventional mRNA transport
mechanism was described for Abp140, which localizes to the distal pole in the yeast mother cell.
It forms a ternary complex consisting of the ribosome, the mRNA, and the nascent polypeptide
chain. The actin-binding domain located in the N terminus of the nascent peptide chain binds to
actin microfilaments and uses actin retrograde transport for localization (Figure 2h) (67).
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mRNA association with membranes and the cytoskeleton. mRNAs and their bound RBPs
often seem to be associated with cytoskeletal filaments or membranes (30, 59). They associate
with cytoskeletal filaments during nucleocytoplasmic transport, but also while mediating their
functions in the cytoplasm. For instance, the RBPs HuD and RAVER1 were shown to inter-
act with actin-binding proteins and with microtubule-associated proteins, respectively (35, 52).
mRNAs also bind to several components of vesicle coats, including COPI and COPII vesicle coat
complexes (127, 146), and were found to localize to the surface of different organelles, such as
mitochondria, endosomes, or the endoplasmic reticulum (25, 38, 60, 105). These examples show
an intimate association between mRNAs, membranes, and the cytoskeleton. Intriguingly, repres-
sion by siRNAs or miRNAs also seems to happen on the surface of the endoplasmic reticulum
(120). However, our understanding of the interactions among mRNAs, membranes, and the cy-
toskeleton is still rudimentary. The association of subgroups of mRNAs through their RBPs with
different parts of the cytoskeleton may not only help to organize their localization but also enable
compartmentalization of 3′-UTR functions (40).

3′-UTRs Play a Role as Independent Information Units

Most often, mRNAs are viewed as the templates for protein synthesis. However, mRNAs or parts
of mRNAs, including cleaved fragments of 3′-UTRs, can also act as regulatory RNAs.

mRNAs act like long noncoding RNAs. For some of the well-studied model mRNAs, it was
shown that the mRNA itself carries out a specific function that is independent of the encoded
protein. This indicates that mRNAs can act as independent information units with functions
similar to long noncoding RNAs. This was first demonstrated for VegT mRNA, which localizes
to the vegetal pole in Xenopus oocytes (47). Its deletion impaired anchoring of other vegetal
pole–associated mRNAs, including BicC and Wnt11 mRNAs. This function was specific to VegT
mRNA, as inhibition of VegT translation did not have such an effect. A protein-independent
role was also found for oskar mRNA (61). oskar mRNA, but not Oskar protein, is required for
the completion of oogenesis, as deletion of oskar mRNA results in an eggless phenotype (61).
Importantly, expression of the oskar 3′-UTR was sufficient to rescue this phenotype, but the
mechanism of action is currently unknown. It was speculated that oskar mRNA may localize or
sequester an RBP. Alternatively, it may play a structural role, as was suggested for VegT mRNA
(47, 61).

Expression of 3′-UTRs independent from the coding region. While analyzing CAGE li-
braries from human, mouse, and fly tissues, Mercer et al. (90) found 3′-UTRs that contained 5′

caps. Although this was surprising, it was not a rare event: Thousands of genes have CAGE tags in
their 3′-UTRs, including a subset of genes conserved between mouse and human transcripts (90).
Several capped 3′-UTRs displayed discordant expression with the coding regions, which means
that their expression is likely autonomous. Discordant expression was also seen in an independent
study that analyzed polysome-derived mRNAs from mouse neurons (69). For several candidates,
RNA-seq data revealed higher expression of the coding region than of the 3′-UTR, a finding
likely explained by 3′-UTR shortening due to APA in this cell type. However, other candidates
showed the opposite pattern, as they had substantially higher expression of the 3′-UTR compared
to the coding region. Sox11 was one of the most striking examples, with 6,000 reads mapping
to the 3′-UTR and only eight reads mapping to the coding region. The expression difference of
additional transcripts was less dramatic but still more than 20-fold (69). Differential expression of
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a substantial number of candidates was confirmed using in situ hybridization and gave credence
to the findings.

Dual function mRNAs were also recently described in bacteria, where stable 3′ by-products
of mRNA turnover act as small RNAs (sRNAs) (17). One of the sRNAs, CpxQ, was found to
be produced from endonucleolytic cleavage by RNase E, which leaves a 5′ monophosphate. The
cleavage occurred a few nucleotides downstream of the stop codon and produced a 58-nt-long
sRNA derived from the 3′-UTR (17). The 3′-UTR cleavage product is nearly completely con-
served in sequence and acts as an Hfq-dependent repressor during the inner membrane stress re-
sponse (17). Thus, a transcribed 3′-UTR can be converted into a sRNA through endonucleolytic
cleavage.

Also in mammalian cell lines, researchers identified cleavage products with a 5′monophosphate
that were generated by endonucleolytic cleavage. Transcriptome-wide degradome sequencing was
initially performed to uncover the cleavage sites of the endonucleases of the miRNA pathway, i.e.,
Ago2 and Drosha (64). Many cut sites were not dependent on these two endonucleases, but the
enzymes responsible are currently unknown (10, 92, 108). Intriguingly, there is substantial overlap
between the degradome and the 3′-UTR fragment data sets (64, 69, 90). Approximately 40% of
the genes that were identified by degradome sequencing to harbor cut sites were found to generate
capped 3′-UTR fragments (64, 90). This suggests that a subgroup of degradation products is de
novo capped in the cytoplasm, an occurrence previously shown in mouse and human cell lines
(94, 102). Current data suggest that the 5′ fragments that are produced through endonucleolytic
cleavage are rapidly degraded by the exosome and are usually not detectable (69, 108). However,
the 3′ fragments are protected at the 3′ end by the poly(A) tail (90) and may be stabilized at the 5′

end through a strong structural element like a pseudoknot (18), through the binding of an RBP,
or when XRN1 levels are low (108).

3′-UTRs Regulate Protein Abundance

The first motifs discovered in 3′-UTRs were AU-rich elements leading to rapid mRNA decay (6,
21). AU-rich elements are preferentially found in genes whose expression requires tight regulation
such as cytokines, proto-oncogenes, and immune-regulatory factors (6, 21). These genes are rather
special, as their mRNA half-lives are shorter than 30 min, compared to the median half-life of
the transcriptome which is 7 h (113). The importance of these regulatory elements in restricting
protein expression is highlighted by the fact that their deletion is associated with cancer, chronic
inflammation, and auto-immune disease (6).

Because of the drastic effects of AU-rich elements on the regulation of acute phase genes, it
was suspected that 3′-UTRs may regulate protein abundance genome-wide. However, genome-
wide analyses of 3′-UTR-mediated regulation of protein abundance generally showed widespread,
modest changes (4, 111, 119). One explanation for the small effect may be that during unperturbed
steady-state growth of cell lines, 3′-UTR elements do not substantially regulate protein abundance.
However, in certain biological contexts, miRNAs and RBPs are important for the control of protein
levels. Proto-oncogenes belong to the class of genes with short half-lives, and their expression levels
are controlled by AU-rich elements and miRNA-binding sites (21). Removal of these elements
through 3′-UTR shortening in cancer cell lines resulted in upregulation of their protein levels.
This turned proto-oncogenes into oncogenes, as the increased protein expression was sufficient
for oncogenic transformation (87).

In specific biological contexts, miRNAs and RBPs also degrade mRNA transcripts that do
not belong to the class of short-lived acute phase proteins. In early animal development, gene
expression is accomplished by maternal mRNAs. However, at the onset of zygotic transcription,
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the maternal mRNAs need to be degraded. During zebrafish development, miR-430 is highly
expressed at the onset of zygotic transcription and is the predominant regulator of maternal
mRNA decay (41).

Another beautiful example of regulating protein abundance by RBPs occurs in the control
of mitochondrial biogenesis after glucose depletion in yeast (128). When yeast cells are grown
in high-glucose conditions, mitochondrial biogenesis is repressed; there is no need for oxidative
phosphorylation because yeast cells prefer to obtain their energy from glycolysis (78). In Saccha-
romyces cerevisiae, nuclear-encoded mitochondrial transcripts are preferentially bound by the RBP
Puf3 (38, 128). Under high-glucose conditions, Puf3 destabilizes the transcripts that encode mi-
tochondrial proteins. However, glucose deprivation or growth on nonfermentable carbon sources
induces mitochondrial biogenesis, which results in a switch from degradation to preferential trans-
lation of Puf3 target genes. The switch in Puf3 activity is mediated by phosphorylation induced
by a lack of glucose (78). This example illustrates the RBP-mediated control of protein abun-
dance upon environmental changes. It also illustrates how a single RBP can determine opposite
outcomes for bound mRNAs. Such dual functions of RBPs have also been described for DDX6,
HuR, and many others (137, 150).

THE 3′-UTR-SPECIFIC RNA-BINDING PROTEOME AT A GIVEN
MOMENT DETERMINES THE FUNCTIONS OF A 3′-UTR

The function of a given 3′-UTR regulatory element is influenced by both the RBP that directly
binds to it and the RBPs that bind in its vicinity. This includes neighboring elements as well as
distal elements that come into proximity through mRNA folding events. Thus, the functions of
a 3′-UTR are determined by the ensemble of bound RBPs at a given moment. Notably, some
RBPs can be loaded onto the mRNA in the nucleus, whereas others are added locally. Some RBPs
are bound to 3′-UTRs with higher affinity, whereas others associate more transiently. To identify
all RBPs bound to a single 3′-UTR, methods can be applied that were initially developed to
determine the proteome associated with the long noncoding RNA Xist (23, 89). ChIRP-MS and
RAP use biotinylated oligonucleotides to pull out endogenous RNAs followed by the identification
of bound proteins by mass spectrometry. A similar method, called TRIP, was developed to examine
the RBPs bound to mRNAs (84).

Fifteen years ago, the posttranscriptional operon theory was proposed by Keene & Tenenbaum
(66). It stated that RBPs regulate subpopulations of mRNAs in a coherent manner and predicted
that the mRNAs bound by an RBP would be functionally related. The best examples for RNA
regulons are found in yeast, where, for example, Puf3 binds to a group of mRNAs that encode
mitochondrial proteins (38, 128). To identify mRNAs that are bound by a single RBP, RNA-IP,
and later CLIP (including HITS-CLIP, PAR-CLIP, iCLIP and eCLIP) were invented and widely
applied (44, 71, 129, 132). CLIP uses an affinity tag or antibody against an RBP and precipitates
the in vivo bound mRNAs after cross-linking. CLIP uncovered that the core motifs bound by
RBPs are usually 3–7 nt long, are often degenerate, and are found in the majority of mRNAs (39).
It also revealed that although many RBPs have hundreds or thousands of target mRNAs (76), a
specific RBP usually binds only to 6–14% of its potential motifs in vivo (122, 132, 145).

Increased Specificity of RNA-Binding Proteins Through Cooperativity

Considering that each RBP binds to thousands of mRNAs, it seems a daunting task to identify
specific RBP–mRNA relationships that are functional in a given context. The fact that RBPs use
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interactions with other proteins to increase the binding specificity to 3′-UTRs makes this process
less overwhelming.

Posttranslational modifications or protein interaction partners of RNA-binding proteins
can change the binding specificity of RNA-binding proteins. Campbell et al. (14) used an in
vitro selection method called SEQRS, to identify the binding motifs of RBPs. They determined
the motif of an RBP alone or when bound to a domain of a PIP. In both cases the core motif
of the RBP was detected, but the sequence motif in the neighboring bases differed. This study
demonstrated that the binding specificity of an RBP can be altered through association with a
PIP, even if the PIP does not bind to the RNA. Similarly, the binding motif of an RBP can be
altered through PTMs of the RBP. This was shown for HuR, which prefers binding to AU-rich
sequences but shifts toward U-rich sequences upon phosphorylation (110).

Ternary complex formation increases the specificity of mRNA–protein interactions. RBPs
often physically interact with other RBPs and were shown by CLIP studies to coassemble on
mRNAs (93). The binding of two RBPs to neighboring sequence motifs in an mRNA has been
shown in numerous examples to increase the binding specificity (1, 48). Such cooperativity was
shown for the RBPs She2p and She3p when bound to ASH1 mRNA. All binary interactions
between She2p and ASH1 mRNA, She3p and ASH1 mRNA, and She2p and She3p resulted in
low-affinity and low-specificity complexes (96). In contrast, ternary complex formation increased
their affinity and enabled binding of the RBPs to ASH1 mRNA with higher selectivity than to
other hairpin mRNAs (96).

Another example of increased specificity through formation of a cooperative ternary complex
was demonstrated by the crystal structure of the Drosophila RBPs Sxl and Unr and the msl2 mRNA
(49). Translational repression of msl2 mRNA is required for sex chromosome dosage compensation
in female flies. Sxl binds to U-rich sequences, and the RNA-binding motifs of Sxl and Unr are
very abundant in the transcriptome. The extended RNA-binding motif in msl2 mRNA contains
16 nt and is recognized by Sxl together with Unr. Cooperative protein complex formation resulted
in a 1,000-fold increase in RNA binding affinity. Thus, this and other structures demonstrated
how general and widespread mRNA motifs can be specifically recognized by cooperative ternary
complex formation (49, 80).

Binding of RNA and Proteins in the Nucleus Can Influence Cytoplasmic
3′-UTR Functions

Although most 3′-UTR functions are carried out in the cytoplasm, some RBPs bind to 3′-UTRs
in the nucleus (118). For example, it is important to recruit the RBP She2p to ASH1 mRNA in
the nucleus, as mutant She2p that is unable to enter the nucleus results in impaired cytoplasmic
localization of ASH1 mRNA (98). Nuclear She2p is also necessary for the nuclear recruitment
of the translational repressor Puf6p to ASH1 mRNA, although it acts in the cytoplasm (114).
Furthermore, nuclear events are important for oskar mRNA localization, as deposition of the exon
junction complex during splicing is required for cytoplasmic localization of oskar mRNA (43).

Additional nuclear events are mediated through cotranscriptional loading of RBPs at promot-
ers and seem to play a general role in the regulation of cytoplasmic processes of mRNAs. In yeast,
promoters control mRNA stability, translation, and mRNA localization (12, 126, 151). Although
glucose starvation leads to the translational repression of most yeast mRNAs, a subset remains
actively translated. Binding of HSF1 to promoters determines the group of mRNAs that is being
translated during glucose starvation. HSF1 binding may result in the recruitment of an RBP that
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is exported with the mRNAs and specifies translation in the cytoplasm (151). A similar mechanism
was proposed for the influence of promoters on mRNA stability, where swapping the upstream
activating sequence (UAS) of a promoter changed the mRNA decay rate of the transcript. As
changing the UAS did not alter the mRNA sequence, promoter-mediated recruitment of specific
factors that influence cytoplasmic processes seems likely (12). Such promoter-mediated recruit-
ment of an RBP was recently demonstrated in Drosophila. Loading of HuR at specific promoters
influences the recognition of alternative pA sites (101). Thus, RBPs recruited to promoters can
change whether regulatory elements are functional in 3′-UTRs.

Local mRNA Functions Are Enabled Through Local Binding of RNA-Binding
Proteins to 3′-UTRs

Local recruitment of RBPs to 3′-UTRs can also change 3′-UTR functions. One of the classical
examples for mRNA transport in neurons is the localization of β-actin mRNA from the soma
to the synapse. The zipcode binding protein IGF2BP1 (ZBP1, IMP-1) binds to a localization
element in the 3′-UTR of β-actin mRNA, which is necessary for mRNA localization, but β-actin
mRNA is released from IGF2BP1 binding after reaching the synapse. This event is triggered
by phosphorylation of IGF2BP1, as only unphosphorylated Y396 can bind β-actin mRNA. Phos-
phorylation is mediated by Src kinase, whose expression is locally restricted to the synapse. During
transport, β-actin mRNA is translationally repressed, but phosphorylation of IGF2BP1 also leads
to translational activation of β-actin mRNA (53). Thus, the new local environment, characterized
by expression of Src kinase, defines the end point of β-actin mRNA localization and enables its
local functions. PTMs that occur in a spatially or temporally restricted manner are widely used
to achieve dynamic changes in RBP composition at 3′-UTRs and, thus, in 3′-UTR function. For
example, in certain stress conditions, HuR is ubiquitinated through addition of a K29 chain, a
modification that does not induce degradation of HuR, but rather releases bound HuR from sev-
eral of its target mRNAs. The release of HuR changes the fate of the mRNAs from stabilization
to destabilization (150).

In addition to local expression of enzymes that add PTMs, local expression of RBPs can
also change 3′-UTR functions. For example, nanos mRNA localizes to the posterior pole of the
Drosophila embryo and establishes a morphogen gradient (82). However, it does not appear to be
actively transported to the posterior pole because nanos mRNA is found throughout the embryo.
Also throughout the embryo, the RBP Smaug binds to the nanos 3′-UTR and recruits a deadeny-
lase, resulting in nanos mRNA decay. However, at the posterior pole, it was suggested that the
RBP Oskar replaces Smaug, preventing Smaug from binding to the nanos 3′-UTR, which results
in active translation and accumulation of Nanos protein at the posterior pole (147). This shows
how the binding of locally restricted trans-acting factors to 3′-UTRs can determine local functions
of mRNAs and their encoded proteins.

Each Alternative 3′-UTR Isoform Has a Specific RNA-Binding Protein
Composition and, Thus, Function

Differentiation and alterations in the cellular environment are associated with changes in sig-
naling pathways that are able to change RBP composition at 3′-UTRs both in cis and in trans.
Changes in the PTMs of RBPs can alter the association of an RBP with a 3′-UTR and, thus,
alter the function of a 3′-UTR (53, 110, 150) (see section titled Posttranslational modifications or
protein interaction partners of RNA-binding proteins can change the binding specificity of RNA-
binding proteins). Furthermore, signaling can also change 3′-UTR ratios (32, 63, 81, 87, 106,
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125). This can result in a switch in protein localization, protein abundance, and protein function,
which has been shown for BDNF, for the oncogene IMP-1, and for CD47, respectively (3, 9, 75,
87).

Functional discrepancy of 3′-UTR regulatory elements when analyzed in isolation or
within a larger sequence context. APA results in the expression of mRNAs with either short
or long 3′-UTRs. The sequence of shorter 3′-UTRs is fully contained in longer 3′-UTRs
(Figure 1c), therefore, it is commonly expected that an RBP that binds to the shorter 3′-UTR
should also bind to the longer 3′-UTR. However, this is not necessarily the case, as the longer
3′-UTRs form their own distinct secondary and tertiary RNA structures that may occlude binding
sites that are accessible in the context of shorter 3′-UTRs. Although this relationship has not been
conclusively established for alternative 3′-UTRs, it was demonstrated that the functional effects
of expressing smaller 3′-UTR pieces led to substantially different protein abundances when com-
pared to full-length 3′-UTRs (72). Whereas most smaller 3′-UTR pieces (50-mers to 400-mers)
had activating effects on protein abundance, the two full-length 3′-UTRs (PIM1, approximately
1,300 nt; Hmga2, approximately 2,900 nt) that were examined were both highly repressive (72,
88).

Such a discrepancy was also seen when even smaller 3′-UTR regulatory elements (8-mers)
were tested in isolation or within the context of a larger endogenous sequence (142). When newly
identified functional 3′-UTR elements were tested as 8-mers with respect to the regulation of
protein abundance, all of them were either activating or repressive. However, when they were
placed within a 500-nt endogenous sequence context, a significant fraction had opposite effects
and the great majority had no regulatory effects on protein abundance (142). A likely explanation
for this phenomenon is that a new local secondary structure is formed within the larger sequence
context that prevents the accessibility or changes the folding of the isolated 8-mers. It is also
possible that most RBPs do not act alone but rather compete or cooperate with RBPs that bind
adjacently (14, 62). Thus, within the new sequence context, cooperativity with another RBP may
alter the functional outcome of the RBP. It is also possible that binding of the RBP alone may
regulate protein abundance, but interaction with a binding partner may result in the recruitment
of a 3′-UTR-dependent PIP. Thus, the element would still be functional, but it would mediate a
function that was not interrogated by the assay.

The observations that functional RBP-binding sites can be silent or have opposing effects
when put into a new sequence context have important implications for alternative 3′-UTRs.
They suggest that each alternative 3′-UTR isoform will have its own repertoire of functional
RBP-binding sites, even if the sequence of the shorter 3′-UTRs is fully contained within longer
3′-UTRs. Thus, in a specific cellular condition, shorter 3′-UTRs may be associated with different
RBPs than their corresponding longer 3′-UTRs (Figure 2d) (79, 85). However, each 3′-UTR
isoform likely can adopt several different configurations that depend on the activity of signaling
pathways, expression of RBPs, their cofactors, their PTMs, and their subcellular localization (53,
110, 150). Taken together, it seems that longer 3′-UTRs in particular have a lot of latent regulatory
capacity that is regulated through accessibility (122). Yet, our understanding of how accessibility
of 3′-UTR regulatory elements is controlled is still rudimentary. 3′-UTR structure analyses will
help to elucidate this, but, ideally, they need to be performed in vivo on full-length 3′-UTRs in
different contexts.

Different biophysical properties of short and long 3′-UTRs. For instance, short 3′-UTRs
are predominantly found in the cytoplasm, whereas long 3′-UTRs can be part of liquid droplets
and hydrogels (46, 65). The reasons for the difference in distribution are currently not known. It
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is possible that long 3′-UTRs bind more RBPs than short 3′-UTRs. Because RBPs are enriched in
protein domains with an overabundance of a few amino acids, called low-complexity (LC) domains
(15), they are often intrinsically disordered. This causes most of their residues to be accessible and,
thus, these residues represent major interacting domains for other proteins (40, 138). This feature
enables RBPs to function as network hubs, as they were shown to have, on average, more PIPs than
other protein classes (5). The multivalency of RBPs together with their LC domains allows liquid–
liquid phase transitions of messenger ribonucleoproteins (65, 138). Phase transitions seem to play
a very important role in the regulation of RNA–protein interactions, as they enable an increase
in the local concentration and compartmentalization of factors without the need for membranes,
providing a unique local environment that is distinct from the cytoplasm (46, 65, 134). Thus, in
addition to a specialized local environment found on the surface of organelles (131), localization
to liquid droplets can also change the range of RBPs that are available for binding to 3′-UTRs.
There also seems to be interdependency between the mRNA and protein components within
the droplet. On the one hand, as mRNAs are differentially bound by RBPs, mRNAs are able to
determine the protein composition and the biophysical properties of the droplet (148). On the
other hand, the biophysical properties of the droplet determine which RNAs are retained in the
droplet (99). As liquid droplet formation may serve as a dynamic compartmentalization tool to
enable local mRNA processes, 3′-UTR length itself may promote localized processes and may
contribute to compartmentalization of cellular functions (133).

NEW GLOBAL APPROACHES IDENTIFY NOVEL RNA-BINDING
PROTEIN MOTIFS AND FUNCTIONAL 3′-UTR ELEMENTS

In yeast, Puf3 preferentially binds to mRNA transcripts that encode mitochondrial proteins (38,
128). However, binding of Puf3 can result in translational repression or activation (78). This
indicates that it is not the sequence element per se, but rather the status (PTMs, PIPs) of the
trans-acting factor, that determines the functional outcome. This interpretation is supported by
recent studies that used fluorescence-based screens to identify new functional elements in 3′-
UTRs (100, 142, 149). All of the screens used small 3′-UTR fragments to search for 3′-UTR
elements that regulate protein abundance and found similar numbers of activating and repressive
elements. However, interestingly, when the functional 3′-UTR fragments were placed within
a larger endogenous sequence context, a large fraction showed either no effect or the opposite
effect on protein abundance (142). This suggests that functional screens that use small 3′-UTR
fragments can identify elements with a potential for regulation, but they are not able to identify the
biological context or endogenous 3′-UTR that will produce a specific phenotype when harboring
the element. Therefore, such screens are able to catalog RBP-binding sites with potential function
and are comparable to bioinformatic predictions of miRNA targets (2). Further experiments are
necessary to examine if a specific binding site is functional within a particular 3′-UTR as well as
within a certain biological context.

The Giraldez laboratory (144) recently developed a screen that may go a step further in identi-
fying the functional 3′-UTR elements that regulate mRNA stability in a specific biological context.
The RNA-element selection assay (RESA) uses random fragmentation of 3′-UTR sequences to
detect regions that contain stabilizing and destabilizing elements. For a proof-of-principle anal-
ysis, it was used to identify functional 3′-UTR elements at the onset of zygotic gene expression
during zebrafish development. At this stage, all maternal mRNAs need to be degraded, and RESA
confirmed that this is predominantly accomplished by miR-430 (144). This novel approach may
also identify functional RBP regulons in different biological contexts. The combination of such
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functional screens with newly developed in vitro methods that identify high-affinity motifs of RBPs
(14, 74, 104) will help to shed light on the multilayered regulation accomplished by 3′-UTRs.

CURRENT ISSUES AND HOW THEY CAN BE OVERCOME

It is currently not known how many RBPs bind to a specific 3′-UTR or to a pair of alternative
3′-UTRs. If such data were to exist for many 3′-UTRs, it would tremendously increase our un-
derstanding of 3′-UTR biology. It is also important to learn about the dynamics of RBP binding
to specific 3′-UTRs in steady-state or altered cellular conditions. This could be accomplished
by performing ChIRP-MS, RAP, or TRIP (23, 84, 89) on many 3′-UTRs in different cellular
conditions.

Many RBPs bind to U-rich regions. Assuming that this observation is not a CLIP-generated
artifact (121), there is a need to develop assays to examine the in vivo binding sites and functions
of these RBPs while they are bound to their PIPs (14). This would enable the integration of
cooperative binding events with functional assays.

RBPs mediate 3′-UTR functions, but they are only the adaptors that connect the 3′-UTR cis-
regulatory elements to effector proteins. The effector proteins are the true mediators of a specific
phenotype. As the effector proteins are generally PIPs of RBPs, there is a need to comprehensively
identify the protein interactome of RBPs (11).

Researchers who set out to globally examine 3′-UTR elements often used small 3′-UTR frag-
ments to probe for functional elements (100, 142, 144, 149). When the effects of 3′-UTR fragments
on protein output were compared with the effects of full-length 3′-UTRs, substantially different
outcomes were observed (72, 142) (see section titled Functional discrepancy of 3′-UTR regulatory
elements when analyzed in isolation or within a larger sequence context). This indicates that 3′-
UTR elements function in the context of the whole 3′-UTR or mRNA. Thus, methods need to be
developed that identify functional regulatory elements within each alternative 3′-UTR isoform,
as the presence of the motif often does not correlate with its functionality. Additionally, there is
a need to develop functional assays that investigate global 3′-UTR functions that use full-length
and alternative 3′-UTR isoforms as input.

Lastly, the majority of assays that assessed global 3′-UTR functions have used protein abun-
dance as a functional readout. Although these readouts are both well established and highly reliable,
regulation of protein abundance is only one of the many functions of 3′-UTRs. Thus, new readout
systems are needed that are able to globally determine additional 3′-UTR functions such as mRNA
localization (123) or 3′-UTR-mediated transfer of PIPs, which can be investigated by performing
the experiment shown in Figure 2c (9, 79).
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