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Dose-Finding for Combination Therapy of Bladder Cancer

Goals: Find an optimal dose pair of combination therapy =
chemotherapeutic (chemo) agents gemcitabine + cisplatin +
biological agent for untreated advanced bladder cancer, based
on Toxicity and Efficacy (a “phase l/II” trial)

Treatment Regime: In each 28-day cycle, the patient receives

1. biological agent orally each day at dose levels d; =1,2,3 or 4
2. gemcitabine on days (1, 8, 15) at dose levels d, =1, 2 or 3
(750, 1000 or 1250 mg/m?/day)
3. a fixed dose of 70 mg/m? cisplatinum on day 2

—d = (di,ds) € {1,2,3,4} x {1,2,3}
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The Dose Pair Domain D

(1,3) (2,3) (3,3) (4,3

12 22 G2 42

d (1,1) (2,1) (3,1) (4,1)
dy —

d; = dose of biological agent

do = dose of chemo agent gemcitabine
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Clinical Outcomes (evaluated over two 28-day cycles )

Toxicity includes AEs (fatigue, diarrhea, mucositis) related to the
biological agent and chemo-related AEs (renal tox, neurotoxicity)

Y7 = 0 if no grade 3,4 (severe) TOX
Y, = 1if grade 3,4 TOX occurs, but resolved within 2 weeks
Y, =2 if grade 3,4 TOX occurs, & not resolved within 2 weeks

Efficacy is evaluated by the end of two cycles (day 56)

Y> = 0 if progressive disease (PD) at any time in the first 2 cycles
Y> = 1 if stable disease (SD) at day 56
Y5 = 2 if complete or partial remission (CR/PR) at day 56
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Interim Within-Patient Treatment Modifications

1. If grade 1 or 2 non-haematologic TOX in cycle 1, the dose of
the biological agent is reduced

2. If the patient does not recover from a grade 3, 4
non-haematologoc TOX in two weeks, the bio agent is stopped,
but the patient may continue to receive the chemo agents
(physician decision)

3. If Y7 =2 (unresolved gr. 3,4 TOX) or Y5 =2 (PD) then
treatment is stopped

4. Y, =2 and no PD before day 56 = Y5 is inevaluable
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The Outcome Domain

Yo

0=PD 1=SD 2 = CR/PR

0 (0,0) (0, 1) (0, 2) _
Y, 1 (1,0) (1, 1) (1, 2) -
2 (2,0) (2, 1) (2, 2) (2, Ineval)

10 elementary outcomes, including {Y; = 2 and Y5 inevaluable}
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A General Probability Model

Outcomes Y = (Y1,Ys) where ordinal Y; € {1,...,m;}

where m; = # levels of outcome j =1, 2
Doses d = (di, d2)

Marginals Try(d,0) =Pr(Yy =y | d,0)
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Qutcomes

Doses
Marginals

Joint pmf

A General Probability Model
Y = (Y1,Y,) where ordinal Y, € {1,...,m;}
where m,; = # levels of outcome j = 1,2
d= (dy, do)
Tk ,(d,0) =Pr(Yy =y | d,0)

m(y|d.6) = Pr(Y —y| Z=1,d,0)

where y = (y1,y2) is observed if Z = 1
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Likelihood

7 = I(Y5 is evaluable),

0(y) =Y =y, 2 =1)

¢=Pr(Z =1)
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The Aranda-Ordaz (AO) Model (1983)

Given linear term n(d, a) the AO model is

Pr(Y = 1|d,a) = £{n(d,a),\} =1 — (1 + X&) =1/A " )\ >0

1. For n(d, @) = ag + azlog(d), d = 0 = £ = 0 = The outcome is
iImpossible if no treatment is given

2. Forn(d,a)=ag+aid,d=0= &=1— (1 + e®0)"1/* =
baseline Pr(Y=1) without treatment

o(d;)
]_—|—e77(d7a)

3. =1= &{n(d,a),1} = (logistic)

4. limy_o £(n(d, @), \) = 1 — exp{—e"4} (compl. log-log)
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A Generalized Aranda-Ordaz (GAO) Model

To Accommodate Two Linear Terms:

n = nl(dly ozl) for dl and No = nl(dg, ag) for dg

ELm, o, A,y =1—{14+ A(e™ 4+ €2 + 76?71+?72)}—1/>\

~ accounts for interaction between the two agents

v=0 == Additive effects ¢” and "2 in the GAO model



UTILITY-BASED DOSE-FINDING

Linear terms determining the marginal of Y,

15



UTILITY-BASED DOSE-FINDING

Linear terms determining the marginal of Y,

For j =dose, k =outcome, y = value ofY;

ey ey’ = ail) o + o)y (d; = d))

y,0 k,y,1

15



UTILITY-BASED DOSE-FINDING

Linear terms determining the marginal of Y,

For j =dose, k =outcome, y = value ofY;

ey ey’ = ail) o + o)y (d; = d))

y,0 k,y,1

1. ), and «)  areintercepts

15



UTILITY-BASED DOSE-FINDING

Linear terms determining the marginal of Y,

For j =dose, k =outcome, y = value ofY;

ey ey’ = ail) o + o)y (d; = d))
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Linear terms determining the marginal of Y,

For j =dose, k =outcome, y = value ofY;

ni)ds o) = o) o+ ) | (d; - d)

Y50 kyy,
(1) (2) i
1. a0 and o« are intercepts
(1) (2)
2. oy, and o,  are dose effects

3. @,({‘7) - (Cﬁl(j’)l,oa O‘](gj,)l,p &I(cj,)Q,O’ Oél(ﬂ{)Q,l)

4 ek = (a](gl)a a](f)a )\kv /Wf)
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Marginal Distributions

For each outcome k=1,2and levels y = 1, ..., my,

Pr(Ye > y| Vi > y—1,d,0;) = & {n ) (dr, @), ni”) (da, &f?), Ak, i}

= gz,y(da Bk) —
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16

Marginal Distributions

For each outcome k=1,2and levels y = 1, ..., my,

Pr(Yy, > y | Yy > y—1,d,0,) = €{ni ) (di, @), ) (do, @), Ao i)

= fz’y(d, Bk) —

Tro(d,0) = 1—&,(d,0))

Wk,y(d, Hk) = {1

Wk,mk(da 0r) = H;n:k1 G»:,j(da 0:)

o gz,y—i—l(d? Ok)} nyy'zl gz,j(d7 9k)7 1 S Yy S ™M — 1
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In the three-level ordinal outcome case, the unconditional
marginal probabilities are

mro(d,0r) =1 — & (d, )
mr1(d, 0r) = 52,1(da 0;) — 52,1(d7 9k)£2,2(d7 0:)

mr2(d, 0r) = & 1(d, 0r) & 5(d, 05)

17
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Bivariate Distribution of (Y7, Y5)

Use a Gaussian copula, given by

Co(u,v) = ®,{® (u),® *(v)} for 0<wu,v<1.

®, = cdf of a bivariate std normal with correlation p

® = usual N(0,1) cdf

18
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The cdf of each Y} is

y

0
1 o dve T d,@
Fr(y | d,0;) = < L ZZ;Ed 01}3 Tr.2(d, O)
1
\

ity <0
if0 <y < 1
ifl <y <2
ify > 2

19
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The cdf of each Y} is

(0 ify < 0

. 1 — 7Tk,1(d, Hk) — 7T]<,2(d, Bk) 10 < y <1

Frly[d.00) =4 _ T.2(d, 0y) ifl1 <y <2
\ 1 ify > 2

The joint pmf of Y is

2 2
w(yld.0) = > > (-1)TCy(uq, vp)

CL:]. :1

u; = Fi(y1 | d,0), v1 = Fa(y2 | d,0)
uz = Fi(y1 —11[d,0), vo=Fy(y2—1|d,0)

19
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m(y) = {0 Fi(y1), Do Fa(y2)}
— O, {® o Fi(y1 — 1), P o Fy(y2)}
— &, {®7 o Fi(y1), 7o Fo(y2 — 1)}
+ @, {®7 o Fi(y1 — 1), 7o Fa(y2 — 1)}

0=(0,,0,p) and dim(8) = 21

20
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Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals

2. Show all elicited values (anonymously) to all individuals, and
allow them to adjust their utilties

3. Repeat 2 or 3 times, and compute the mean across experts of
the final values

Nadine Houede did this via questionnaire with 8 French medical
oncologists who treat bladder cancer patients, using a utility
scale of 0 to 100, and finished after 2 rounds
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French Utilities Elicited Using the Delphi Method

Yo=0 Yo =1 Yo =2 Y5

PD SD CR/PR Inevaluable
Y, =0 25 76 100 =
Y =1 10 60 82 =

Yi1=2 2 40 52 0

24
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Using Utilities to Select Dose Pairs

For U(y) = the numerical utility of outcome y, the mean utility
for a patient treated with d is

u(d,0) = Ey{U(Y) |d, 0} = ZU m(y | d,0)
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Using Utilities to Select Dose Pairs

For U(y) = the numerical utility of outcome y, the mean utility
for a patient treated with d is

u(d,0) = Ev{U(Y) |d,0} = ZU n(y | d,0)

Given current data,, = {(Y1,d1),---,(Y,,d,)}, select

4" (data,) = argmaxy,_, /9 u(d.0)p(0 | data,)d6

= argmaxg_n, Z Uy) /0 w(y | d,0)p(0 | data,)dl
Yy
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Additional Safety Rules

1. Do Not Skip Untried Dose Pairs:

If (d1, d>) is the current dose pair, then escalation is allowed to as
yet untried pairs (dy + 1,ds), (d1,ds + 1), 0r (dy + 1,d2 + 1).
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Additional Safety Rules

1. Do Not Skip Untried Dose Pairs:

If (d1, d>) is the current dose pair, then escalation is allowed to as
yet untried pairs (dy + 1,ds), (d1,ds + 1), 0r (dy + 1,d2 + 1).

2. Stop The Trial if All Dose Pairs are Too Toxic:

For =13 = fixed upper limit on Pr(Yz = 2), and py = a fixed upper
probability cut-off (e.g. .80 to .90), terminate accrual if

ming Pr{m 2(d,0) > 773" | data} > py
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Simulations

N,... = 48, choose d for cohorts of 3 patients, start at d = (2,2),

safety stopping rule applied with 71"§* = .33 and py = .80.

A simulation scenario is a vector w'"“¢(d) of fixed probability
values for the 12 d pairs, with pt"“¢ = 0.10.

u'rie(d) = Y5, Uly) 7 (y | d)

1000 runs per scenario

27
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Chemo Agent Dose 2 Chemo Agent Dose 3

Chemo Agent Dose 1

Scenario 1

I Tue Utility
[ 1Prob Select
I Num Patients

57.3

2 0.7
|

56.9

60.5

2 12
|

60.4

60.1 6.2

— |

54.6 0 0.3

1

63.6
7.9

12

54.2 0 0.3

Biol Agent Dose 1

57.8

Biol Agent Dose 2

J 2 1.2
——

Biol Agent Dose 3

64.2
17
6.0
67.4 28
11.3
26
8.8
61.7

Biol Agent Dose 4

29
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Additional Simulation Results

1. Safe : 7{"3* = .33 and py = .80 = Large PSTOP in toxic
scenarios

2. Insensitive to Cohort Size : ¢ = 1 versus ¢ = 3 give the
virtually same results under Scenarios 1 — 4, but slightly larger
PSTOP for ¢ = 1 (93% versus 90%) under the toxic Scenario 5

3. Consistent : Pr{Select d having largest v'"“¢(d)} 1 with N, ..
4. Stupid Priors Give Stupid Designs : A naive “uninformative”

prior with E(8) = 0 and all prior standard deviations = 1000 gives
terrible results
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