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Dose-Finding for Combination Therapy of Bladder Cancer

Goals: Find an optimal dose pair of combination therapy =
chemotherapeutic (chemo) agents gemcitabine + cisplatin +
biological agent for untreated advanced bladder cancer, based
on Toxicity and Efficacy (a “phase I/II” trial)

Treatment Regime: In each 28-day cycle, the patient receives

1. biological agent orally each day at dose levels d1 = 1, 2, 3 or 4
2. gemcitabine on days (1, 8, 15) at dose levels d2 = 1, 2 or 3
(750, 1000 or 1250 mg/m2/day)
3. a fixed dose of 70 mg/m2 cisplatinum on day 2

=⇒ ddd = (d1, d2) ∈ {1, 2, 3, 4} × {1, 2, 3}
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The Dose Pair Domain D

(1, 3) (2, 3) (3, 3) (4, 3)

↑ (1, 2) (2, 2) (3, 2) (4, 2)

d2 (1, 1) (2, 1) (3, 1) (4, 1)

d1 −→

d1 = dose of biological agent

d2 = dose of chemo agent gemcitabine
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Clinical Outcomes (evaluated over two 28-day cycles )

Toxicity includes AEs (fatigue, diarrhea, mucositis) related to the
biological agent and chemo-related AEs (renal tox, neurotoxicity)

Y1 = 0 if no grade 3,4 (severe) TOX
Y1 = 1 if grade 3,4 TOX occurs, but resolved within 2 weeks
Y1 = 2 if grade 3,4 TOX occurs, & not resolved within 2 weeks

Efficacy is evaluated by the end of two cycles (day 56)

Y2 = 0 if progressive disease (PD) at any time in the first 2 cycles
Y2 = 1 if stable disease (SD) at day 56
Y2 = 2 if complete or partial remission (CR/PR) at day 56
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3. If Y1 = 2 (unresolved gr. 3,4 TOX) or Y2 = 2 (PD) then
treatment is stopped
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Interim Within-Patient Treatment Modifications

1. If grade 1 or 2 non-haematologic TOX in cycle 1, the dose of
the biological agent is reduced

2. If the patient does not recover from a grade 3, 4
non-haematologoc TOX in two weeks, the bio agent is stopped,
but the patient may continue to receive the chemo agents
(physician decision)

3. If Y1 = 2 (unresolved gr. 3,4 TOX) or Y2 = 2 (PD) then
treatment is stopped

4. Y1 = 2 and no PD before day 56 =⇒ Y2 is inevaluable
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The Outcome Domain

Y2

0 = PD 1 = SD 2 = CR/PR

0 (0, 0) (0, 1) (0, 2) –

Y1 1 (1, 0) (1, 1) (1, 2) –

2 (2, 0) (2, 1) (2, 2) (2, Ineval)

10 elementary outcomes, including {Y1 = 2 and Y2 inevaluable}
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A General Probability Model

Outcomes Y = (Y1, Y2) where ordinal Yj ∈ {1, ...,mj}

where mj = # levels of outcome j = 1, 2

Doses ddd = (d1, d2)

Marginals πk,y(ddd, θθθ) = Pr(Yk = y | ddd, θθθ)

Joint pmf πππ(yyy| ddd, θθθ) = Pr(Y = yyy | Z = 1, ddd, θθθ)

where yyy = (y1, y2) is observed if Z = 1
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Likelihood

Z = I(Y2 is evaluable), ζ = Pr(Z = 1)

δ(yyy) = I(Y = yyy, Z = 1)

δ1(y1) = I(Y1 = y1)

L(Y, Z | ddd, θθθ) =

1∏
Z=0

[
ζ

∏
yyy

{
πππ(yyy| ddd, θθθ)

}δ(yyy)
]Z [

(1− ζ)
2∏

y1=0

{
π1,y1(ddd, θθθ)

}δ1(y1)
]1−Z
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Given linear term η(d,ααα) the AO model is

Pr(Y = 1|d,ααα) = ξ{η(d,ααα), λ} = 1− (1 + λeη(d,ααα))−1/λ, λ > 0

1. For η(d,ααα) = α0 + α1log(d), d = 0 =⇒ ξ = 0 =⇒ The outcome is
impossible if no treatment is given
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The Aranda-Ordaz (AO) Model (1983)

Given linear term η(d,ααα) the AO model is

Pr(Y = 1|d,ααα) = ξ{η(d,ααα), λ} = 1− (1 + λeη(d,ααα))−1/λ, λ > 0

1. For η(d,ααα) = α0 + α1log(d), d = 0 =⇒ ξ = 0 =⇒ The outcome is
impossible if no treatment is given

2. For η(d,ααα) = α0 + α1d, d = 0 =⇒ ξ = 1− (1 + λeα0)−1/λ =
baseline Pr(Y=1) without treatment

3. λ=1 =⇒ ξ{η(d,ααα), 1} = eη(d,α)

1+eη(d,α) (logistic)

4. limλ→0 ξ(η(d,ααα), λ) = 1− exp{−eη(d,α)} (compl. log-log)
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A Generalized Aranda-Ordaz (GAO) Model

To Accommodate Two Linear Terms:

η1 ≡ η1(d1, ααα1) for d1 and η2 ≡ η1(d2, ααα2) for d2

ξ∗{η1, η2, λ, γ} = 1− {1 + λ(eη1 + eη2 + γeη1+η2)}−1/λ

γ accounts for interaction between the two agents

γ = 0 =⇒ Additive effects eη1 and eη2 in the GAO model
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Linear terms determining the marginal of Yk

For j = dose, k = outcome, y = value of Yk

η
(j)
k,y(dj, ααα

(j)
k ) = α

(j)
k,y,0 + α

(j)
k,y,1 (dj − d̄j)

1. α
(1)
k,y,0 and α

(2)
k,y,0 are intercepts

2. α
(1)
k,y,1 and α

(2)
k,y,1 are dose effects

3. ααα
(j)
k = (α(j)

k,1,0, α
(j)
k,1,1, α

(j)
k,2,0, α

(j)
k,2,1)

4. θθθk = (ααα(1)
k , ααα

(2)
k , λk, γk)
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For each outcome k = 1, 2 and levels y = 1, ...,mk,

Pr(Yk ≥ y | Yk ≥ y−1, ddd, θθθk) = ξ∗{η(1)
k,y(d1, ααα
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k ), η(2)
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≡ ξ∗k,y(ddd, θθθk) =⇒
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Marginal Distributions

For each outcome k = 1, 2 and levels y = 1, ...,mk,

Pr(Yk ≥ y | Yk ≥ y−1, ddd, θθθk) = ξ∗{η(1)
k,y(d1, ααα

(1)
k ), η(2)

k,y(d2, ααα
(2)
k ), λk, γk}

≡ ξ∗k,y(ddd, θθθk) =⇒

πk,0(ddd, θθθk) = 1− ξ∗k,1(ddd, θθθk)

πk,y(ddd, θθθk) = {1− ξ∗k,y+1(ddd, θθθk)}
∏y

j=1 ξ∗k,j(ddd, θθθk), 1 ≤ y ≤ mk − 1

πk,mk
(ddd, θθθk) =

∏mk
j=1 ξ∗k,j(ddd, θθθk)
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In the three-level ordinal outcome case, the unconditional
marginal probabilities are

πk,0(ddd, θθθk) = 1− ξ∗k,1(ddd, θθθk)

πk,1(ddd, θθθk) = ξ∗k,1(ddd, θθθk)− ξ∗k,1(ddd, θθθk)ξ∗k,2(ddd, θθθk)

πk,2(ddd, θθθk) = ξ∗k,1(ddd, θθθk) ξ∗k,2(ddd, θθθk)
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Bivariate Distribution of (Y1, Y2)

Use a Gaussian copula, given by

Cρ(u, v) = Φρ{Φ−1(u),Φ−1(v)} for 0 ≤ u, v ≤ 1.

Φρ = cdf of a bivariate std normal with correlation ρ

Φ = usual N(0,1) cdf
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The cdf of each Yk is

Fk(y | ddd, θθθk) =


0 ify < 0
1− πk,1(ddd, θθθk)− πk,2(ddd, θθθk) if0 ≤ y < 1
1− πk,2(ddd, θθθk) if1 ≤ y < 2
1 ify ≥ 2
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The cdf of each Yk is

Fk(y | ddd, θθθk) =


0 ify < 0
1− πk,1(ddd, θθθk)− πk,2(ddd, θθθk) if0 ≤ y < 1
1− πk,2(ddd, θθθk) if1 ≤ y < 2
1 ify ≥ 2

The joint pmf of Y is

πππ(yyy| ddd, θθθ) =
2∑

a=1

2∑
b=1

(−1)a+bCρ(ua, vb)

u1 = F1(y1 | ddd, θθθ), v1 = F2(y2 | ddd, θθθ)

u2 = F1(y1 − 1 | ddd, θθθ), v2 = F2(y2 − 1 | ddd, θθθ)
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πππ(yyy) = Φρ{Φ−1 ◦ F1(y1), Φ−1 ◦ F2(y2)}

− Φρ{Φ−1 ◦ F1(y1 − 1), Φ−1 ◦ F2(y2)}

− Φρ{Φ−1 ◦ F1(y1), Φ−1 ◦ F2(y2 − 1)}

+ Φρ{Φ−1 ◦ F1(y1 − 1), Φ−1 ◦ F2(y2 − 1)}

θθθ = (θθθ1, θθθ2, ρ) and dim(θθθ) = 21



UTILITY-BASED DOSE-FINDING 21

Establishing Priors



UTILITY-BASED DOSE-FINDING 21

Establishing Priors

1. Elicit prior means of πk,1(ddd) and πk,2(ddd) for each ddd and
outcome k = 1, 2



UTILITY-BASED DOSE-FINDING 21

Establishing Priors

1. Elicit prior means of πk,1(ddd) and πk,2(ddd) for each ddd and
outcome k = 1, 2

2. Use an extension of the least squares method of Thall and
Cook (2004) to solve for prior means of the 21 model
parameters



UTILITY-BASED DOSE-FINDING 21

Establishing Priors

1. Elicit prior means of πk,1(ddd) and πk,2(ddd) for each ddd and
outcome k = 1, 2

2. Use an extension of the least squares method of Thall and
Cook (2004) to solve for prior means of the 21 model
parameters

3. Calibrate prior variances to obtain reasonably small prior
effective sample sizes of the priors on πk,1(ddd) and πk,2(ddd) =⇒
ESS = .20 to .70



UTILITY-BASED DOSE-FINDING 21

Establishing Priors

1. Elicit prior means of πk,1(ddd) and πk,2(ddd) for each ddd and
outcome k = 1, 2

2. Use an extension of the least squares method of Thall and
Cook (2004) to solve for prior means of the 21 model
parameters

3. Calibrate prior variances to obtain reasonably small prior
effective sample sizes of the priors on πk,1(ddd) and πk,2(ddd) =⇒
ESS = .20 to .70



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals

2. Show all elicited values (anonymously) to all individuals, and
allow them to adjust their utilties



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals

2. Show all elicited values (anonymously) to all individuals, and
allow them to adjust their utilties

3. Repeat 2 or 3 times, and compute the mean across experts of
the final values



UTILITY-BASED DOSE-FINDING 22

Establishing Utilities

The Delphi method: A tool for establishing consensus among
experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals

2. Show all elicited values (anonymously) to all individuals, and
allow them to adjust their utilties

3. Repeat 2 or 3 times, and compute the mean across experts of
the final values

Nadine Houede did this via questionnaire with 8 French medical
oncologists who treat bladder cancer patients, using a utility
scale of 0 to 100, and finished after 2 rounds
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French Utilities Elicited Using the Delphi Method

Y2 = 0 Y2 = 1 Y2 = 2 Y2

PD SD CR/PR Inevaluable

Y1 = 0 25 76 100 –

Y1 = 1 10 60 82 –

Y1 = 2 2 40 52 0
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For U(y) = the numerical utility of outcome y, the mean utility
for a patient treated with ddd is

u(ddd, θθθ) = EY{U(Y) | ddd, θθθ} =
∑
yyy

U(yyy)πππ(yyy | ddd, θθθ)
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Using Utilities to Select Dose Pairs

For U(y) = the numerical utility of outcome y, the mean utility
for a patient treated with ddd is

u(ddd, θθθ) = EY{U(Y) | ddd, θθθ} =
∑
yyy

U(yyy)πππ(yyy | ddd, θθθ)

Given current datan = {(Y1, ddd1), · · · , (Yn, dddn)}, select

dddopt(datan) = argmaxddd∈D

∫
θθθ

u(ddd, θθθ)p(θθθ | datan)dθθθ

= argmaxddd∈D

∑
yyy

U(yyy)
∫
θθθ

πππ(yyy | ddd, θθθ)p(θθθ | datan)dθθθ
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1. Do Not Skip Untried Dose Pairs:

If (d1, d2) is the current dose pair, then escalation is allowed to as
yet untried pairs (d1 + 1, d2), (d1, d2 + 1), or (d1 + 1, d2 + 1).
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Additional Safety Rules

1. Do Not Skip Untried Dose Pairs:

If (d1, d2) is the current dose pair, then escalation is allowed to as
yet untried pairs (d1 + 1, d2), (d1, d2 + 1), or (d1 + 1, d2 + 1).

2. Stop The Trial if All Dose Pairs are Too Toxic:

For πmax
1,2 = fixed upper limit on Pr(Y2 = 2), and pU = a fixed upper

probability cut-off (e.g. .80 to .90), terminate accrual if

minddd Pr{π1,2(ddd, θθθ) > πmax
1,2 | data} > pU
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Nmax = 48, choose ddd for cohorts of 3 patients, start at ddd = (2,2),
safety stopping rule applied with πmax

1,2 = .33 and pU = .80.
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safety stopping rule applied with πmax
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A simulation scenario is a vector πππtrue(ddd) of fixed probability
values for the 12 ddd pairs, with ρtrue = 0.10.

utrue(ddd) =
∑

yyy U(yyy) πππtrue(yyy | ddd)
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Simulations

Nmax = 48, choose ddd for cohorts of 3 patients, start at ddd = (2,2),
safety stopping rule applied with πmax

1,2 = .33 and pU = .80.

A simulation scenario is a vector πππtrue(ddd) of fixed probability
values for the 12 ddd pairs, with ρtrue = 0.10.

utrue(ddd) =
∑

yyy U(yyy) πππtrue(yyy | ddd)

1000 runs per scenario
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virtually same results under Scenarios 1 – 4, but slightly larger
PSTOP for c = 1 (93% versus 90%) under the toxic Scenario 5
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Additional Simulation Results

1. Safe : πmax
1,2 = .33 and pU = .80 =⇒ Large PSTOP in toxic

scenarios

2. Insensitive to Cohort Size : c = 1 versus c = 3 give the
virtually same results under Scenarios 1 – 4, but slightly larger
PSTOP for c = 1 (93% versus 90%) under the toxic Scenario 5

3. Consistent : Pr{Select ddd having largest utrue(ddd)} ↑ with Nmax

4. Stupid Priors Give Stupid Designs : A naive “uninformative”
prior with E(θθθ) = 0 and all prior standard deviations = 1000 gives
terrible results
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