

Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Clinical Trials

Peter F. Thall

Department of Biostatistics

University of Texas, M.D. Anderson Cancer Center

Memorial Sloan Kettering Cancer Center

October 2, 2009

Collaborators

Hoang Nguyen – Biostatistics Dept, M.D. Anderson, Texas
Computer Programming, Prior Calibration, Model Refinements,
Graphics

Collaborators

Hoang Nguyen – Biostatistics Dept, M.D. Anderson, Texas
Computer Programming, Prior Calibration, Model Refinements,
Graphics

Nadine Houede – Institut Bergonie, Bordeaux, France
Medical Application, Utility Elicitation and Restaurant Selection

Collaborators

Hoang Nguyen – Biostatistics Dept, M.D. Anderson, Texas
Computer Programming, Prior Calibration, Model Refinements,
Graphics

Nadine Houede – Institut Bergonie, Bordeaux, France
Medical Application, Utility Elicitation and Restaurant Selection

Xavier Paoletti – Institut Curie, Paris, France
Gaussian Copula Formulas and Wine Selection

Collaborators

Hoang Nguyen – Biostatistics Dept, M.D. Anderson, Texas
Computer Programming, Prior Calibration, Model Refinements,
Graphics

Nadine Houede – Institut Bergonie, Bordeaux, France
Medical Application, Utility Elicitation and Restaurant Selection

Xavier Paoletti – Institut Curie, Paris, France
Gaussian Copula Formulas and Wine Selection

Andrew Kramar – Parc Euromedecine, Montpellier, France
Detailed Editing and La Joie de Vivre

OUTLINE

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models
 - Bivariate Almost Ordinal (Toxicity, Efficacy)

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models
 - Bivariate Almost Ordinal (Toxicity, Efficacy)
 - A Flexible Parametric Model

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models
 - Bivariate Almost Ordinal (Toxicity, Efficacy)
 - A Flexible Parametric Model
 - Establishing Priors

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer

2. Data Structure and Probability Models

- Bivariate Almost Ordinal (Toxicity, Efficacy)
- A Flexible Parametric Model
- Establishing Priors

3. Trial Design and Conduct

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer

2. Data Structure and Probability Models

- Bivariate Almost Ordinal (Toxicity, Efficacy)
- A Flexible Parametric Model
- Establishing Priors

3. Trial Design and Conduct

- Utilities

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer

2. Data Structure and Probability Models

- Bivariate Almost Ordinal (Toxicity, Efficacy)
- A Flexible Parametric Model
- Establishing Priors

3. Trial Design and Conduct

- Utilities
- Safety Rules

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models
 - Bivariate Almost Ordinal (Toxicity, Efficacy)
 - A Flexible Parametric Model
 - Establishing Priors
3. Trial Design and Conduct
 - Utilities
 - Safety Rules
4. Computer Simulations

OUTLINE

1. Combination Bio-Chemotherapy for Bladder Cancer
2. Data Structure and Probability Models
 - Bivariate Almost Ordinal (Toxicity, Efficacy)
 - A Flexible Parametric Model
 - Establishing Priors
3. Trial Design and Conduct
 - Utilities
 - Safety Rules
4. Computer Simulations

Dose-Finding for Combination Therapy of Bladder Cancer

Dose-Finding for Combination Therapy of Bladder Cancer

Goals: Find an optimal dose pair of combination therapy = chemotherapeutic (chemo) agents gemcitabine + cisplatin + biological agent for untreated advanced bladder cancer, based on **Toxicity** and **Efficacy** (a “phase I/II” trial)

Dose-Finding for Combination Therapy of Bladder Cancer

Goals: Find an optimal dose pair of combination therapy = chemotherapeutic (chemo) agents gemcitabine + cisplatin + biological agent for untreated advanced bladder cancer, based on **Toxicity** and **Efficacy** (a “phase I/II” trial)

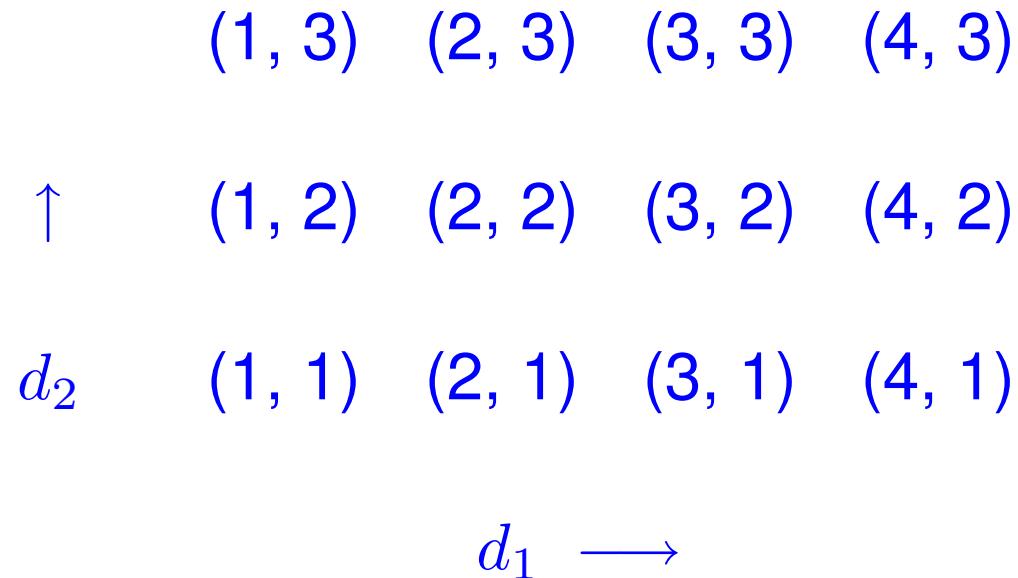
Treatment Regime: In each 28-day cycle, the patient receives

1. biological agent orally each day at dose levels $d_1 = 1, 2, 3$ or 4
2. gemcitabine on days (1, 8, 15) at dose levels $d_2 = 1, 2$ or 3 ($750, 1000$ or 1250 mg/m²/day)
3. a fixed dose of 70 mg/m² cisplatinum on day 2

$$\implies \mathbf{d} = (d_1, d_2) \in \{1, 2, 3, 4\} \times \{1, 2, 3\}$$

The Dose Pair Domain \mathcal{D}

The Dose Pair Domain \mathcal{D}



d_1 = dose of biological agent

d_2 = dose of chemo agent gemcitabine

Clinical Outcomes (evaluated over two 28-day cycles)

Clinical Outcomes (evaluated over two 28-day cycles)

Toxicity includes AEs (fatigue, diarrhea, mucositis) related to the biological agent and chemo-related AEs (renal tox, neurotoxicity)

Y_1 = 0 if no grade 3,4 (severe) TOX

Y_1 = 1 if grade 3,4 TOX occurs, but **resolved within 2 weeks**

Y_1 = 2 if grade 3,4 TOX occurs, & **not resolved within 2 weeks**

Clinical Outcomes (evaluated over two 28-day cycles)

Toxicity includes AEs (fatigue, diarrhea, mucositis) related to the biological agent and chemo-related AEs (renal tox, neurotoxicity)

$Y_1 = 0$ if no grade 3,4 (severe) TOX

$Y_1 = 1$ if grade 3,4 TOX occurs, but **resolved within 2 weeks**

$Y_1 = 2$ if grade 3,4 TOX occurs, & **not resolved within 2 weeks**

Efficacy is evaluated by the end of two cycles (day 56)

$Y_2 = 0$ if progressive disease (**PD**) at any time in the first 2 cycles

$Y_2 = 1$ if stable disease (**SD**) at day 56

$Y_2 = 2$ if complete or partial remission (**CR/PR**) at day 56

Interim Within-Patient Treatment Modifications

Interim Within-Patient Treatment Modifications

1. If grade 1 or 2 non-haematologic **TOX** in cycle 1, the dose of the **biological** agent is reduced
2. If the patient does not recover from a grade 3, 4 non-haematologoc **TOX** in two weeks, the bio agent is stopped, but the patient may continue to receive the chemo agents (physician decision)
3. If $Y_1 = 2$ (unresolved gr. 3,4 **TOX**) or $Y_2 = 2$ (**PD**) then treatment is stopped

Interim Within-Patient Treatment Modifications

1. If grade 1 or 2 non-haematologic **TOX** in cycle 1, the dose of the **biological** agent is reduced
2. If the patient does not recover from a grade 3, 4 non-haematologoc **TOX** in two weeks, the bio agent is stopped, but the patient may continue to receive the chemo agents (physician decision)
3. If $Y_1 = 2$ (unresolved gr. 3,4 **TOX**) or $Y_2 = 2$ (**PD**) then treatment is stopped
4. $Y_1 = 2$ and no **PD** before day 56 $\implies Y_2$ is *inevaluable*

The Outcome Domain

$$Y_2$$
$$0 = \text{PD}$$
$$1 = \text{SD}$$
$$2 = \text{CR/PR}$$

0	(0, 0)	(0, 1)	(0, 2)	—
---	--------	--------	--------	---

Y_1	1	(1, 0)	(1, 1)	(1, 2)	—
-------	---	--------	--------	--------	---

2	(2, 0)	(2, 1)	(2, 2)	(2, Ineval)
---	--------	--------	--------	-------------

10 elementary outcomes, including $\{Y_1 = 2 \text{ and } Y_2 \text{ inevaluable}\}$

A General Probability Model

A General Probability Model

Outcomes

$\mathbf{Y} = (Y_1, Y_2)$ where ordinal $Y_j \in \{1, \dots, m_j\}$

where $m_j = \#$ levels of outcome $j = 1, 2$

A General Probability Model

Outcomes

$\mathbf{Y} = (Y_1, Y_2)$ where ordinal $Y_j \in \{1, \dots, m_j\}$

where $m_j = \#$ levels of outcome $j = 1, 2$

Doses

$\mathbf{d} = (d_1, d_2)$

A General Probability Model

Outcomes

$\mathbf{Y} = (Y_1, Y_2)$ where ordinal $Y_j \in \{1, \dots, m_j\}$

where $m_j = \#$ levels of outcome $j = 1, 2$

Doses

$\mathbf{d} = (d_1, d_2)$

Marginals

$\pi_{k,y}(\mathbf{d}, \boldsymbol{\theta}) = \Pr(Y_k = y \mid \mathbf{d}, \boldsymbol{\theta})$

A General Probability Model

Outcomes

$\mathbf{Y} = (Y_1, Y_2)$ where ordinal $Y_j \in \{1, \dots, m_j\}$

where $m_j = \#$ levels of outcome $j = 1, 2$

Doses

$\mathbf{d} = (d_1, d_2)$

Marginals

$\pi_{k,y}(\mathbf{d}, \boldsymbol{\theta}) = \Pr(Y_k = y \mid \mathbf{d}, \boldsymbol{\theta})$

Joint pmf

$\pi(\mathbf{y} \mid \mathbf{d}, \boldsymbol{\theta}) = \Pr(\mathbf{Y} = \mathbf{y} \mid Z = 1, \mathbf{d}, \boldsymbol{\theta})$

where $\mathbf{y} = (y_1, y_2)$ is observed if $Z = 1$

Likelihood

$$Z = I(Y_2 \text{ is evaluable}), \quad \zeta = \Pr(Z = 1)$$

$$\delta(\mathbf{y}) = I(\mathbf{Y} = \mathbf{y}, Z = 1)$$

$$\delta_1(y_1) = I(Y_1 = y_1)$$

$$\mathcal{L}(\mathbf{Y}, Z \mid \mathbf{d}, \boldsymbol{\theta}) =$$

$$\prod_{Z=0}^1 \left[\zeta \prod_{\mathbf{y}} \left\{ \pi(\mathbf{y} \mid \mathbf{d}, \boldsymbol{\theta}) \right\}^{\delta(\mathbf{y})} \right]^Z \left[(1 - \zeta) \prod_{y_1=0}^2 \left\{ \pi_{1,y_1}(\mathbf{d}, \boldsymbol{\theta}) \right\}^{\delta_1(y_1)} \right]^{1-Z}$$

The Aranda-Ordaz (AO) Model (1983)

The Aranda-Ordaz (AO) Model (1983)

Given linear term $\eta(d, \alpha)$ the AO model is

$$\Pr(Y = 1|d, \alpha) = \xi\{\eta(d, \alpha), \lambda\} = 1 - (1 + \lambda e^{\eta(d, \alpha)})^{-1/\lambda}, \quad \lambda > 0$$

1. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 \log(d)$, $d = 0 \implies \xi = 0 \implies$ The outcome is impossible if no treatment is given

The Aranda-Ordaz (AO) Model (1983)

Given linear term $\eta(d, \alpha)$ the AO model is

$$\Pr(Y = 1|d, \alpha) = \xi\{\eta(d, \alpha), \lambda\} = 1 - (1 + \lambda e^{\eta(d, \alpha)})^{-1/\lambda}, \quad \lambda > 0$$

1. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 \log(d)$, $d = 0 \implies \xi = 0 \implies$ The outcome is impossible if no treatment is given
2. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 d$, $d = 0 \implies \xi = 1 - (1 + \lambda e^{\alpha_0})^{-1/\lambda} =$ baseline $\Pr(Y=1)$ without treatment

The Aranda-Ordaz (AO) Model (1983)

Given linear term $\eta(d, \alpha)$ the AO model is

$$\Pr(Y = 1|d, \alpha) = \xi\{\eta(d, \alpha), \lambda\} = 1 - (1 + \lambda e^{\eta(d, \alpha)})^{-1/\lambda}, \quad \lambda > 0$$

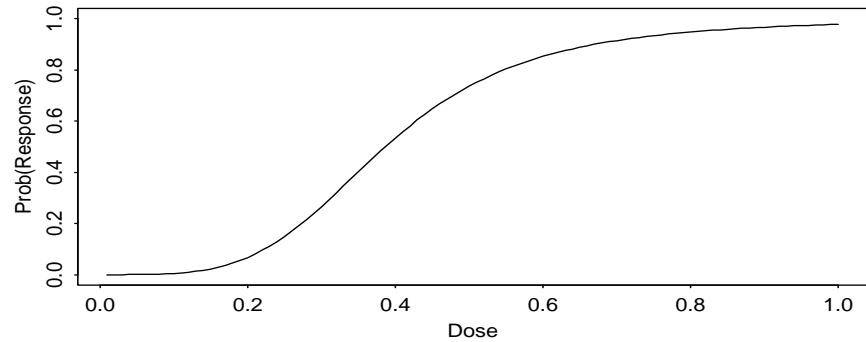
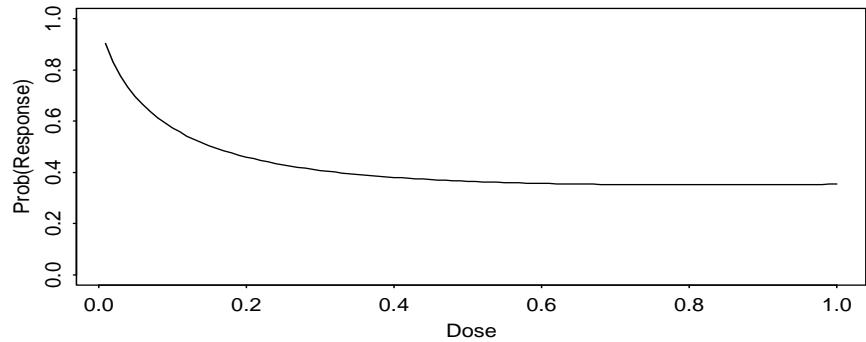
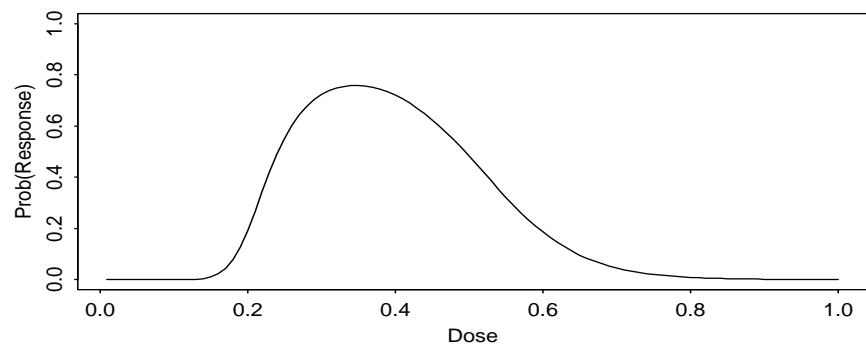
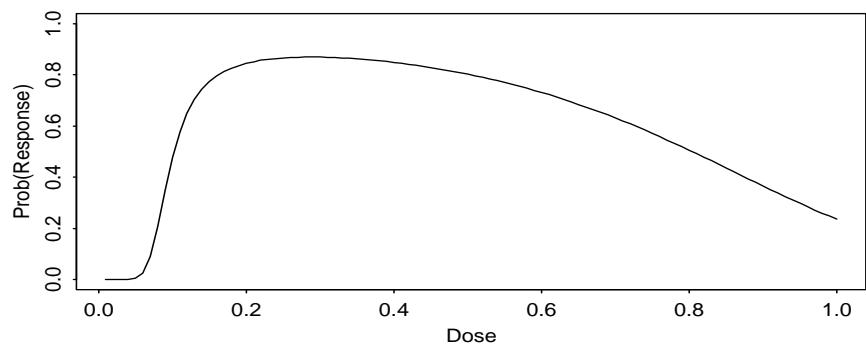
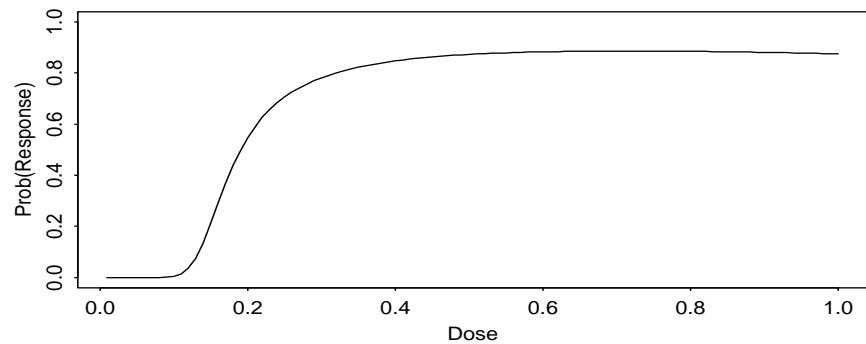
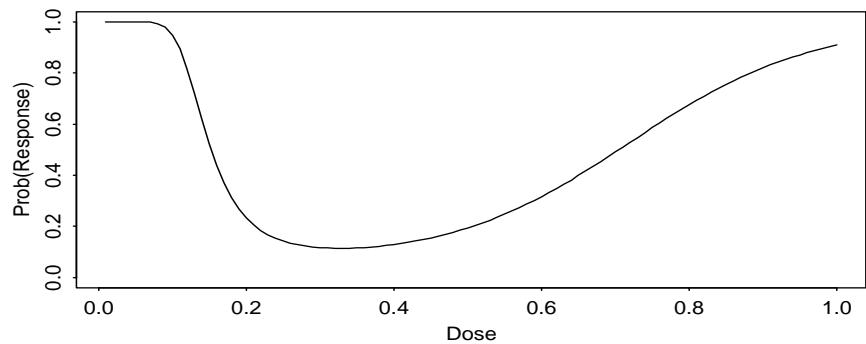
1. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 \log(d)$, $d = 0 \implies \xi = 0 \implies$ The outcome is impossible if no treatment is given
2. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 d$, $d = 0 \implies \xi = 1 - (1 + \lambda e^{\alpha_0})^{-1/\lambda} =$ baseline $\Pr(Y=1)$ without treatment
3. $\lambda=1 \implies \xi\{\eta(d, \alpha), 1\} = \frac{e^{\eta(d, \alpha)}}{1+e^{\eta(d, \alpha)}} \quad (\text{logistic})$

The Aranda-Ordaz (AO) Model (1983)

Given linear term $\eta(d, \alpha)$ the AO model is

$$\Pr(Y = 1|d, \alpha) = \xi\{\eta(d, \alpha), \lambda\} = 1 - (1 + \lambda e^{\eta(d, \alpha)})^{-1/\lambda}, \quad \lambda > 0$$

1. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 \log(d)$, $d = 0 \implies \xi = 0 \implies$ The outcome is impossible if no treatment is given
2. For $\eta(d, \alpha) = \alpha_0 + \alpha_1 d$, $d = 0 \implies \xi = 1 - (1 + \lambda e^{\alpha_0})^{-1/\lambda} =$ baseline $\Pr(Y=1)$ without treatment
3. $\lambda=1 \implies \xi\{\eta(d, \alpha), 1\} = \frac{e^{\eta(d, \alpha)}}{1+e^{\eta(d, \alpha)}} \quad (\text{logistic})$
4. $\lim_{\lambda \rightarrow 0} \xi(\eta(d, \alpha), \lambda) = 1 - \exp\{-e^{\eta(d, \alpha)}\} \quad (\text{compl. log-log})$



A Generalized Aranda-Ordaz (GAO) Model

A Generalized Aranda-Ordaz (GAO) Model

To Accommodate Two Linear Terms:

$$\eta_1 \equiv \eta_1(d_1, \alpha_1) \text{ for } d_1 \quad \text{and} \quad \eta_2 \equiv \eta_1(d_2, \alpha_2) \text{ for } d_2$$

A Generalized Aranda-Ordaz (GAO) Model

To Accommodate Two Linear Terms:

$$\eta_1 \equiv \eta_1(d_1, \alpha_1) \text{ for } d_1 \quad \text{and} \quad \eta_2 \equiv \eta_1(d_2, \alpha_2) \text{ for } d_2$$

$$\xi^* \{ \eta_1, \eta_2, \lambda, \gamma \} = 1 - \{ 1 + \lambda(e^{\eta_1} + e^{\eta_2} + \gamma e^{\eta_1 + \eta_2}) \}^{-1/\lambda}$$

γ accounts for interaction between the two agents

$\gamma = 0 \implies$ Additive effects e^{η_1} and e^{η_2} in the GAO model

Linear terms determining the marginal of Y_k

Linear terms determining the marginal of Y_k

For j = dose, k = outcome, y = value of Y_k

$$\eta_{k,y}^{(j)}(d_j, \alpha_k^{(j)}) = \alpha_{k,y,0}^{(j)} + \alpha_{k,y,1}^{(j)} (d_j - \bar{d}_j)$$

Linear terms determining the marginal of Y_k

For j = dose, k = outcome, y = value of Y_k

$$\eta_{k,y}^{(j)}(d_j, \alpha_k^{(j)}) = \alpha_{k,y,0}^{(j)} + \alpha_{k,y,1}^{(j)} (d_j - \bar{d}_j)$$

1. $\alpha_{k,y,0}^{(1)}$ and $\alpha_{k,y,0}^{(2)}$ are intercepts

Linear terms determining the marginal of Y_k

For j = dose, k = outcome, y = value of Y_k

$$\eta_{k,y}^{(j)}(d_j, \alpha_k^{(j)}) = \alpha_{k,y,0}^{(j)} + \alpha_{k,y,1}^{(j)} (d_j - \bar{d}_j)$$

1. $\alpha_{k,y,0}^{(1)}$ and $\alpha_{k,y,0}^{(2)}$ are intercepts
2. $\alpha_{k,y,1}^{(1)}$ and $\alpha_{k,y,1}^{(2)}$ are dose effects

Linear terms determining the marginal of Y_k

For j = dose, k = outcome, y = value of Y_k

$$\eta_{k,y}^{(j)}(d_j, \alpha_k^{(j)}) = \alpha_{k,y,0}^{(j)} + \alpha_{k,y,1}^{(j)} (d_j - \bar{d}_j)$$

1. $\alpha_{k,y,0}^{(1)}$ and $\alpha_{k,y,0}^{(2)}$ are intercepts
2. $\alpha_{k,y,1}^{(1)}$ and $\alpha_{k,y,1}^{(2)}$ are dose effects
3. $\alpha_k^{(j)} = (\alpha_{k,1,0}^{(j)}, \alpha_{k,1,1}^{(j)}, \alpha_{k,2,0}^{(j)}, \alpha_{k,2,1}^{(j)})$

Linear terms determining the marginal of Y_k

For $j = \text{dose}$, $k = \text{outcome}$, $y = \text{value of } Y_k$

$$\eta_{k,y}^{(j)}(d_j, \boldsymbol{\alpha}_k^{(j)}) = \alpha_{k,y,0}^{(j)} + \alpha_{k,y,1}^{(j)} (d_j - \bar{d}_j)$$

1. $\alpha_{k,y,0}^{(1)}$ and $\alpha_{k,y,0}^{(2)}$ are intercepts
2. $\alpha_{k,y,1}^{(1)}$ and $\alpha_{k,y,1}^{(2)}$ are dose effects
3. $\boldsymbol{\alpha}_k^{(j)} = (\alpha_{k,1,0}^{(j)}, \alpha_{k,1,1}^{(j)}, \alpha_{k,2,0}^{(j)}, \alpha_{k,2,1}^{(j)})$
4. $\boldsymbol{\theta}_k = (\boldsymbol{\alpha}_k^{(1)}, \boldsymbol{\alpha}_k^{(2)}, \lambda_k, \gamma_k)$

Marginal Distributions

Marginal Distributions

For each outcome $k = 1, 2$ and levels $y = 1, \dots, m_k$,

$$\Pr(Y_k \geq y \mid Y_k \geq y-1, \mathbf{d}, \boldsymbol{\theta}_k) = \xi^* \{ \eta_{k,y}^{(1)}(d_1, \boldsymbol{\alpha}_k^{(1)}), \eta_{k,y}^{(2)}(d_2, \boldsymbol{\alpha}_k^{(2)}), \lambda_k, \gamma_k \}$$

$$\equiv \xi_{k,y}^*(\mathbf{d}, \boldsymbol{\theta}_k) \quad \implies$$

Marginal Distributions

For each outcome $k = 1, 2$ and levels $y = 1, \dots, m_k$,

$$\Pr(Y_k \geq y \mid Y_k \geq y-1, \mathbf{d}, \boldsymbol{\theta}_k) = \xi^* \{ \eta_{k,y}^{(1)}(d_1, \boldsymbol{\alpha}_k^{(1)}), \eta_{k,y}^{(2)}(d_2, \boldsymbol{\alpha}_k^{(2)}), \lambda_k, \gamma_k \}$$

$$\equiv \xi_{k,y}^*(\mathbf{d}, \boldsymbol{\theta}_k) \implies$$

$$\pi_{k,0}(\mathbf{d}, \boldsymbol{\theta}_k) = 1 - \xi_{k,1}^*(\mathbf{d}, \boldsymbol{\theta}_k)$$

$$\pi_{k,y}(\mathbf{d}, \boldsymbol{\theta}_k) = \{1 - \xi_{k,y+1}^*(\mathbf{d}, \boldsymbol{\theta}_k)\} \prod_{j=1}^y \xi_{k,j}^*(\mathbf{d}, \boldsymbol{\theta}_k), \quad 1 \leq y \leq m_k - 1$$

$$\pi_{k,m_k}(\mathbf{d}, \boldsymbol{\theta}_k) = \prod_{j=1}^{m_k} \xi_{k,j}^*(\mathbf{d}, \boldsymbol{\theta}_k)$$

In the three-level ordinal outcome case, the unconditional marginal probabilities are

$$\pi_{k,0}(\mathbf{d}, \boldsymbol{\theta}_k) = 1 - \xi_{k,1}^*(\mathbf{d}, \boldsymbol{\theta}_k)$$

$$\pi_{k,1}(\mathbf{d}, \boldsymbol{\theta}_k) = \xi_{k,1}^*(\mathbf{d}, \boldsymbol{\theta}_k) - \xi_{k,1}^*(\mathbf{d}, \boldsymbol{\theta}_k)\xi_{k,2}^*(\mathbf{d}, \boldsymbol{\theta}_k)$$

$$\pi_{k,2}(\mathbf{d}, \boldsymbol{\theta}_k) = \xi_{k,1}^*(\mathbf{d}, \boldsymbol{\theta}_k) \xi_{k,2}^*(\mathbf{d}, \boldsymbol{\theta}_k)$$

Bivariate Distribution of (Y_1, Y_2)

Bivariate Distribution of (Y_1, Y_2)

Use a Gaussian copula, given by

$$C_\rho(u, v) = \Phi_\rho\{\Phi^{-1}(u), \Phi^{-1}(v)\} \quad \text{for } 0 \leq u, v \leq 1.$$

Φ_ρ = cdf of a bivariate std normal with correlation ρ

Φ = usual $N(0,1)$ cdf

The cdf of each Y_k is

$$F_k(y \mid \mathbf{d}, \boldsymbol{\theta}_k) = \begin{cases} 0 & \text{if } y < 0 \\ 1 - \pi_{k,1}(\mathbf{d}, \boldsymbol{\theta}_k) - \pi_{k,2}(\mathbf{d}, \boldsymbol{\theta}_k) & \text{if } 0 \leq y < 1 \\ 1 - \pi_{k,2}(\mathbf{d}, \boldsymbol{\theta}_k) & \text{if } 1 \leq y < 2 \\ 1 & \text{if } y \geq 2 \end{cases}$$

The cdf of each Y_k is

$$F_k(y \mid \mathbf{d}, \boldsymbol{\theta}_k) = \begin{cases} 0 & \text{if } y < 0 \\ 1 - \pi_{k,1}(\mathbf{d}, \boldsymbol{\theta}_k) - \pi_{k,2}(\mathbf{d}, \boldsymbol{\theta}_k) & \text{if } 0 \leq y < 1 \\ 1 - \pi_{k,2}(\mathbf{d}, \boldsymbol{\theta}_k) & \text{if } 1 \leq y < 2 \\ 1 & \text{if } y \geq 2 \end{cases}$$

The joint pmf of \mathbf{Y} is

$$\pi(\mathbf{y} \mid \mathbf{d}, \boldsymbol{\theta}) = \sum_{a=1}^2 \sum_{b=1}^2 (-1)^{a+b} C_\rho(u_a, v_b)$$

$$u_1 = F_1(y_1 \mid \mathbf{d}, \boldsymbol{\theta}), \quad v_1 = F_2(y_2 \mid \mathbf{d}, \boldsymbol{\theta})$$

$$u_2 = F_1(y_1 - 1 \mid \mathbf{d}, \boldsymbol{\theta}), \quad v_2 = F_2(y_2 - 1 \mid \mathbf{d}, \boldsymbol{\theta})$$

$$\begin{aligned}
\pi(\mathbf{y}) = & \Phi_\rho \{ \Phi^{-1} \circ F_1(y_1), \Phi^{-1} \circ F_2(y_2) \} \\
& - \Phi_\rho \{ \Phi^{-1} \circ F_1(y_1 - 1), \Phi^{-1} \circ F_2(y_2) \} \\
& - \Phi_\rho \{ \Phi^{-1} \circ F_1(y_1), \Phi^{-1} \circ F_2(y_2 - 1) \} \\
& + \Phi_\rho \{ \Phi^{-1} \circ F_1(y_1 - 1), \Phi^{-1} \circ F_2(y_2 - 1) \}
\end{aligned}$$

$$\theta = (\theta_1, \theta_2, \rho) \quad \text{and} \quad \dim(\theta) = 21$$

Establishing Priors

Establishing Priors

1. **Elicit prior means** of $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ for each \mathbf{d} and outcome $k = 1, 2$

Establishing Priors

1. **Elicit prior means** of $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ for each \mathbf{d} and outcome $k = 1, 2$
2. **Use an extension of the least squares method** of Thall and Cook (2004) to solve for prior means of the 21 model parameters

Establishing Priors

1. **Elicit prior means** of $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ for each \mathbf{d} and outcome $k = 1, 2$
2. **Use an extension of the least squares method** of Thall and Cook (2004) to solve for prior means of the 21 model parameters
3. **Calibrate prior variances** to obtain reasonably small prior effective sample sizes of the priors on $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ \implies ESS = .20 to .70

Establishing Priors

1. **Elicit prior means** of $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ for each \mathbf{d} and outcome $k = 1, 2$
2. **Use an extension of the least squares method** of Thall and Cook (2004) to solve for prior means of the 21 model parameters
3. **Calibrate prior variances** to obtain reasonably small prior effective sample sizes of the priors on $\pi_{k,1}(\mathbf{d})$ and $\pi_{k,2}(\mathbf{d})$ \implies ESS = .20 to .70

Establishing Utilities

Establishing Utilities

The Delphi method: A tool for establishing consensus among experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

Establishing Utilities

The Delphi method: A tool for establishing consensus among experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals

Establishing Utilities

The Delphi method: A tool for establishing consensus among experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals
2. Show all elicited values (anonymously) to all individuals, and allow them to adjust their utilties

Establishing Utilities

The Delphi method: A tool for establishing consensus among experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals
2. Show all elicited values (anonymously) to all individuals, and allow them to adjust their utilties
3. Repeat 2 or 3 times, and compute the mean across experts of the final values

Establishing Utilities

The Delphi method: A tool for establishing consensus among experts (Dalkey, 1969; Brook, Chassin, Fink, et al., 1986)

1. Elicit utilites from each of several individuals
2. Show all elicited values (anonymously) to all individuals, and allow them to adjust their utilties
3. Repeat 2 or 3 times, and compute the mean across experts of the final values

Nadine Houede did this via questionnaire with 8 French medical oncologists who treat bladder cancer patients, using a utility scale of 0 to 100, and finished after 2 rounds

French Utilities Elicited Using the Delphi Method

French Utilities Elicited Using the Delphi Method

	$Y_2 = 0$ PD	$Y_2 = 1$ SD	$Y_2 = 2$ CR/PR	Y_2 Inevaluable
$Y_1 = 0$	25	76	100	—
$Y_1 = 1$	10	60	82	—
$Y_1 = 2$	2	40	52	0

Using Utilities to Select Dose Pairs

Using Utilities to Select Dose Pairs

For $U(y)$ = the numerical utility of outcome y , the **mean utility for a patient treated with d** is

$$u(d, \theta) = E_Y\{U(Y) \mid d, \theta\} = \sum_y U(y) \pi(y \mid d, \theta)$$

Using Utilities to Select Dose Pairs

For $U(y)$ = the numerical utility of outcome y , the **mean utility for a patient treated with d** is

$$u(\mathbf{d}, \boldsymbol{\theta}) = \text{E}_{\mathbf{Y}}\{U(\mathbf{Y}) \mid \mathbf{d}, \boldsymbol{\theta}\} = \sum_{\mathbf{y}} U(\mathbf{y}) \pi(\mathbf{y} \mid \mathbf{d}, \boldsymbol{\theta})$$

Given current $data_n = \{(\mathbf{Y}_1, \mathbf{d}_1), \dots, (\mathbf{Y}_n, \mathbf{d}_n)\}$, select

$$\mathbf{d}^{opt}(data_n) = \operatorname{argmax}_{\mathbf{d} \in \mathcal{D}} \int_{\boldsymbol{\theta}} u(\mathbf{d}, \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid data_n) d\boldsymbol{\theta}$$

$$= \operatorname{argmax}_{\mathbf{d} \in \mathcal{D}} \sum_{\mathbf{y}} U(\mathbf{y}) \int_{\boldsymbol{\theta}} \pi(\mathbf{y} \mid \mathbf{d}, \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid data_n) d\boldsymbol{\theta}$$

Additional Safety Rules

Additional Safety Rules

1. Do Not Skip Untried Dose Pairs:

If (d_1, d_2) is the current dose pair, then escalation is allowed to as yet untried pairs $(d_1 + 1, d_2)$, $(d_1, d_2 + 1)$, or $(d_1 + 1, d_2 + 1)$.

Additional Safety Rules

1. Do Not Skip Untried Dose Pairs:

If (d_1, d_2) is the current dose pair, then escalation is allowed to as yet untried pairs $(d_1 + 1, d_2)$, $(d_1, d_2 + 1)$, or $(d_1 + 1, d_2 + 1)$.

2. Stop The Trial if All Dose Pairs are Too Toxic:

For $\pi_{1,2}^{max}$ = fixed upper limit on $\Pr(Y_2 = 2)$, and p_U = a fixed upper probability cut-off (e.g. .80 to .90), **terminate accrual** if

$$\min_{\mathbf{d}} \Pr\{\pi_{1,2}(\mathbf{d}, \theta) > \pi_{1,2}^{max} \mid data\} > p_U$$

Simulations

Simulations

$N_{max} = 48$, choose d for cohorts of 3 patients, start at $d = (2,2)$, safety stopping rule applied with $\pi_{1,2}^{max} = .33$ and $p_U = .80$.

Simulations

$N_{max} = 48$, choose \mathbf{d} for cohorts of 3 patients, start at $\mathbf{d} = (2,2)$, safety stopping rule applied with $\pi_{1,2}^{max} = .33$ and $p_U = .80$.

A *simulation scenario* is a vector $\boldsymbol{\pi}^{true}(\mathbf{d})$ of fixed probability values for the 12 \mathbf{d} pairs, with $\rho^{true} = 0.10$.

$$u^{true}(\mathbf{d}) = \sum_{\mathbf{y}} U(\mathbf{y}) \boldsymbol{\pi}^{true}(\mathbf{y} \mid \mathbf{d})$$

Simulations

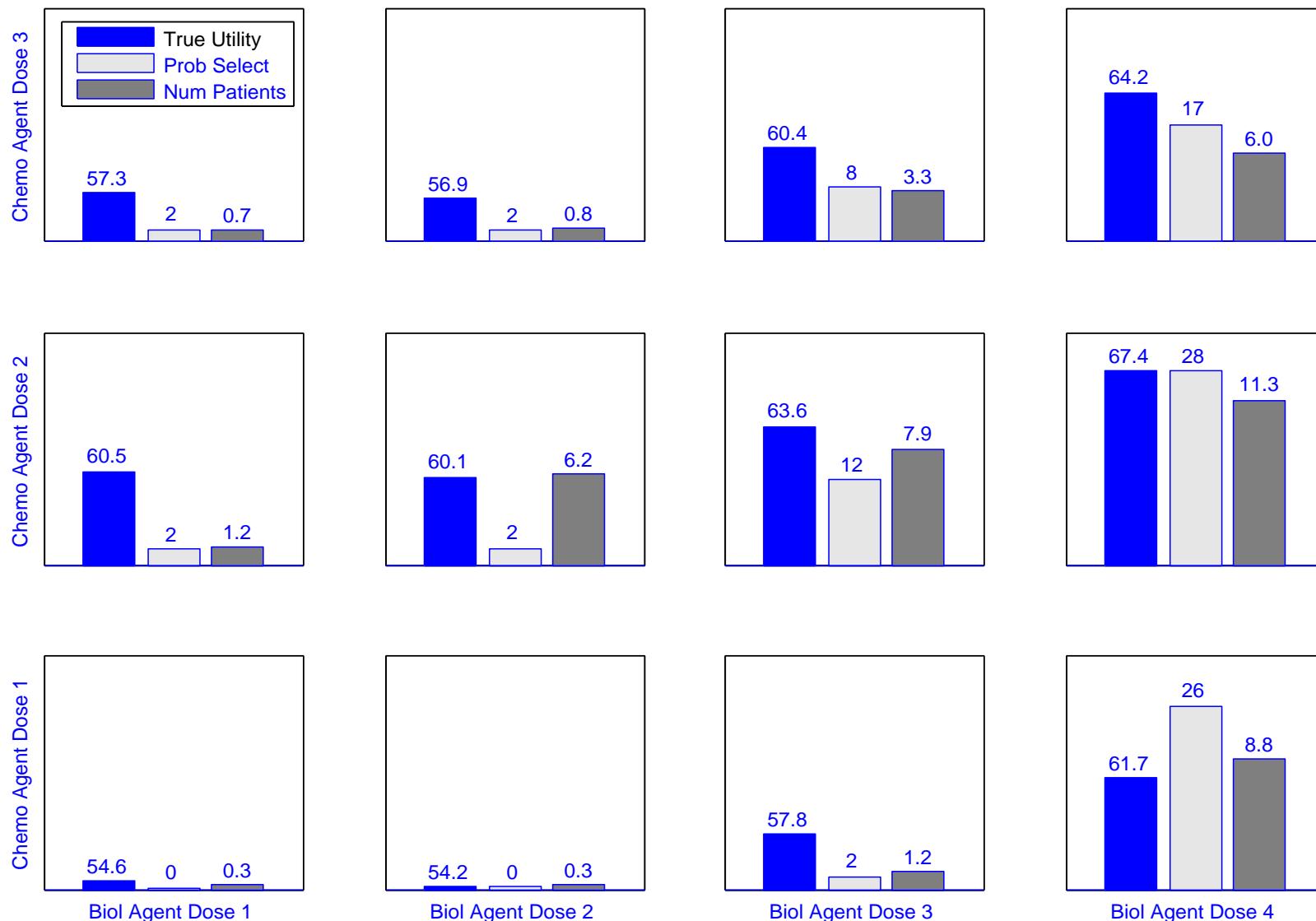
$N_{max} = 48$, choose \mathbf{d} for cohorts of 3 patients, start at $\mathbf{d} = (2,2)$, safety stopping rule applied with $\pi_{1,2}^{max} = .33$ and $p_U = .80$.

A *simulation scenario* is a vector $\pi^{true}(\mathbf{d})$ of fixed probability values for the 12 \mathbf{d} pairs, with $\rho^{true} = 0.10$.

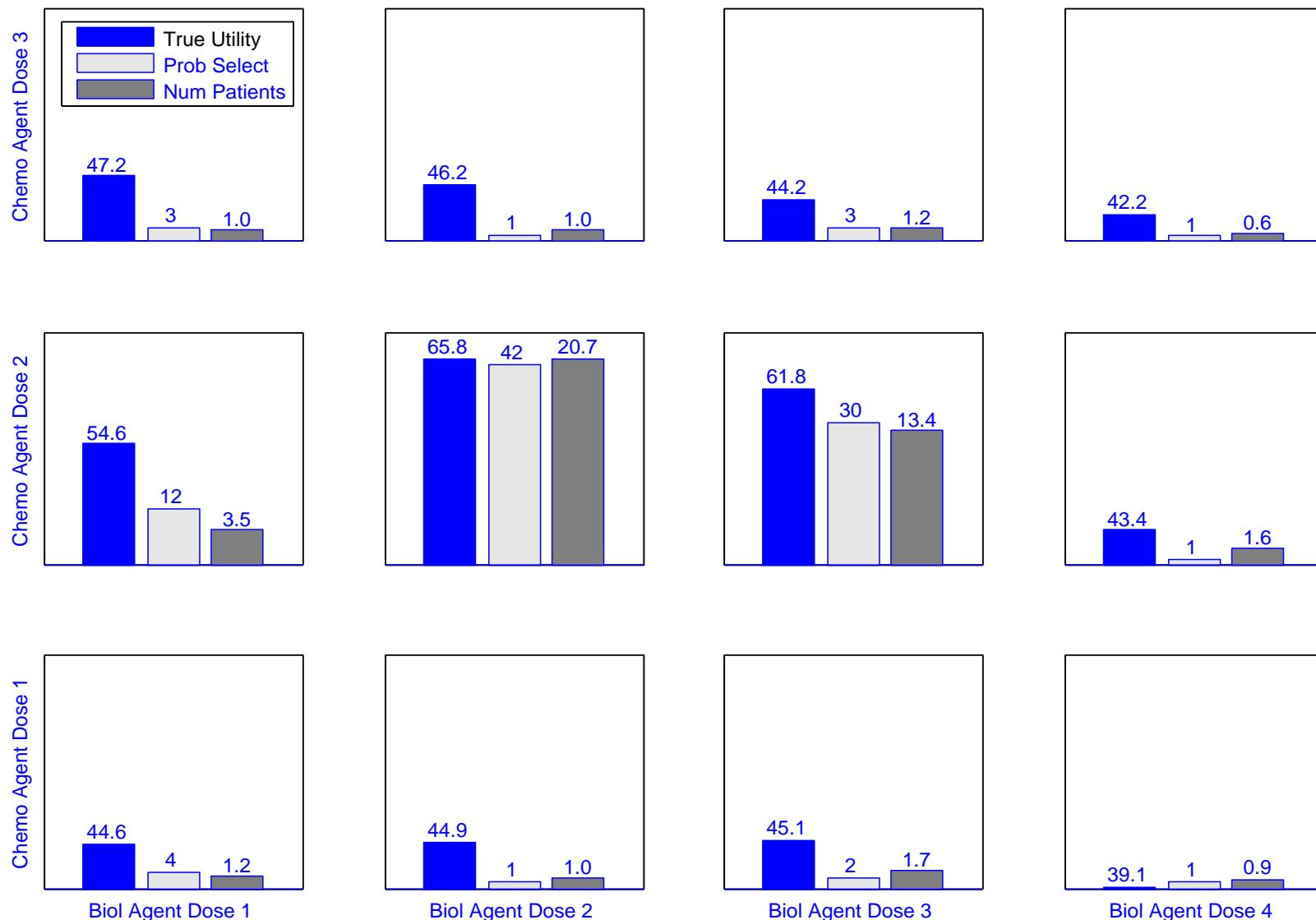
$$u^{true}(\mathbf{d}) = \sum_{\mathbf{y}} U(\mathbf{y}) \pi^{true}(\mathbf{y} \mid \mathbf{d})$$

1000 runs per scenario

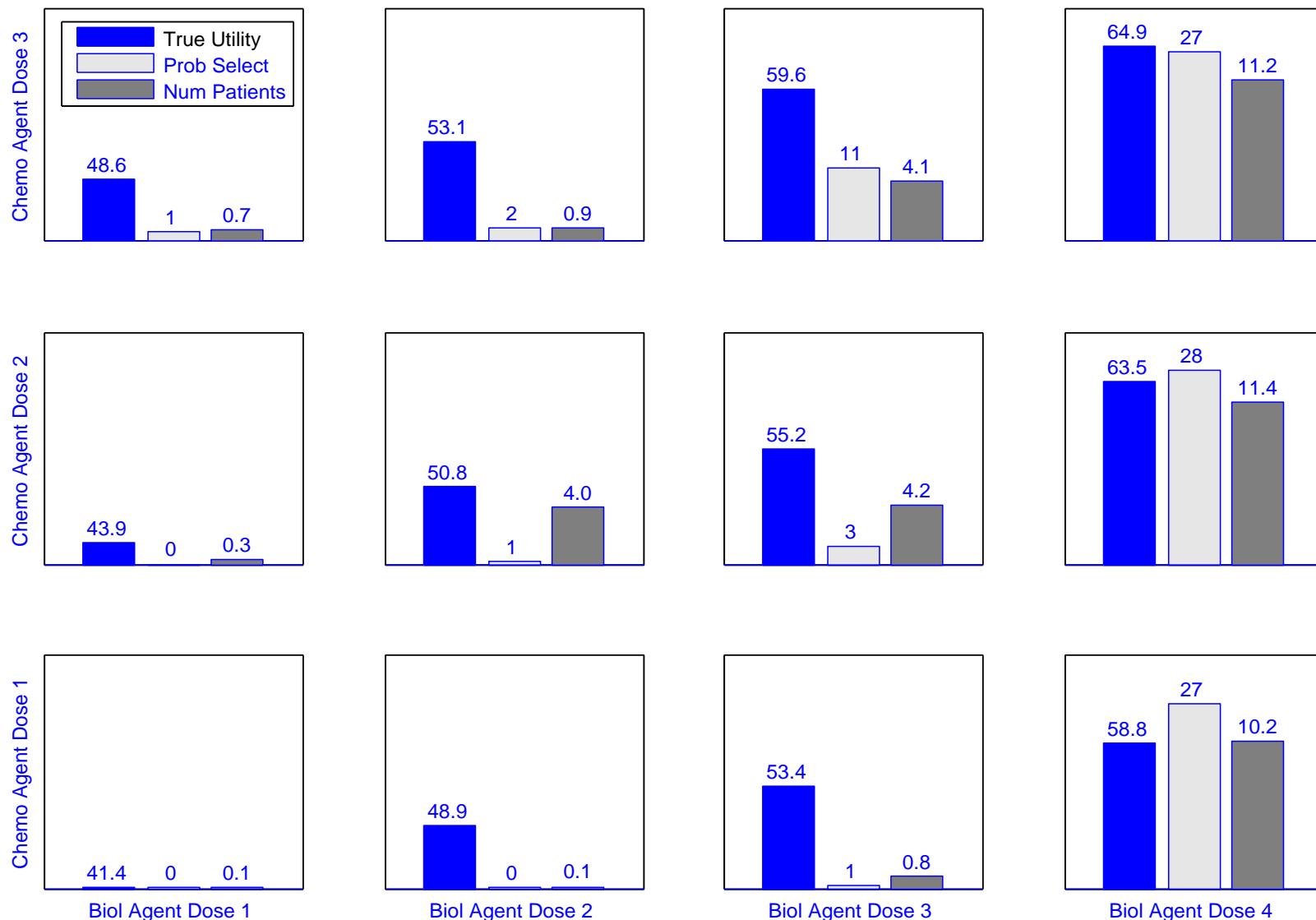
Scenario 1



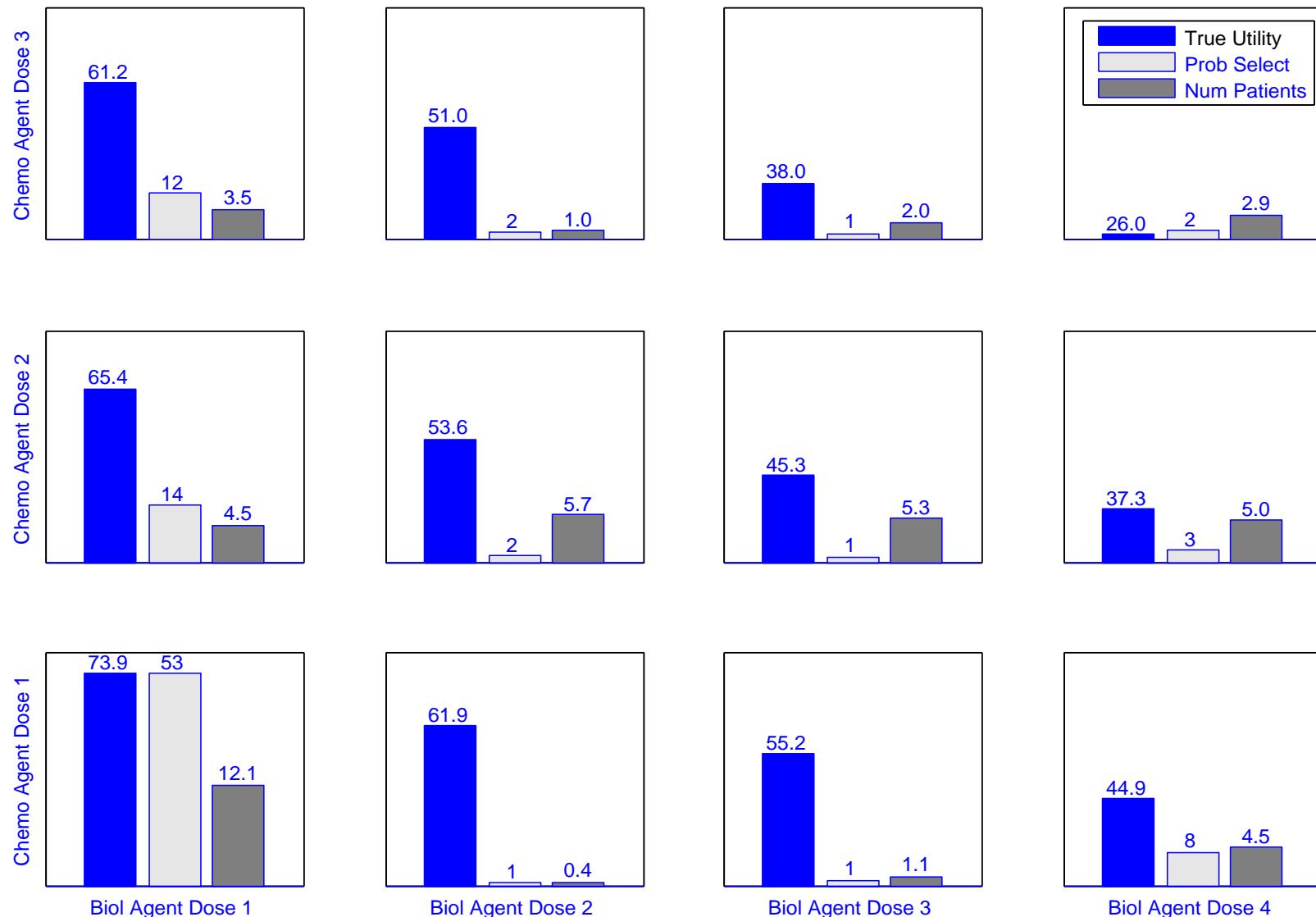
Scenario 2



Scenario 3



Scenario 4



Additional Simulation Results

Additional Simulation Results

1. **Safe** : $\pi_{1,2}^{max} = .33$ and $p_U = .80 \implies$ Large PSTOP in toxic scenarios

Additional Simulation Results

1. **Safe** : $\pi_{1,2}^{max} = .33$ and $p_U = .80 \implies$ Large PSTOP in toxic scenarios
2. **Insensitive to Cohort Size** : $c = 1$ versus $c = 3$ give the virtually same results under Scenarios 1 – 4, but slightly larger PSTOP for $c = 1$ (93% versus 90%) under the toxic Scenario 5

Additional Simulation Results

1. **Safe** : $\pi_{1,2}^{max} = .33$ and $p_U = .80 \implies$ Large PSTOP in toxic scenarios
2. **Insensitive to Cohort Size** : $c = 1$ versus $c = 3$ give the virtually same results under Scenarios 1 – 4, but slightly larger PSTOP for $c = 1$ (93% versus 90%) under the toxic Scenario 5
3. **Consistent** : $\Pr\{\text{Select } \mathbf{d} \text{ having largest } u^{true}(\mathbf{d})\} \uparrow$ with N_{max}

Additional Simulation Results

1. **Safe** : $\pi_{1,2}^{max} = .33$ and $p_U = .80 \implies$ Large PSTOP in toxic scenarios
2. **Insensitive to Cohort Size** : $c = 1$ versus $c = 3$ give the virtually same results under Scenarios 1 – 4, but slightly larger PSTOP for $c = 1$ (93% versus 90%) under the toxic Scenario 5
3. **Consistent** : $\Pr\{\text{Select } \mathbf{d} \text{ having largest } u^{true}(\mathbf{d})\} \uparrow$ with N_{max}
4. **Stupid Priors Give Stupid Designs** : A naive “uninformative” prior with $E(\boldsymbol{\theta}) = \mathbf{0}$ and all prior standard deviations = 1000 gives *terrible* results

Conclusions

Conclusions

1. Utilities including **Future Patient Benefit**, **Cost**, **Expected Profit**, etc. may lead to **better designs and more publications**.

Conclusions

1. Utilities including **Future Patient Benefit**, **Cost**, **Expected Profit**, etc. may lead to **better designs and more publications**.
2. **French utilities** are not necessarily the same as **American utilities** \Rightarrow **Think globally but elicit utilities locally**.

Conclusions

1. Utilities including **Future Patient Benefit**, **Cost**, **Expected Profit**, etc. may lead to **better designs and more publications**.
2. **French utilities** are not necessarily the same as **American utilities** \Rightarrow **Think globally but elicit utilities locally**.
3. Many extensions are possible, and this also may lead to **better designs and more publications**.

Conclusions

1. Utilities including **Future Patient Benefit**, **Cost**, **Expected Profit**, etc. may lead to **better designs and more publications**.
2. **French utilities** are not necessarily the same as **American utilities** \Rightarrow **Think globally but elicit utilities locally**.
3. Many extensions are possible, and this also may lead to **better designs and more publications**.