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Phase I Trials

• In conventional phase I trials, the primary objective

is often to find the maximum tolerated dose (MTD).

• A sequence of doses is screened in order to find the

target dose associated with the maximum level of

tolerable toxicity.

• Typically, we assume that toxicity

monotonically increases with the dose.
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Dose-finding Methods

• “3+3” design (Storer, 1989)

• Continual reassessment method (O’Quigley et al., 1990)

• Decision theoretic approach (Whitehead and Brunier,

1995)

• Random walk rule (Durham et al., 1997)

• Dose escalation with overdose control (Babb et al.,

1998)

• Many methods have been proposed for phase I trials,

see Chevret (2006) for comprehensive reviews.
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Continual Reassessment Method (CRM)

• CRM assumes a parametric function between the

true toxicity probabilities and prespecified

probabilities (O’Quigley et al., 1990), e.g.,

pr(toxicity at dj) = πj(α) = p
exp(α)
j for j = 1, · · · , J.

where α is an unknown parameter.

• Based on observed data, the toxicity curve is

continuous updated to direct the dose escalation and

selection.
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Likelihood and Posterior

• At dose level j, yj out of nj subjects experienced

dose-limiting toxicities (DLT).

• The likelihood function is

L(D|α) =
J

∏

j=1

{p
exp(α)
j }yj{1 − p

exp(α)
j }nj−yj .

• Posterior mean of the dose toxicity probability

π̂j =

∫

p
exp(α)
j

L(D|α)f(α)
∫

L(D|α)f(α)dα
dα,

where f(α) is a prior distribution for the parameter

α ∼ N(0, σ2).
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CRM Decision Rule

• A new cohort of patients is assigned to dose level j∗

such that

j∗ = argminj∈(1,...,J)|π̂j − φ|.

• The trial continues until the exhaustion of the total

sample size, and then the dose with a posterior

toxicity probability closest to φ is selected as the

MTD.

• A stopping rule: if pr(toxicity rate at d1 > φ|D) >

0.9, the trial is terminated for safety.
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Refined CRM

• Faries (1994) and Goodman, Zahurak and Piantadosi

(1995) developed practical improvements: assigning

more than one subject to each dose and limiting dose

escalation by one dose level.

• Møller (1995) used a preliminary up-and-down design

in order to reach the neighborhood of the target dose

during a successive escalation.

• Piantadosi, Fisher and Grossman (1998) used a

simple dose-toxicity model to guide data

interpolation.

Ying Yuan



M.D. Anderson Cancer Center 10

• Heyd and Carlin (1999) allowed the trial to stop

earlier when the width of the posterior 95%

probability interval for the MTD becomes sufficiently

narrow.

• Leung and Wang (2002) used decision theory to

optimize the number of patients allocated to the

highest dose with toxicity not exceeding the tolerable

level.

• Braun (2002) extended the CRM to model bivariate

competing outcomes.

• For a comprehensive introduction, see the tutorial by

Garrett-Mayer (2006).
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Skeleton of CRM

• The CRM requires prespecification of prior toxicity

probabilities for the doses, i.e., pj’s

πj(α) = pj
exp(α) for j = 1, · · · , J .

• We call {pj} the “skeleton” of the CRM as it forms

the baseline (or prior) structure of the dose-toxicity

curve.
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• Idealy, we want to choose a set of {pj}, which can

reflect the true dose-toxicity relationship by a certain

value of α.
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Limitations of CRM

• Unfortunately, the prespecification of the skeleton

can be arbitrary and very subjective.

• No information to justify whether a specific skeleton

is reasonable because the underlying true toxicity

probabilities are unknown.

• Different skeletons can lead to very different

operating characteristics.

• Cheung and Chappell (2002) proposed a simple

technique to evaluate the sensitivity of the CRM,

which requires knowing the true dose-toxicity profile.
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Sensitivity to skeleton

• An example: eight dose levels with a target φ = 30%:

• Two (true) toxicity scenarios:

(0.02, 0.03, 0.04, 0.06, 0.08, 0.10 0.30, 0.50);

(0.02, 0.03, 0.05, 0.06, 0.07, 0.09, 0.10, 0.30)

• Four skeletons (p1, p2, p3, p4, p5, p6, p7, p8) =

=



























(0.02, 0.06, 0.08, 0.12, 0.20, 0.30, 0.40, 0.50), 1

(0.01, 0.05, 0.09, 0.14, 0.18, 0.22, 0.26, 0.30), 2

(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80), 3

(0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75), 4.
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Toxicity Probabilities of Doses 1−8

S
el

ec
tio

n 
pe

rc
en

ta
ge

0
10

20
30

40
50

2 3 4 6 8 10 30 50

Ying Yuan



M.D. Anderson Cancer Center 17

Toxicity Probabilities of Doses 1−8

S
el

ec
tio

n 
pe

rc
en

ta
ge

0
20

40
60

80

2 3 5 6 7 9 10 30

Ying Yuan



M.D. Anderson Cancer Center 18

Multiple Skeletons

• To avoid subjectivity in the specification of the

skeleton, we propose prespecifying multiple skeletons,

each representing a set of prior estimates of the

toxicity probabilities.

• We view each skeleton as corresponding to a CRM

model with a different set of pj’s.

• To accommodate the uncertainty in the specification

of these skeletons, we take a Bayesian model

averaging (BMA) approach to average π̂j across the

CRM models to obtain the BMA estimate of the

toxicity probability for dose level j.

Ying Yuan



M.D. Anderson Cancer Center 19

• BMA is known to provide a better predictive

performance than any single model (Raftery,

Madigan and Hoeting, 1997; and Hoeting et al.,

1999).

• We incorporate the uncertainty in the

prespecification of the toxicity probabilities into the

estimation procedure such that the potential

estimation bias caused by a misspecification of the

pj’s can be averaged out.

Ying Yuan
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BMA

• Let (M1, . . . ,MK) be the models corresponding to

each set of prior guesses of the toxicity probabilities

{(p11, . . . , p1J), . . . , (pK1, . . . , pKJ)}.

• Model Mk (k = 1, . . . ,K) in the CRM is given by

πkj(αk) = p
exp(αk)
kj , j = 1, . . . , J,

which is based on the kth skeleton (pk1, . . . , pkJ).

• Let pr(Mk) be the prior probability that model Mk is

the true model.

Ying Yuan
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Posterior Model Probability

• The likelihood function under model Mk is

L(D|αk,Mk) =
J

∏

j=1

{p
exp(αk)
kj }yj{1 − p

exp(αk)
kj }nj−yj .

• The posterior model probability for Mk is given by

pr(Mk|D) =
L(D|Mk)pr(Mk)

∑K

i=1 L(D|Mi)pr(Mi)

where L(D|Mk) is the marginal likelihood under Mk,

L(D|Mk) =

∫

L(D|αk,Mk)f(αk|Mk)dαk.
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BMA Estimate

• The BMA estimate for the toxicity probability is

π̄j =
K

∑

k=1

π̂kjpr(Mk|D), j = 1, . . . , J,

where π̂kj is the posterior mean of the toxicity

probability of dose level j under model Mk, i.e.,

π̂kj =

∫

p
exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)
∫

L(D|αk,Mk)f(αk|Mk)dαk

dαk.

• By assigning π̂kj a weight of pr(Mk|D), the BMA

method automatically favors the best fitting model,

thus π̄j is close to the best estimate.
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Dose-finding Algorithm

• Patients in the first cohort are treated at the lowest

dose d1, or the physician-specified dose.

• At the current dose level jcurr, we obtain the BMA

estimates for the toxicity probabilities,

π̄j (j = 1, . . . , J), based on the cumulated data.

• We then find dose level j∗ that has a toxicity

probability closest to φ,

j∗ = argminj∈(1,...,J)|π̄j − φ|.

– If jcurr > j∗, we de-escalate the dose level to

jcurr − 1;

Ying Yuan
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– if jcurr < j∗, we escalate the dose level to jcurr + 1;

– otherwise, the dose stays at the same level as jcurr

for the next cohort of patients.

• Once the maximum sample size is reached, the dose

that has the toxicity probability closest to φ is

selected as the MTD.

• We require an early termination of a trial if the

lowest dose is too toxic,

K
∑

k=1

pr{πk1(αk) > φ|Mk, D}pr(Mk|D) > 90%.

Ying Yuan
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Occam’s Window

• If the fit of a model is far worse than the best fitting

model, it would be reasonable to exclude that model

from the model averaging set.

• Only if model Mk satisfies

pr(Mk|D)

maxi∈(1,...,K) pr(Mi|D)
> δ,

model Mk is included in the model averaging set.

Ying Yuan
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CRM Model Selection

• Model selection takes a different perspective in

regression models.

• Among a set of competing models, we can simply

select the best fitting model according to a suitable

model selection criterion.

• A natural candidate for the model selection criterion

is based on the posterior model probability.
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Simulation Studies

• We considered eight doses and assumed that toxicity

monotonically increased with the dose.

• We prepared four sets of initial guesses of the toxicity

probabilities:

(p1, p2, p3, p4, p5, p6, p7, p8)

=



























(0.02, 0.06, 0.08, 0.12, 0.20, 0.30, 0.40, 0.50), 1

(0.01, 0.05, 0.09, 0.14, 0.18, 0.22, 0.26, 0.30), 2

(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80), 3

(0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75), 4.
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Skeletons

• Skeleton 1 is for the case in which toxicity increases

slowly at the low doses but increases quickly at the

high doses.

• Skeleton 2 is more concentrated at the low toxicity

levels (toxicity probabilities ≤ 0.3).

• Skeleton 3 has the toxicity probabilities evenly

spread over a range of 0.1 up to 0.8.

• Skeleton 4 starts at a relatively high toxicity

probability of 0.2, and increases quickly at the low

doses before leveling off at the high doses.
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Simulation Setups

• The target toxic probability was φ = 30%.

• We took the prior distribution of α ∼ N(0, 4), the

prior model probability pr(Mk) = 1/4 for

k = 1, . . . , 4.

• We took the cohort size 3, and treated the first

cohort of patients at the lowest dose level.

• The maximum sample size was 30, and for each

scenario we carried out 10,000 simulated trials.

Ying Yuan
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Number of Skeletons?

• Under scenario 5 we present the selection percentage

at each dose when using one, two, three, four, five

and six skeletons.

• Skeleton 5 =

(0.08, 0.15, 0.21, 0.29, 0.37, 0.44, 0.51, 0.58),

Skeleton 6 =

(0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.47, 0.55).
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• In practice, we recommend using three skeletons in

the trial design.
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Conclusion

• We have proposed a new dose-finding algorithm

based on the Bayesian model averaging CRM, using

multiple sets of prespecified toxicity probabilities.

• The performance of the proposed designs can be

substantially improved over that of the original

CRM, if the skeleton in the CRM happens to be very

far off the true model.

Ying Yuan



M.D. Anderson Cancer Center 42

• The BMA-CRM method is straightforward to

implement and very easy to compute based on the

Gaussian quadrature approximation or the Markov

chain Monte Carlo procedure.

• It provides a nice compromise for the initial guesses

of toxicity probabilities from different physicians.

• This Bayesian model averaging procedure

dramatically improves the robustness of the CRM.

Ying Yuan
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Software

• We have developed user-friendly software to conduct

BMA-CRM for actual trials.

• Free download from

http://biostatistics.mdanderson.org/SoftwareDownload

/SingleSoftware.aspx?Software_Id = 81

Ying Yuan
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Thank You!

Ying Yuan


