Hacking Metastasis: Nanotechnology Researchers Find New Way to Target Tumors

By Jim Stallard,

Thursday, July 7, 2016

Metastatic tumor in the lung, with different colors used to represent the cell nuclei, the blood vessels, and the P-selectin protein.

A major challenge in cancer treatment is making sure therapies destroy cancer cells without harming normal tissues. MSK researchers who are developing new types of nanotechnology to deliver cancer drugs have found a promising target — a protein called P-selectin that can aid in the formation of metastases. The researchers synthesized nanoparticles filled with cancer drugs to target them directly to metastatic sites.

  • Cancer drugs must target tumors without harming normal tissue.
  • Nanoparticles can carry drugs but must go to the correct site.
  • A protein called P-selectin is a promising target.
  • It plays a role in metastasis.

Even as researchers design more-potent cancer therapies, they face a major challenge in making sure the drugs affect tumors specifically without also harming normal cells. This obstacle has thwarted many promising treatments.

Memorial Sloan Kettering molecular pharmacologist Daniel Heller and colleagues have devised a novel strategy for addressing this problem. Rather than aiming directly at cancer cells, they are focusing on targeting a molecule in the blood vessels that feed tumors and using nanotechnology to deliver tiny particles that will stick to the target and unleash their payload of cancer drugs.

The target, a protein called P-selectin, serves as a kind of molecular Velcro for cancer treatments. It is especially prevalent in blood vessels that nourish cancer itself — including metastatic tumors, which cause roughly 90 percent of cancer deaths and are especially hard to treat.

“The ability to target drugs to metastatic tumors would greatly improve their effectiveness and be a major advance for cancer treatments,” says research fellow Yosi Shamay, lead author of a new study describing this method that is featured on the cover of the June 29 issue of Science Translational Medicine.

P-selectin: An Inviting Target for Nanoparticles

Dr. Heller’s laboratory investigates the use of nanoparticles — tiny objects with diameters one thousandth that of a human hair — to carry drugs to tumors. The drugs are encapsulated within the nanoparticles, which must home in on a target within or near tumors to deliver the therapies effectively.

P-selectin emerged as an especially good target for cancer-focused nanoparticles because in addition to being found in tumor blood vessels, the molecule aids in the formation of metastases. When cancer cells leave a primary tumor and circulate in the blood, the cells can adhere to P-selectin, exit the blood vessel, and form a new tumor. 

The ability to target drugs to metastatic tumors would greatly improve their effectiveness.
Yosef Shamay
Yosef Shamay research fellow

“We know that cancer cells can come into contact with P-selectin to begin the formation of metastatic tumors,” Dr. Heller says. “So in effect, we’re hacking into the metastatic process in order to intercept the cells and destroy the cancer with drug-loaded nanoparticles.”

Back to top

Exploring the Promise of Nanomedicine

Dr. Shamay made the nanoparticles out of a very abundant and cheap substance called fucoidan, which is extracted from brown algae that grows in the ocean. Fucoidan has a natural affinity for P-selectin, so the nanoparticle is simple to make and adapt.

“It’s difficult to develop a nanoparticle-based treatment that is effective and safe in lots of people,” Dr. Heller says. “You usually have to load both the drug and another component to the nanoparticle to enable the nanoparticle to bind to the correct spot — and any new element carries the potential to be toxic. But in this case, the nanoparticle itself is made of material that naturally attaches to the target.”

Learn about the work Memorial Sloan Kettering scientists are doing in the area of nanotechnology.
Learn more

“Just by targeting the tumor blood vessels, we found that the drug is going to the tumor itself and killing cancer cells directly,” Dr. Heller says. “This makes the drugs delivered through this process work even better than we expected.”

Even when the tumor blood vessels don’t express P-selectin, the researchers could use radiation to trigger the expression of that protein in the tumor area before administering the nanoparticles. In collaboration with MSK radiation biologist Adriana Haimovitz-Friedman, they found that radiotherapy ensured that enough P-selectin was expressed for the nanoparticles to adhere to and deliver the therapy to the tumor.

We're hacking into the metastatic process in order to … destroy the cancer.
Daniel A. Heller
Daniel A. Heller molecular pharmacologist

The researchers conducted experiments showing that the nanoparticles selectively attached to cancer sites, including metastatic tumors, in the lungs of mice. The nanoparticles were filled with different cancer drugs, including chemotherapies and newer precision medicines that target specific molecules in cancer cells.

“We demonstrated that the drugs were more effective when administered within the nanoparticles than when given alone,” Dr. Heller says. “We were able to give lower doses, which reduced the side effects.”

In collaboration with the laboratory of MSK Physician-in-Chief José Baselga and cancer biologist Maurizio Scaltriti, Dr. Heller’s lab used the nanoparticles to deliver a type of targeted therapy known as a MEK inhibitor, which has shown promise in several cancers. With this method, the MEK inhibitors were more effective against the tumors without causing the serious side effects, such as skin rashes, that have hampered many treatments.

“The clinical potential of nanomedicines for cancer has not been fulfilled, but targeting P-selectin with these nanoparticles is an approach that seems to be broadly useful for all kinds of drugs,” Dr. Heller says.

“This approach requires further in-depth testing, including clinical trials, but we are really excited about its promise.”

Back to top


With advanced metastatic Prostate Cancer (PCa) in bones throughout the body, I have particular interest in the nanotechnology approach to attacking tumors and implied stopping/preventing further growth. Where is this concept in clinical trials? What will be the criteria for participation? When will MSK be able to interview potential candidates?
Thank you !

Glenn, thank you for reaching out. This technology is still in an investigative stage so it is unofortunately not possible to predict when it might enter clinical trials.

If you would like to make an appointment with a Memorial Sloan Kettering physician for a consultation about available treatments, please call our Physician Referral Service at

800-525-2225 or go to https://www.mskcc.org/experience/become-patient/appointment

Add new comment

We welcome your questions and comments. While we share many of them with our world-class doctors and researchers, we regret that in order to protect your privacy, we are not able to make personal medical recommendations on this forum, nor do we publish comments that contain your personal information. If you would like to consult with an MSK doctor, we encourage you to make an appointment at 800-525-2225 or request an appointment online.

Your email address is kept private and will not be shown publicly.