Genes, Environment, and Melanoma (GEM) Publications

Genes, Environment, and Melanoma (GEM) Publications

Share
Share
  1. Begg, C.B. and M. Berwick, A note on the estimation of relative risks of rare genetic susceptibility markers. Cancer Epidemiol Biomarkers Prev, 1997. 6(2): p. 99-103 https://www.ncbi.nlm.nih.gov/pubmed/9037560.
  2. Orlow, I., et al., Validation of denaturing high performance liquid chromatography as a rapid detection method for the identification of human INK4A gene mutations. J Mol Diagn, 2001. 3(4): p. 158-63 https://www.ncbi.nlm.nih.gov/pubmed/11687599.
  3. Amend, K.L., et al., EGF gene polymorphism and the risk of incident primary melanoma. Cancer Res, 2004. 64(8): p. 2668-72 https://www.ncbi.nlm.nih.gov/pubmed/15087376.
  4. Begg, C.B., et al., Familial aggregation of melanoma risks in a large population-based sample of melanoma cases. Cancer Causes Control, 2004. 15(9): p. 957-65 https://www.ncbi.nlm.nih.gov/pubmed/15577298.
  5. Thomas, N.E., et al., Tandem BRAF mutations in primary invasive melanomas. J Invest Dermatol, 2004. 122(5): p. 1245-50 https://www.ncbi.nlm.nih.gov/pubmed/15140228.
  6. Begg, C.B., et al., Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst, 2005. 97(20): p. 1507-15  https://www.ncbi.nlm.nih.gov/pubmed/16234564.
  7. Hay, J., et al., Skin cancer risk discussions in melanoma-affected families. J Cancer Educ, 2005. 20(4): p. 240-6 https://www.ncbi.nlm.nih.gov/pubmed/16497137.
  8. Orlow I, B.M., Hummer A, Begg CB, Absence of association of CDKN2A Ala148Thr with breast cancer. J Med Genet, 2005
  9. Begg, C.B., et al., A design for cancer case-control studies using only incident cases: experience with the GEM study of melanoma. Int J Epidemiol, 2006. 35(3): p. 756-64 https://www.ncbi.nlm.nih.gov/pubmed/16556646.
  10. Berwick, M., et al., The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol Biomarkers Prev, 2006. 15(8): p. 1520-5  https://www.ncbi.nlm.nih.gov/pubmed/16896043.
  11. Kanetsky, P.A., et al., Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma. Cancer Res, 2006. 66(18): p. 9330-7  https://www.ncbi.nlm.nih.gov/pubmed/16982779.
  12. Millikan, R.C., et al., Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis, 2006. 27(3): p. 610-8 https://www.ncbi.nlm.nih.gov/pubmed/16258177.
  13. Thomas, N.E., M. Berwick, and M. Cordeiro-Stone, Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? J Invest Dermatol, 2006. 126(8): p. 1693-6 https://www.ncbi.nlm.nih.gov/pubmed/16845408.
  14. Cotignola, J., et al., Functional polymorphisms in the promoter regions of MMP2 and MMP3 are not associated with melanoma progression. J Negat Results Biomed, 2007. 6: p. 9 https://www.ncbi.nlm.nih.gov/pubmed/17958893.
  15. Kricker, A., et al., Ambient UV, personal sun exposure and risk of multiple primary melanomas. Cancer Causes Control, 2007. 18(3): p. 295-304  https://www.ncbi.nlm.nih.gov/pubmed/17206532.
  16. Orlow, I., et al., CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J Invest Dermatol, 2007. 127(5): p. 1234-43  https://www.ncbi.nlm.nih.gov/pubmed/17218939.
  17. Stitzenberg, K.B., et al., Distance to diagnosing provider as a measure of access for patients with melanoma. Arch Dermatol, 2007. 143(8): p. 991-8  https://www.ncbi.nlm.nih.gov/pubmed/17709657.
  18. Thomas, N.E., et al., Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomarkers Prev, 2007. 16(5): p. 991-7 https://www.ncbi.nlm.nih.gov/pubmed/17507627.
  19. Capanu, M., et al., The use of hierarchical models for estimating relative risks of individual genetic variants: an application to a study of melanoma. Stat Med, 2008. 27(11): p. 1973-92 https://www.ncbi.nlm.nih.gov/pubmed/18335566.
  20. Hay, J., et al., Family communication after melanoma diagnosis. Arch Dermatol, 2008. 144(4): p. 553-4 https://www.ncbi.nlm.nih.gov/pubmed/18427057.
  21. Mateo, G., et al., Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol, 2008. 26(16): p. 2737-44 https://pubmed.ncbi.nlm.nih.gov/18443352/
  22. Mujumdar, U.J., et al., Sun protection and skin self-examination in melanoma survivors. Psychooncology, 2009. 18(10): p. 1106-15 https://www.ncbi.nlm.nih.gov/pubmed/19142859.
  23. Orlow, I., et al., Evaluation of the clonal origin of multiple primary melanomas using molecular profiling. J Invest Dermatol, 2009. 129(8): p. 1972-82  https://www.ncbi.nlm.nih.gov/pubmed/19282844.
  24. Kricker, A., et al., MC1R genotype may modify the effect of sun exposure on melanoma risk in the GEM study. Cancer Causes Control, 2010. 21(12): p. 2137-47  https://www.ncbi.nlm.nih.gov/pubmed/20721616.
  25. Thomas, N.E., et al., Melanoma molecular subtypes: unifying and paradoxical results. J Invest Dermatol, 2010. 130(1): p. 12-4 https://www.ncbi.nlm.nih.gov/pubmed/20010862.
  26. Thomas, N.E., et al., Relationship between germline MC1R variants and BRAF-mutant melanoma in a North Carolina population-based study. J Invest Dermatol, 2010. 130(5): p. 1463-5 https://www.ncbi.nlm.nih.gov/pubmed/20043015.
  27. Thomas, N.E., et al., Associations of cumulative sun exposure and phenotypic characteristics with histologic solar elastosis. Cancer Epidemiol Biomarkers Prev, 2010. 19(11): p. 2932-41 https://www.ncbi.nlm.nih.gov/pubmed/20802019.
  28. Berwick, M., et al., Interaction of CDKN2A and sun exposure in the etiology of melanoma in the general population. J Invest Dermatol, 2011. 131(12): p. 2500-3  https://www.ncbi.nlm.nih.gov/pubmed/21833009.
  29. Conway, K., et al., DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res, 2011. 24(2): p. 352-60  https://www.ncbi.nlm.nih.gov/pubmed/21375697.
  30. Mandelcorn-Monson, R., et al., Sun exposure, vitamin D receptor polymorphisms FokI and BsmI and risk of multiple primary melanoma. Cancer Epidemiol, 2011. 35(6): p. e105-10 https://www.ncbi.nlm.nih.gov/pubmed/21612999.
  31. Satagopan, J.M., et al., Properties of preliminary test estimators and shrinkage estimators for evaluating multiple exposures - Application to questionnaire data from the ’Study of nevi in children’ (SONIC) study. J R Stat Soc Ser C Appl Stat, 2011. 60(4): p. 619-632 https://www.ncbi.nlm.nih.gov/pubmed/21857749.
  32. Hay, J.L., et al., Interpretation of melanoma risk feedback in first-degree relatives of melanoma patients. J Cancer Epidemiol, 2012. 2012: p. 374842  https://www.ncbi.nlm.nih.gov/pubmed/22888347.
  33. Mukherjee, B., et al., Risk of non-melanoma cancers in first-degree relatives of CDKN2A mutation carriers. J Natl Cancer Inst, 2012. 104(12): p. 953-6  https://www.ncbi.nlm.nih.gov/pubmed/22534780.
  34. Murali, R., et al., Clinicopathologic features of incident and subsequent tumors in patients with multiple primary cutaneous melanomas. Ann Surg Oncol, 2012. 19(3): p. 1024-33 https://www.ncbi.nlm.nih.gov/pubmed/21913010.
  35. Orlow, I., et al., Vitamin D receptor polymorphisms in patients with cutaneous melanoma. Int J Cancer, 2012. 130(2): p. 405-18 https://www.ncbi.nlm.nih.gov/pubmed/21365644.
  36. Raimondi, S., et al., Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies. BMC Med Res Methodol, 2012. 12: p. 116  https://www.ncbi.nlm.nih.gov/pubmed/22862891.
  37. Kricker, A., et al., Survival for patients with single and multiple primary melanomas: the genes, environment, and melanoma study. JAMA Dermatol, 2013. 149(8): p. 921-7 https://www.ncbi.nlm.nih.gov/pubmed/23784017.
  38. Thomas, N.E., et al., Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J Clin Oncol, 2013. 31(33): p. 4252-9 https://www.ncbi.nlm.nih.gov/pubmed/24127443.
  39. Berwick, M., et al., MITF E318K’s effect on melanoma risk independent of, but modified by, other risk factors. Pigment Cell Melanoma Res, 2014. 27(3): p. 485-8  https://www.ncbi.nlm.nih.gov/pubmed/24406078.
  40. Berwick, M., et al., Sun exposure and melanoma survival: a GEM study. Cancer Epidemiol Biomarkers Prev, 2014. 23(10): p. 2145-52 https://www.ncbi.nlm.nih.gov/pubmed/25069694.
  41. Thomas, N.E., et al., Comparison of clinicopathologic features and survival of histopathologically amelanotic and pigmented melanomas: a population-based study. JAMA Dermatol, 2014. 150(12): p. 1306-314  https://www.ncbi.nlm.nih.gov/pubmed/25162299.
  42. Vuong, K., et al., Occupational sun exposure and risk of melanoma according to anatomical site. Int J Cancer, 2014. 134(11): p. 2735-41  https://www.ncbi.nlm.nih.gov/pubmed/24288300.
  43. Carson, C.C., et al., IL2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma. Clin Cancer Res, 2015. 21(9): p. 2167-76  https://www.ncbi.nlm.nih.gov/pubmed/25934889.
  44. Gibbs, D.C., et al., Inherited genetic variants associated with occurrence of multiple primary melanoma. Cancer Epidemiol Biomarkers Prev, 2015. 24(6): p. 992-7  https://www.ncbi.nlm.nih.gov/pubmed/25837821.
  45. Orlow, I., et al., Genetic factors associated with naevus count and dermoscopic patterns: preliminary results from the Study of Nevi in Children (SONIC). Br J Dermatol, 2015. 172(4): p. 1081-9 https://www.ncbi.nlm.nih.gov/pubmed/25307738.
  46. Taylor, N.J., et al., Inherited variation at MC1R and histological characteristics of primary melanoma. PLoS One, 2015. 10(3): p. e0119920  https://www.ncbi.nlm.nih.gov/pubmed/25790105.
  47. Taylor, N.J., et al., Inherited variation at MC1R and ASIP and association with melanoma-specific survival. Int J Cancer, 2015. 136(11): p. 2659-67
  48. Thomas, N.E., et al., Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncol, 2015. 1(3): p. 359-68 https://www.ncbi.nlm.nih.gov/pubmed/26146664.
  49. Vicory, J., et al., Appearance normalization of histology slides. Comput Med Imaging Graph, 2015. 43: p. 89-98 https://www.ncbi.nlm.nih.gov/pubmed/25863518.
  50. Berwick, M., et al., Melanoma Epidemiology and Prevention. Cancer Treat Res, 2016. 167: p. 17-49 https://www.ncbi.nlm.nih.gov/pubmed/26601858.
  51. Gibbs, D.C., et al., Association of Interferon Regulatory Factor-4 Polymorphism rs12203592 With Divergent Melanoma Pathways. J Natl Cancer Inst, 2016. 108(7) https://www.ncbi.nlm.nih.gov/pubmed/26857527.
  52. Orlow, I., et al., Vitamin D receptor polymorphisms and survival in patients with cutaneous melanoma: a population-based study. Carcinogenesis, 2016. 37(1): p. 30-8 https://www.ncbi.nlm.nih.gov/pubmed/26521212.
  53. Taylor, N.J., et al., Nevus count associations with pigmentary phenotype, histopathological melanoma characteristics and survival from melanoma. Int J Cancer, 2016. 139(6): p. 1217-22 https://www.ncbi.nlm.nih.gov/pubmed/27101944.
  54. White, K.A., et al., Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study. Cancer Med, 2016. 5(11): p. 3336-3345 https://www.ncbi.nlm.nih.gov/pubmed/27748080.
  55. Zapolska, J., et al., Patterns and sources of information about family melanoma risk among melanoma survivors. Melanoma Manag, 2016. 3(2): p. 105-111  https://www.ncbi.nlm.nih.gov/pubmed/30190879.
  56. Gibbs, D.C., et al., Functional melanoma-risk variant IRF4 rs12203592 associated with Breslow thickness: a pooled international study of primary melanomas. Br J Dermatol, 2017. 177(5): p. e180-e182 https://www.ncbi.nlm.nih.gov/pubmed/28667740.
  57. Luo, L., et al., No prognostic value added by vitamin D pathway SNPs to current prognostic system for melanoma survival. PLoS One, 2017. 12(3): p. e0174234 https://www.ncbi.nlm.nih.gov/pubmed/28323902.
  58. Mauguen, A., et al., Defining Cancer Subtypes With Distinctive Etiologic Profiles: An Application to the Epidemiology of Melanoma. J Am Stat Assoc, 2017. 112(517): p. 54-63 https://www.ncbi.nlm.nih.gov/pubmed/28603323.
  59. Schwitzer, E., et al., No association between prediagnosis exercise and survival in patients with high-risk primary melanoma: A population-based study. Pigment Cell Melanoma Res, 2017. 30(4): p. 424-427
  60. Thomas, N.E., et al., Associations of MC1R Genotype and Patient Phenotypes with BRAF and NRAS Mutations in Melanoma. J Invest Dermatol, 2017. 137(12): p. 2588-2598 https://www.ncbi.nlm.nih.gov/pubmed/28842324.
  61. Vernali, S., et al., Association of Incident Amelanotic Melanoma With Phenotypic Characteristics, MC1R Status, and Prior Amelanotic Melanoma. JAMA Dermatol, 2017. 153(10): p. 1026-1031 https://www.ncbi.nlm.nih.gov/pubmed/28746718.
  62. Gorlov, I., et al., Identification of gene expression levels in primary melanoma associated with clinically meaningful characteristics. Melanoma Res, 2018. 28(5): p. 380-389 https://www.ncbi.nlm.nih.gov/pubmed/29975213.
  63. Orlow, I., et al., The interaction between vitamin D receptor polymorphisms and sun exposure around time of diagnosis influences melanoma survival. Pigment Cell Melanoma Res, 2018. 31(2): p. 287-296 https://www.ncbi.nlm.nih.gov/pubmed/28990310.
  64. Miles, J.A., et al., Relationship of Chromosome Arm 10q Variants to Occurrence of Multiple Primary Melanoma in the Population-Based Genes, Environment, and Melanoma (GEM) Study. J Invest Dermatol, 2019. 139(6): p. 1410-1412  https://www.ncbi.nlm.nih.gov/pubmed/30571972.
  65. Pellegrini, C., et al., MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort. Lancet Child Adolesc Health, 2019. 3(5): p. 332-342 https://www.ncbi.nlm.nih.gov/pubmed/30872112.
  66. Thomas, N.E., et al., Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis. Am J Dermatopathol, 2019. 41(4): p. 264-272  https://www.ncbi.nlm.nih.gov/pubmed/30211730.
  67. Cust, A.E., et al., A risk prediction model for the development of subsequent primary melanoma in a population-based cohort. Br J Dermatol, 2020. 182(5): p. 1148-1157 https://www.ncbi.nlm.nih.gov/pubmed/31520533.
  68. Gibbs, D.C., et al., Inherited Melanoma Risk Variants Associated with Histopathologically Amelanotic Melanoma. J Invest Dermatol, 2020. 140(4): p. 918-922 e7 https://www.ncbi.nlm.nih.gov/pubmed/31568773.
  69. Gorlov, I.P., et al., Human genes differ by their UV sensitivity estimated through analysis of UV-induced silent mutations in melanoma. Hum Mutat, 2020. 41(10): p. 1751-1760 https://www.ncbi.nlm.nih.gov/pubmed/32643855.
  70. Lin, L., et al., Non-Cell-Autonomous Activity of the Hemidesmosomal Protein BP180/Collagen XVII in Granulopoiesis in Humanized NC16A Mice. J Immunol, 2020. 205(10): p. 2786-2794 https://www.ncbi.nlm.nih.gov/pubmed/32998984.
  71. Ward, S.V., et al., Association of IRF4 single-nucleotide polymorphism rs12203592 with melanoma-specific survival. Br J Dermatol, 2020. 183(1): p. 163-165  https://www.ncbi.nlm.nih.gov/pubmed/31958143.
  72. Wood, R.P., et al., Association of Known Melanoma Risk Factors with Primary Melanoma of the Scalp and Neck. Cancer Epidemiol Biomarkers Prev, 2020. 29(11): p. 2203-2210 https://www.ncbi.nlm.nih.gov/pubmed/32856602.
  73. Davari, D.R., et al., Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr Oncol, 2021. 28(6): p. 4756-4771 https://www.ncbi.nlm.nih.gov/pubmed/34898573.
  74. Davari, D.R., et al., Disease-Associated Risk Variants in ANRIL Are Associated with Tumor-Infiltrating Lymphocyte Presence in Primary Melanomas in the Population-Based GEM Study. Cancer Epidemiol Biomarkers Prev, 2021. 30(12): p. 2309-2316 https://www.ncbi.nlm.nih.gov/pubmed/34607836.
  75. Yardman-Frank, J.M., et al., Comparison of community pathologists with expert dermatopathologists evaluating Breslow thickness and histopathologic subtype in a large international population-based study of melanoma. JAAD Int, 2021. 4: p. 25-27 https://www.ncbi.nlm.nih.gov/pubmed/34409386.
  76. Yardman-Frank, J.M., et al., Differences in Melanoma Between Canada and New South Wales, Australia: A Population-Based Genes, Environment, and Melanoma (GEM) Study. JID Innov, 2021. 1(1) https://www.ncbi.nlm.nih.gov/pubmed/33768212.
  77. Conway, K., et al., Characterization of the CpG Island Hypermethylated Phenotype Subclass in Primary Melanomas. J Invest Dermatol, 2022. 142(7): p. 1869-1881 e10 https://www.ncbi.nlm.nih.gov/pubmed/34843679.
  78. Jain, M., et al., Minimally invasive microbiopsy for genetic profiling of melanocytic lesions: A case series. J Am Acad Dermatol, 2022. 87(4): p. 903-904  https://www.ncbi.nlm.nih.gov/pubmed/34922919.
  79. Gibbs, D.C., et al., Association of functional, inherited vitamin D-binding protein variants with melanoma-specific death. JNCI Cancer Spectr, 2023. 7(5)  https://www.ncbi.nlm.nih.gov/pubmed/37494457.
  80. Gorlov, I.P., et al., Methylation of nonessential genes in cutaneous melanoma - Rule Out hypothesis. Melanoma Res, 2023. 33(3): p. 163-172  https://www.ncbi.nlm.nih.gov/pubmed/36805567.
  81. Kostrzewa, C.E., et al., Pathway Alterations in Stage II/III Primary Melanoma. JCO Precis Oncol, 2023. 7: p. e2200439 https://www.ncbi.nlm.nih.gov/pubmed/36926987.
  82. Orlow, I., et al., InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma. PLoS One, 2023. 18(4): p. e0269324 https://www.ncbi.nlm.nih.gov/pubmed/37011054.
  83. Ward, S.V., et al., Sex-Specific Associations of MDM2 and MDM4 Variants with Risk of Multiple Primary Melanomas and Melanoma Survival in Non-Hispanic Whites. Cancers (Basel), 2023. 15(10) https://www.ncbi.nlm.nih.gov/pubmed/37345045.
  84. Conway, K., et al., DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. JCO Precis Oncol, 2024. 8: p. e2400375 https://www.ncbi.nlm.nih.gov/pubmed/39509669.
  85. Cui, Y., et al., Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images-Nevus and Melanoma. Cancers (Basel), 2024. 16(15)  https://www.ncbi.nlm.nih.gov/pubmed/39123344.
  86. Lezcano, C., et al., Solar elastosis correlates with high tumor mutation burden and better 5-year disease-specific survival in patients with stage II/III melanoma. EJC Skin Cancer, 2024. 2 https://www.ncbi.nlm.nih.gov/pubmed/39801746.
  87. Murali, T., et al., Sex differences in melanoma survival-a GEM study. JNCI Cancer Spectr, 2025. 9(1) https://www.ncbi.nlm.nih.gov/pubmed/39799507.